
Under review as a conference paper at ICLR 2024

A RELATED WORK

The following is an overview of related work in the Predict-Then-Optimize and Learning-to-Optimize
settings.

A.1 PREDICT-THEN-OPTIMIZE

While the idea is general and has broader applications, differentiation through the optimization of
equation 1 is central to EPO approaches. Backpropagation of parametric quadratic programming
problems was introduced by Amos & Kolter (2017), which implicitly differentiates the solution via
its KKT conditions of optimality Boyd et al. (2004), proposes its use for defining general-purpose
learnable layers in neural networks. Agrawal et al. (2019b) followed by proposing a differentiable cone
programming solver, which uses implicit differentiation of problem-specific optimality conditions.
That framework is leveraged by Agrawal et al. (2019a) to solve and differentiate general convex
programs, by pairing it with a symbolic system for conversion of convex programs to canonical
cone programs. Kotary et al. (2023) shows how to generate derivatives through a broad class of
optimization problems, by implicitly differentiating the fixed-point conditions of a solution algorithm,
which can be automated by leveraging automatic differentiation through a single solver step.

The above works focus on computing derivatives through optimization problems when they exist. For
many practical problems with discrete structure, such as linear programs, the mapping defined by
equation 1 is piecewise constant and cannot be differentiated. (Elmachtoub & Grigas, 2021) propose
a surrogate loss function for equation 2 in cases where f is linear, which admits useful subgradients
for stochastic gradient descent training. (Wilder et al., 2019) proposes backpropagation through linear
programs by adding a smooth quadratic term to the objective and differentiating the resulting QP
problem via Amos & Kolter (2017). (Berthet et al., 2020) also propose backpropagation through
linear programs but by smoothing the mapping equation 1 through random noise perturbations to the
objective function. (Pogančić et al., 2020) form approximate derivatives through linear optimization
of discrete variables, by using a finite difference approximation between a pair of solutions with
perturbed input parameters.

A.2 LEARNING TO OPTIMIZE

Many approaches have been proposed to the concept of learning to solve optimization problems from
their representations via problem parameters.

For continuous problems, learning of active constraints Misra et al. (2022) and learning warm-starts
Sambharya et al. (2023) are two ways in which intermediate information can be learned to accelerate
optimization solvers on a problem instance-specific basis. However, such methods are perpendicular
to the idea of learning to optimize from features, since they do not produce solutions end-to-end from
parameters, but rather intermediate information utilized by a hard solver. Such end-to-end learning
methods include those adapted to LtoF in the paper, and are reviewed in the next section.

The comprehensive survey Bengio et al. (2021) focuses on machine learning methods aimed at
boosting combinatorial solvers by predicted intermediate information. Related works involve learning
heurstics for combinatorial solvers including branching rules Khalil et al. (2016) and cutting rules
Deza & Khalil (2023) in conventional mixed-integer programming.

End-to-end learning for combinatorial optimization appeared as early as Vinyals et al. (2015),
followed by Bello et al. (2017) which extended the idea to an unsupervised setting by training with
reinforcement learning with policy gradient methods. This approach has been widely adapted to
combinatorial problems such as vehicle routing Kool et al. (2018) and job scheduling Mao et al.
(2019), and relies on softmax representations of permutations and subset selections to enforce
feasibility. Learning combinatorial solutions via supervised penalty methods was proposed in Kotary
et al. (2022), while it is shown in Kotary et al. (2021a) that supervision by precomputed target
solutions can suffer from unlearnable patterns in the presence of symmetric ground-truth solutions or
suboptimally computed labels.

12

Under review as a conference paper at ICLR 2024

B LEARNING TO OPTIMIZE METHODS

This section reviews in more those LtO methods which are adapted to solve PtO problems in Section
5 of this paper. Each description below assumes a DNN model O and its parameters , which acts on
parameters ci specifying an instance of problem equation 1, to produce an estimate of the optimal
solution x̂ := F!(c), so that x̂ ⇡ x?(c).

Lagrangian Dual Learning (LD). Fioretto et al. (2020) constructs the following modified La-
grangian as a loss function for training the predictions x̂ = F!(c)

LLD(x̂, c) = kx̂ � x?(c)k22 + �T [g(x̂, c)]+ + µT h(x̂, c). (10)

At each iteration of LD training, the model F! is trained to minimize the loss LLD. Then, updates
to the multiplier vectors � and µ are calculated based on the average constraint violations incurred
by the predictions x̂, mimicking a dual ascent method Boyd et al. (2011). In this way, the method
minimizes a balance of constraint violations and proximity to the precomputed target optima x?(c).

Self-Supervised Primal-Dual Learning (PDL). Park & Van Hentenryck (2023) use an augmented
Lagrangian loss

LPDL(x̂, c) = f(x̂, c) + �̂T g(x̂, c) + µ̂T h(x̂, c) +
⇢

2

0

@
X

j

⌫(gj(x̂)) +
X

j

⌫(hj(x̂))

1

A , (11)

where ⌫ measures the constraint violation. At each iteration of PDL training, a separate estimate
of the Lagrange multipliers is stored for each problem instance in training, and updated by an
augmented Lagrangian method Boyd et al. (2011) after training x̂ = F!(c) to minimize equation 11.
In addition to the primal network F!, an addition dual network D⇣ learns to store updates of the
multipliers for each instance, and predict them as (�̂, µ̂) = D⇣(c) to the next iteration. The method
is self-supervised, requiring no precomputation of target solutions for training.

Deep Constraint Completion and Correction (DC3). Donti et al. (2021) use the loss function

LDC3(x̂, c) = f(x̂, c) + �k [g(x̂, c)]+ k
2
2 + µkh(x̂, c)k22 (12)

which combines a problem’s objective value with two additional terms which aggregate the total
violations of its equality and inequality constraints. The scalar multipliers � and µ are not adjusted
during training. However, feasibility of predicted solutions is enforced by treating x̂ = F̂!(c) as
an estimate for only a subset of optimization variables. The remaining variables are completed by
solving the underdetermined equality constraints h(x) = 0 as a system of equations. Inequality
violations are corrected by gradient descent on the their aggregated values k [g(x̂, c)]+ k

2 . These
completion and correction steps form the function S, where F!(c) = S � F̂!(c).

C OPTIMIZATION PROBLEMS

Illustrative 2D example Used for illustration purposes, the 2D optimization problem used to
produce the results of Figure 3 takes the form

x?(⇣) = arg min
x

⇣1x
2
1 + ⇣2x

2
2

s.t. x1 + 2x2 = 0.5,

2x1 � x2 = 0.2,

x1 + x2 = 0.3

and its optimization proxy model is learned using PDL training.

13

Under review as a conference paper at ICLR 2024

Minimize :
X

i2N

cost(pgi , ⇣i) (2a)

s.t. vmin
i vi vmax

i 8i 2 N (2b)

� ✓�
ij ✓i � ✓j ✓�

ij 8(ij) 2 E (2c̄)

pgmin
i pgi pgmax

i 8i 2 N (2d̄)

qgmin
i qgi qgmax

i 8i 2 N (2e)

(pfij)
2 + (qfij)

2 Sf max
ij 8(ij) 2 E (2f̄)

pfij = gijv
2
i � vivj(bij sin(✓i � ✓j) + gij cos(✓i � ✓j)) 8(ij) 2 E

(2ḡ)

qfij = �bijv
2
i � vivj(gij sin(✓i � ✓j)� bij cos(✓i � ✓j)) 8(ij) 2 E

(2h)

pgi � pd
i =

P
(ij)2E pfij 8i 2 N (2̄i)

qgi � qd
i =

P
(ij)2E qfij 8i 2 N (2j)

Output : (pg, v) – The system operational parameters

Figure 6: AC Optimal Power Flow (AC-OPF).

AC-Optimal Power Flow Problem. The OPF determines the least-cost generator dispatch that
meets the load (demand) in a power network. The OPF is defined in terms of complex numbers,
i.e., powers of the form S = (p+jq), where p and q denote active and reactive powers and j the
imaginary unit, admittances of the form Y = (g+jb), where g and b denote the conductance and
susceptance, and voltages of the form V = (v\✓), with magnitude v and phase angle ✓. A power
network is viewed as a graph (N , E) where the nodes N represent the set of buses and the edges
E represent the set of transmission lines. The OPF constraints include physical and engineering
constraints, which are captured in the AC-OPF formulation of Figure 6. The model uses p

g , and p
d to

denote, respectively, the vectors of active power generation and load associated with each bus and p
f

to describe the vector of active power flows associated with each transmission line. Similar notations
are used to denote the vectors of reactive power q. Finally, the model uses v and ✓ to describe the
vectors of voltage magnitude and angles associated with each bus. The OPF takes as inputs the loads
(pd

, qd) and the admittance matrix Y , with entries gij and bij for each line (ij)2E ; It returns the
active power vector p

g of the generators, as well the voltage magnitude v at the generator buses. The
problem objective equation 2a captures the cost of the generator dispatch and is typically expressed
as a quadratic function. Constraints equation 2b and equation 2c̄ restrict the voltage magnitudes and
the phase angle differences within their bounds. Constraints equation 2d̄ and equation 2e enforce
the generator active and reactive output limits. Constraints equation 2f̄ enforce the line flow limits.
Constraints equation 2ḡ and equation 2h capture Ohm’s Law. Finally, Constraint equation 2̄i and
equation 2j capture Kirchhoff’s Current Law enforcing flow conservation at each bus.

In the experiment, an energy market is simulated where producers adjust their prices based on bids
and prevailing weather conditions. Similarly, consumers decide on additional energy purchases
influenced by these variables. The Predict-then-optimize focus is to predict the cost implications for
energy generators. Synthetic features z are used to create increasingly complex feature (simulating
weather) to costs mappings and ground-truth costs ⇣ are sampled uniformly from the interval [50, 100].
Recognizing that bids from both sides may not be reliable, the model uses its own forecasts for energy
demand and supply to determine if new generators need to be activated. This approach enables the
study of how market dynamics and forecasting inaccuracies affect generator costs.

Projection (Load Flow Model) Being an approximation, a LtO solution p̂g may not satisfy the orig-
inal constraints. Feasibility can be restored by applying a load flow optimization. A simple load flow

Minimize : kpg � p̂gk2 + kv � v̂k2 (3)
s.t.: Eqns. 2b� 2j

Output : (pg, v)

Figure 7: AC Load Flow.

is shown in Figure 7. It is a least square minimization
that finds a feasible solution minimizing the distance
to the approximated one. The use of such a projection
allows for detailed comparison between the various
exact and approximate models. Observe that the load
flow itself is a nonlinear nonconvex problem. How-

14

Under review as a conference paper at ICLR 2024

Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8

Lt
O

F

LD Regret 0.0680 0.0673 0.1016 0.4904 0.7470

LD Regret (*) 0.0009 0.0009 0.0013 0.0071 0.0195
LD Violation (*) 0.0035 0.0017 0.0020 0.0037 0.0042
PDL Regret 0.6305 0.7958 0.9603 0.8543 0.8304
PDL Regret (*) 0.0210 0.0242 0.0260 0.0243 0.0242
PDL Violation (*) 0.0001 0.0002 0.0000 0.0002 0.0002

Two-Stage Regret (Best) - 0.0370 0.3300 1.1380 2.4740
EPO Proxy Regret (Best) - 431.7664 389.0421 413.8941 404.7452

Table 3: Regret and Constraint Violations for AC-OPF Experiment. (*) denotes “Before Restoration”.

Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8

Lt
O

F

LD Regret 1.2785 0.9640 1.7170 2.1540 2.1700
LD Regret (*) 1.1243 1.0028 1.5739 2.0903 2.1386
LD Violation (*) 0.0037 0.0023 0.0010 0.0091 0.0044
PDL Regret 1.2870 0.8520 1.5150 2.0720 2.3830
PDL Regret (*) 1.2954 0.9823 1.4123 1.9372 2.0435
PDL Violation (*) 0.0018 0.0097 0.0001 0.0003 0.0003
DC3 Regret 1.3580 2.1040 2.1490 2.3140 2.6600
DC3 Regret (*) 1.2138 1.8656 2.0512 1.9584 2.3465
DC3 Violation (*) 0.0000 0.0000 0.0000 0.0000 0.0000

Two-Stage Regret (Best) - 0.3480 2.8590 4.4790 91.3260
EPO Regret (Best) - 1.0234 0.9220 1.4393 4.7495
EPO Proxy Regret (Best) - 136.4341 154.3960 119.3082 114.6953

Table 4: Regret and Constraint Violations for Portfolio Experiment. (*) denotes “Before Restoration”.

ever, when started with a good approximation it is
typically much easier to solve than the AC-OPF ?.

D EXPERIMENTAL DETAILS

D.1 PORTFOLIO OPTIMIZATION DATASET

The stock return dataset is prepared exactly as prescribed in Sambharya et al. (2023). The return
parameters and asset prices are ⇣ = ↵(⇣̂t + ✏t) where ⇣̂ is the realized return at time t, ✏t is a normal
random variable, ✏t ⇠ N (0, �✏I), and ↵ = 0.24 is selected to minimize Ek⇣̂t � ⇣k

2
2. For each

problem instance, the asset prices ⇣ are sampled by circularly iterating over the five year interval. In
the experiments, see Prob. 8, � = 2.0.

The covariance matrix ⌃ is constructed from historical price data and set as ⌃ = F⌃F F
T + D,

where F 2 Rn,l is the factor-loading matrix, ⌃ 2 Sl
+ estimates the factor returns and D 2 Sl

+, also
called the idiosyncratic risk, is a diagonal matrix which takes into account for additional variance for
each asset.

D.2 HYPERPARAMETERS

For all the experiments, the size of the mini-batch B of the training set is equal to 200. The optimizer
used for the training of the optimization proxy’s is Adam, and the learning rate is set to 1e � 4. The
same optimizer and learning rate are adopted to train the Two-Stage, EPO (w/o) proxy’s predictive
model. For each optimization problem, an early stopping criteria based on the evaluation of the
test-set precentage regret after restoring feasibility, is adopted to all the LtO(F) the proxies, and the
predictive EPO (w/o) proxy. For each optimization problem, an early stopping criteria based on the
evaluation of the mean squared error is adopted to all the Two-Stage predictive model.
For each optimization problem, the LtOF proxies are 2-layers ReLU neural networks with dropout

15

Under review as a conference paper at ICLR 2024

Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8

Lt
O

F

LD Regret 8.0757 8.6826 9.9279 9.7879 9.5473
LD Regret (*) 8.1120 8.7416 9.9250 9.8211 9.5556
LD Violation (*) 0.0753 0.0375 0.0148 0.0162 0.0195
PDL Regret 7.4936 11.424 7.2699 10.7474 7.6399
PDL Regret (*) 7.7985 11.429 7.2735 10.749 7.6394
PDL Violation (*) 0.0047 0.0032 0.0028 0.0013 0.0015
DC3 Regret 13.946 14.623 14.271 11.028 10.666
DC3 Regret (*) 14.551 14.517 13.779 11.755 10.849
DC3 Violation (*) 1.4196 0.8259 0.5158 0.5113 0.5192

Two-Stage Regret (Best) - 23.2417 36.1684 37.3995 38.2973
EPO Proxy Regret (Best) - 793.2369 812.7521 804.2640 789.5043

Table 5: Regret and Constraint Violations for Nonconvex QP Experiment. (*) denotes “Before
Restoration”.

equal to 0.1 and batch normalization. All the LtO proxies are (k + 1)-layers ReLU neural networks
with dropout equal to 0.1 and batch normalization, where k denotes the complexity of the feature
mapping. For the LtOF, Two-Stage, EPO (w/o) Proxy algorithm, the feature size of the Convex
Quadratic Optimization and Non Convex AC Optimal Power Flow |z| = 30, while for the Non
Convex Quadratic Optimization |z| = 50. The hidden layer size of the feature generator model is
equal to 50, and the hidden layer size of the LtO(F) proxies, and the 2Stage, EPO and EPO w/ proxy’s
predictive model is equal to 500.
A grid search method is adopted to tune the hyperparameters of each LtO(F) models. For each
experiments, and for each LtO(F) methods, below is reported the list of the candidate hyperparam-
eters for each k, with the chosen ones marked in bold. We refer to Fioretto et al. (2020), Park &
Van Hentenryck (2023) and Donti et al. (2021) for a comprehensive description of the parameters of
the LtO methods adopted in the proposed framework. In our result, two-stage methods report the
lowest regret found in each experiment and each k across all hyperparameters adopted, providing a
very strong baseline.

D.2.1 CONVEX QUADRATIC OPTIMIZATION AND NON CONVEX QUADRATIC OPTIMIZATION

LD

• � : 0.1, 0.5, 1.0, 5.0, 10.0, 50.0.

• µ : 0.1, 0.5, 1.0, 5.0, 10.0, 50.0.

• LD step size : 50, 100, 200, 300, 500.

• LD updating epochs : 1.0, 0.1, 0.01, 0.001, 0.0001.

PDL

• ⌧ : 0.5, 0.6, 0.7, 0.8, 0.9.

• ⇢ : 0.1, 0.5, 1, 10.

• ⇢max : 1000 5000, 10000.

• ↵ : 1, 1.5, 2.5, 5, 10.

DC3

• �+ µ : 0.1, 1.0, 10.0, 50.0, 100.0.

• �
�+µ : 0.1, 0.5, 0.75, 1.

• ttest : 1, 2, 5, 10, 100.

• ttrain : 1, 2, 5, 50, 100.

16

Under review as a conference paper at ICLR 2024

D.2.2 NON CONVEX AC-OPTIMAL POWER FLOW

LD

• � : 0.1, 0.5, 1.0, 5.0, 10.0, 50.0.
• µ : 0.1, 0.5, 1.0, 5.0, 10.0, 50.0.
• LD step size : 50, 100, 200, 300, 500.
• LD updating epochs : 1.0, 0.1, 0.01, 0.001, 0.0001.

PDL

• ⌧ : 0.5, 0.6, 0.7, 0.8, 0.9.
• ⇢ : 0.1, 0.5, 1, 10.
• ⇢max : 1000 5000, 10000.
• ↵ : 1, 1.5, 2.5, 5, 10.

17

	Introduction
	Problem Setting and Background
	EPO with Optimization Proxies
	Learning to Optimize from Features
	Sources of Error
	Efficiency Benefits
	Modeling Benefits

	Experimental Results
	Convex Quadratic Optimization
	Nonconvex QP Variant
	Nonconvex AC-Optimal Power Flow

	Limitations, Discussion, and Conclusions
	Related Work
	Predict-Then-Optimize
	Learning to Optimize

	Learning to Optimize Methods
	Optimization Problems
	Experimental Details
	Portfolio Optimization Dataset
	Hyperparameters
	Convex Quadratic Optimization and Non Convex Quadratic Optimization
	Non Convex AC-Optimal Power Flow

