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ABSTRACT

With the rise of large foundation models, split inference (SI) has emerged as a
popular computational paradigm for deploying models across lightweight edge
devices and cloud servers, addressing both data privacy and computational cost
concerns. However, most existing data reconstruction attacks have focused on
smaller classification models like ResNet, leaving the privacy risks of founda-
tion models in SI settings largely unexplored. To address this gap, we propose a
novel data reconstruction attack based on guided diffusion, which leverages the
rich prior knowledge embedded in a latent diffusion model (LDM) pretrained on
a large-scale dataset. Our method performs iterative reconstruction on the LDM’s
learned image manifold, effectively generating high-fidelity images closely resem-
bling the original data from their intermediate representations (IR). Extensive ex-
periments demonstrate that our approach significantly outperforms state-of-the-art
methods, both qualitatively and quantitatively, in reconstructing data from deep-
layer IRs of the vision foundation model. The results highlight the urgent need for
more robust privacy protection mechanisms for large models in SI scenarios.

1 INTRODUCTION

The rapid development of deep learning has revolutionized various aspects of daily life—from AI
assistants to autonomous vehicles. However, the substantial computational resources required by
these emerging models often hinder their deployment on edge devices. Therefore, offloading in-
tensive computation to cloud servers become a popular alternative. Following this paradigm, Split
inference (SI) (Kang et al., 2017) has emerged as one of the most promising solutions, as it bal-
ances both computational and privacy concerns. This approach enables efficient utilization of cloud
resources, reduces the computational burden on local devices, and facilitates the integration of com-
plex models into everyday technologies by partitioning neural network computations between edge
devices and cloud servers, with data processed locally before being sent to the server.

Despite its advantages, recent studies (He et al., 2019; Dong et al., 2021; Li et al., 2024; Xu et al.,
2024; Sa et al., 2024) have uncovered significant privacy risks associated with SI, particularly in
the form of data reconstruction attacks (DRA). In DRA, adversaries attempt to reconstruct clients’
input data by exploiting the exchanged intermediate representations (IR) between clients and servers,
posing serious threats that break user’s privacy.

However, the growing adoption of more powerful models, such as Vision Transformers (Dosovitskiy
et al., 2020), raises concerns about the effectiveness of existing defenses. Vision Transformers
have demonstrated superior performance across various vision tasks and are widely used in modern
applications. Despite this, the privacy implications of deploying these models in SI settings remain
underexplored.

In this paper, we address this gap by investigating privacy leaks in vision transformers in the con-
text of SI. We propose a novel attack based on guided diffusion that effectively utilizes the prior
knowledge captured by large latent diffusion models (LDM) Rombach et al. (2022) pretrained on
large-scale datasets (e.g., Stable Diffusion) to reconstruct input data from deep-layer IR. Leveraging
this prior knowledge, we successfully invert IR back to the original input data across various natural
image datasets, revealing a critical privacy vulnerability in the SI framework. Additionally, we eval-
uate our attack on models equipped with existing defenses (Singh et al., 2021; Vepakomma et al.,
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2020) and show that input data can still be successfully reconstructed from deep-layer IR despite the
defenses. Our key contributions are summarized as follows:

• We propose a novel attack that exploits the prior knowledge captured by LDMs to recon-
struct input data from deep-layer IR.

• We show our attack can easily reconstruct the data from the widely used vision founda-
tion models, specifically CLIP (Radford et al., 2021), demonstrating that the privacy threat
exists even in general-purpose, widely used vision encoders.

• We explore different defense strategies tailored for vision transformers to mitigate the threat
of privacy leakage.

2 RELATED WORK

2.1 SPLIT INFERENCE / COLLABORATIVE INFERENCE

Split inference (SI) (Kang et al., 2017) is a method aimed at speeding up inference and/or reduc-
ing power consumption on end-point devices while ensuring data privacy. Unlike the approach of
performing inference completely on the cloud, which requires sending raw data to the server, SI
enhances privacy by sending only transformed, non-trivially interpretable IR to the cloud. In SI, the
model f is split into two part: the client model fc : X → H, deployed on the edge device, and
the server model fs : H → Y , deployed on the cloud. During inference, the private data xprivate
is first processed by fc on the edge, producing the “smashed” data tensor Hprivate = fc(xprivate).
This IR is then sent to the cloud, where fs completes the remaining computation to obtain the result
yprivate = fs(Hprivate). SI therefore addresses the constraints of limited computational resources on
edge-side while preventing direct exposure of private data to the cloud.

2.2 DATA RECONSTRUCTION ATTACK

One line of prior research focuses on the privacy of users’ input data. In the context of SI, an
adversary may carry out data reconstruction attacks to extract private information by reconstructing
the input data. According to He et al. (2019), data reconstruction attacks can be classified into three
types: 1) white-box attacks, 2) black-box attacks, and 3) query-free attacks.

For the white-box attacks, He et al. (2019) first introduced regularized Maximum Likelihood Esti-
mation (rMLE), which optimizes the zero-initialized input x to minimize the distance between the
IR of the reconstructed input H = fc(x) and Hprivate obtained during the message exchanges. Total
Variation (Rudin et al., 1992) loss is applied as an image prior to ensure the optimization process
not only minimizes the distance but also produces results that appear natural to human perspective.
Singh et al. (2021) further improved reconstruction quality by incorporating a deep image prior
(Ulyanov et al., 2018), resulting in the Likelihood Estimation (LM) approach. Dong et al. (2021),
on the other hand, considers to improve the training of inverse network (He et al., 2019) by applying
a cycle loss. Li et al. (2024) proposed GAN-based Latent Space Search (GLASS), which constrains
the search space of x by optimizing the latent code in StyleGAN2 (Karras et al., 2020), achieving
high quality reconstructions and circumventing several defenses (He et al., 2019; Singh et al., 2021;
Titcombe et al., 2021; Mireshghallah et al., 2020; Li et al., 2021; Osia et al., 2020).

However, these works primarily focus on evaluating small CNN models, such as ResNet18 (He et al.,
2016), leaving their effectiveness against more advanced architecture, such as Vision Transformer
(ViT) (Dosovitskiy et al., 2020), unclear.

2.3 DIFFUSION MODELS

In recent years, diffusion models (Ho et al., 2020) have demonstrated remarkable capabilities in
generating realistic images. Several methods (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)
have been developed to enable controlled content generation. The LDM (Rombach et al., 2022)
further expanded the ability to generate high-resolution, diverse images, with subsequent works
(Ramesh et al., 2022; Zhang et al., 2023) extending control within the latent diffusion framework.
Beyond conditional generation through training, another line of research (Chung et al., 2023; Bansal

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of our reconstruction pipeline. The server acts as an honest-but-curious
participant, attempting to reconstruct the input using either optimization-based or learning-based
reconstruction. We analyze the threat using CLIP-ViT-B/16 with split layers at l = {0, 3, 6, 9, 12}.

et al., 2024; He et al., 2024) investigates leveraging the prior knowledge of diffusion models without
additional model training.

3 METHODOLOGY

3.1 THREAT MODEL

Following prior works (He et al., 2019; Singh et al., 2021; Dong et al., 2021; Li et al., 2024; Sa
et al., 2024), we examine the privacy risks in the context of split inference (Kang et al., 2017). In
this scenario, a client with limited computation resources seeks to offload the inference computation
to a cloud server without exposing the private data xprivate. To achieve this, the client decomposes
the model f = fs ◦ fc into two parts, only deploying fs to the server. During inference, the client
first feeds the data xprivate to obtain the hidden state Hprivate = fc(xprivate), then sends Hprivate to the
server. The server finishes the remaining computation tasks and sends output y = fs(Hprivate) to the
client.

The server, acting as an honest-but-curious participant, aims to reconstruct the private data xprivate
from the hidden state Hprivate. We then assess the privacy threat posed by adversaries with white-box
access to the model. In this scenario, the adversary is assumed to have full knowledge of the archi-
tecture and parameters of the client’s model fc. Specifically, the client uses a foundation model as
the backbone for their applications, keeping its parameters frozen for downstream tasks. Following
the taxonomy of (He et al., 2019), there are two ways to formulate the problem: optimization based
and learning based.

Optimization Based. The adversary aims to find input data x whose hidden state H closely matches
Hprivate through optimization:

min
x

dH(fc(x), fc(xprivate)) + λRI(x), (1)

where dH measures the distance between the IR of reconstruction x, I is the natural image manifold
which x lies on, RI represents the regularization terms that ensuring that x appears natural to human
perception, and λ ≥ 0 controls the weight of regularization. Ultimately, the adversary’s goal is to
obtain a reconstruction x ≈ xprivate.
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Learning Based. The adversary may attempt to infer xprivate by training a model fr to decode
Hprivate back to data space X using an auxiliary dataset Daux.

min
fr

Ex∼Dpublic ||fr(fc(x))− x||2 (2)

3.2 GUIDED DIFFUSION DATA RECONSTRUCTION ATTACK

According to Song et al. (2021), the noise prediction network ϵθ in the diffusion model can be
interpreted as a score function, i.e. ϵθ(xt) ≈ ∇x log pt(x). Building on this idea, we propose
leveraging the trained noise predictor as an image prior. Specifically, the image is reconstructed by
a generative model based on a conditional reverse-time SDE:

dx = {f(x, t)− g(t)2[∇x log pt(x) +∇x log pt(y|x)]}dt+ g(t)w̄. (3)

In the case of class-conditioned generation, pt(y|x) can be approximated by a classifier model
training with data pairs with noisy input (xt,y). However, according to Chung et al. (2023), for
noisy inverse problem (solve x given y = A(x) + n, where A is the measurement operator, y is
the measurement to x, and n is Gaussian noise), pt(y|x) is intractable becauseA is only defined for
t = 0. To exploit p0(y|x), they propose the use of Tweedie estimation to predict x0 from t > 0,
denoted as x̂0:

x̂0 =
xt −

√
1− αt · ϵθ(xt, t)√

αt
(4)

Furthermore, Bansal et al. (2024) propose Universal Guidance Diffusion (UGD), which leverages
gradient from various models trained exclusively on clean images as a conditioning signal in the
sampling process. Specifically, UGD incorporates a guidance term into the predicted noise during
the denoising process, extending the concept of classifier guidance (Ho & Salimans, 2022):

ϵ̂θ(xt) = ϵθ(xt) + w ·
√
1− αt · ∇xt

ℓ(xt), (5)

where w is the guidance scale. These methods extend conditional generation using various deep
learning models trained solely on clean images. Building on this concept, we define the loss ℓ(xt)
to approximate log pt(y|x), where the loss consists of the distance in the hidden state dH and an
auxiliary regularization term R.

ℓ(xt) = dH(fc(x̂0),Hprivate) + λR(x̂0). (6)

While using the LDM, we replace noisy sample xt as zt, and the data xt = D(zt) can be obtained
by decoding it with the corresponding latent decoder.

Algorithm 1 DRAG: Data Reconstruction Attack using Guided diffusion
Parameter: Recurrent steps k, guidance strength w, diffusion step T
Required: LDM (ϵθ, E ,D, {αt}Tt=1), to-be-inverted hidden state H
if hidden state decoder fr is available then
zT ← DDPM(E(fr(Hprivate)), T ) ▷ Init. from decoder’s reconstruction

else
zT ∼ N (0, I)

end if
for t = T, T − 1, . . . , 1 do

for n = 1, 2, . . . , k do
ẑ0 ← (zt −

√
1− αt · ϵθ(zt))/

√
αt ▷ Tweedie’s estimation

x̂0 ← D(ẑ0) ▷ Decode the latent to image
g ← ∇zt(dH(fc(x̂0),H) +R(x̂0))
ϵ̂θ(zt)← ϵθ(zt) + w ·

√
1− αt · g ▷ Guided diffusion (Eq. (5))

zt−1 ← DDIM(zt, ϵ̂θ, t) ▷ DDIM sampling
ϵ′ ∼ N (0, I) ▷ DDPM diffusion
zt ←

√
αt/αt−1 · zt−1 +

√
1− αt/αt−1 · ϵ′

end for
end for
return x = D(z0)
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3.3 LEARNING-BASED DATA RECONSTRUCTION ATTACK

When the split point is too deep, optimizing latent zt from randomly initialized noise cannot guar-
antee high-quality reconstructions. To address this, we propose using an auxiliary dataset collected
from publicly available resources to train a lightweight model fr : H → X by minimizing Eq. (2).
This model consists of a transformer encoder block, a linear layer, a learnable position embedding
layer, and a CNN-based post-processing module. This setup resembles the decoder architecture in
ViT-MAE (He et al., 2022). Details can be found in Fig. 1 (b).

The coarse reconstruction result from fr serves as a better initialization for the latent zt during
optimization-based data reconstruction. Specifically, we apply DDPM diffusion, adding random
noise with a small timestep t ≤ T , to project the coarse reconstruction onto an editable manifold.
The complete pseudocode is provided in Algorithm 1.

4 EXPERIMENT SETTING

4.1 DATASETS

We evaluate our method using three datasets: (1) FFHQ (Karras et al., 2019), (2) MSCOCO (Lin
et al., 2014), and (3) ImageNet-1K (Deng et al., 2009). All images are resized and center-cropped to
224 × 224 to match the input size of the target model. For each dataset, the training split is divided
into two distinct, equal-sized, non-overlapping parts: a private portion Dprivate and a public portion
Dpublic. The target model is fine-tuned exclusively on Dprivate, while the attacker model is trained
solely on Dpublic. The model’s utility and privacy index are evaluated using the validation set Dval,
which is not used in fine-tuning or attacker model training. For the optimization-based attack, we
randomly sample 10 images from the validation split of each dataset as the target images. For the
learning-based attack, we use the entire validation split as the evaluation target.

4.2 TARGET MODEL

We aim to reconstruct data from the widely-used vision encoder CLIP-ViT-B/161 (Radford et al.,
2021), which has demonstrated strong adaptability and zero-shot capabilities across various vision
tasks (Rao et al., 2022; Mokady et al., 2021). We evaluate the attack under three conditions, 1) the
model is frozen from the pretrained checkpoint, or fine-tuned by state-of-the-art defensive algorithm
2) NoPeek (Vepakomma et al., 2020) or 3) DISCO (Singh et al., 2021). These two defense algo-
rithms, highlighted in GLASS(Li et al., 2024), have shown superior privacy-preserving performance
compared to other defense methods. To quantitatively assess model utility after applying these
defenses, we select ImageNet-1K image classification as the primary task. To adapt the model for
downstream tasks, we first perform linear probing on the ImageNet-1K data, followed by fine-tuning
the entire model using the selected defensive algorithms.

4.3 BASELINE AND METRICS

We compare our method with rMLE (He et al., 2019), LM (Singh et al., 2021) and GLASS (Li et al.,
2024). We choose to evaluate the performance on MSE, PSNR (Horé & Ziou, 2010), SSIM (Wang
et al., 2004), LPIPS (Zhang et al., 2018), and image similarity using DINO ViT-S/162 (Caron et al.,
2021) as the similarity evaluation model.

4.4 ATTACKER MODELS, DISTANCE FUNCTION AND REGULARIZATION

We use the official release of Stable Diffusion v1.53 as the image prior, which was previously avail-
able on Hugging Face but became closed-source as of August 2024. During the reconstruction, we
use DDIM (Song et al., 2020) as the sampling strategy to gradually denoising zT to z0. Unlike
previous works (He et al., 2019; Singh et al., 2021; Li et al., 2024), which focus on reconstructing

1https://huggingface.co/openai/clip-vit-base-patch16
2https://huggingface.co/facebook/dino-vits16
3A mirror of the checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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Figure 2: Reconstruction results for the target model CLIP-ViT-B/16.

data from CNN models, we use the average token-wise cosine distance as the distance metric dH:

dH(H1,H2) =
1

N

N∑
i=1

1− ⟨H1[i, :],H2[i, :]⟩
||H1[i, :]|| · ||H2[i, :]||

, (7)

where N represents the number of tokens. To prevent the latent zt from being updated outside the
distribution of noise predictor ϵθ, we apply regularization to the reconstruction result:

R(x) =
1

CHW
(λ1x

2 + λ2 max(x2 − 1, 0)), (8)

where the ℓ2 regularization is also applied in Yin et al. (2020).

5 RECONSTRUCTION PERFORMANCE

5.1 RECONSTRUCTING FROM FROZEN FOUNDATION MODEL

We present the results in Fig. 2 and Table 1. Our method performs comparable to GLASS, which
also employs a data-driven image prior. However, due to the domain limitations of the pretrained
GAN, GLASS is unable to reconstruct data from MSCOCO and ImageNet. In contrast, our method
leverages the broader coverage and capacity of modern diffusion models, enabling successful re-
construction across a wider range of domains. Additionally, we compare these methods using the
FFHQ dataset, where both the target model and attacker operate within the same domain, aligning
with GLASS’s assumptions. The results are shown in Table 5.

Our method offers notable advantages in reconstructing data from deep layers. While rMLE and LM
perform well on shallow layers, their performance declines significantly after Layer 9 and Layer 12,
respectively. In contrast, our method maintains strong performance in deep layers, achieving better
SSIM, LPIPS, and image similarity metrics. Furthermore, rMLE and LM struggle to reconstruct
images with minimal information, such as those compressed to a single token, as seen in the split
point “Embedding” in Fig. 2. This shows the advantage of using image prior learned by diffusion
model over human-defined priors, especially in challenging reconstruction scenarios. Although our
method scores lower on shallow layers, the reconstructed images—while lacking some details (e.g.,
the floor and background in the first reconstruction target from the MSCOCO dataset)—still preserve
a similar high-level structure, demonstrating successful data reconstruction.

5.2 ATTACKING DEFENSIVE FINE-TUNED MODEL

We also evaluate the robustness of our method on models equipped with privacy-preserving de-
fenses. As shown in Table 2 and Fig. 3a) - Fig. 3c), our method achieves superior SSIM, LPIPS,
and image similarity on three model checkpoints protected by DISCO. However, when the model is
fine-tuned with NoPeek, only our methods incorporating an auxiliary decoder perform well. We sus-
pect this is due to NoPeek’s use of gradient obfuscation, which interferes with the guided diffusion
sampling process.
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Table 1: Performance of optimization-based attacks on CLIP-ViT-B/16 at different split points, with
no defenses applied.

Split Point Method MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓) DINO (↑)
Layer 0 rMLE 0.0073 22.6780 0.7964 0.0709 0.9712

LM 0.0022 28.6115 0.9221 0.0237 0.9903
GLASS 0.0094 23.2332 0.7019 0.1676 0.7282
DRAG 0.0061 23.1062 0.7178 0.1708 0.7310
DRAG++ 0.0060 23.1654 0.7296 0.1643 0.7386

Layer 3 rMLE 0.0114 20.4385 0.7817 0.0913 0.9705
LM 0.0018 29.2470 0.9081 0.0206 0.9923
GLASS 0.0241 19.4969 0.5965 0.1594 0.8318
DRAG 0.0106 20.6065 0.6407 0.1389 0.8581
DRAG++ 0.0097 20.9782 0.6556 0.1299 0.8703

Layer 6 rMLE 0.0242 16.5919 0.5459 0.2608 0.8875
LM 0.0106 21.7779 0.7222 0.0784 0.9733
GLASS 0.0536 14.9205 0.4179 0.2890 0.7648
DRAG 0.0216 17.4993 0.5081 0.1812 0.8680
DRAG++ 0.0167 18.6246 0.5503 0.1819 0.8803

Layer 9 rMLE 0.0389 14.3838 0.3434 0.5130 0.7159
LM 0.0302 16.9228 0.5351 0.2137 0.9063
GLASS 0.1130 11.3410 0.3101 0.4163 0.6590
DRAG 0.0366 15.3397 0.4449 0.2467 0.8363
DRAG++ 0.0212 17.4733 0.4939 0.2943 0.8148

Layer 12 rMLE 0.0519 13.1381 0.2831 0.5900 0.6524
LM 0.0998 10.4085 0.3303 0.6024 0.4248
GLASS 0.1828 8.1962 0.2210 0.5699 0.4362
DRAG 0.0683 12.7229 0.3731 0.3838 0.6899
DRAG++ 0.0280 16.0945 0.4450 0.4316 0.7228

Embedding GLASS 0.1087 10.0151 0.2003 0.5494 0.4918
DRAG 0.0967 10.5387 0.2507 0.5849 0.6993

5.3 SHUFFLE (AND DROP TOKEN) DEFENSE

ViTs naturally exhibit an adaptive computation capability compared to CNNs, allowing them to
reduce inference time by identifying and halting the forward propagating of redundant tokens. Pre-
vious work (Yin et al., 2022) explores strategies to reduce redundant tokens in intermediate layers.
From a privacy protection perspective, shuffling patch tokens complicates data reconstruction for
attackers, as the loss function for guiding reconstruction (Eq. (7)) is sensitive to token order. Clients
can even retain all patch tokens without compromising model performance. For tasks where token
order is irrelevant (e.g., classification), shuffling patch tokens provides a straightforward defense
against data reconstruction attacks. Moreover, this method is simple for clients to implement, requir-
ing only token shuffling before transmission to the server, with minimal memory copying overhead.

We further evaluate the attack performance against the shuffling defense in a white-box setting.
To simulate the scenario of token dropping, we design the following protocol: the client shuffles
patch tokens and randomly drops rN patch tokens before sending them to the server, where r is the
ratio of the tokens being dropped (see Fig. 4). Note that a realistic implementation would be more
complicated than this evaluation protocol, as clients may combine multiple strategies to both reduce
inference time and enhance data privacy.

As noted in Darcet et al. (2024), tokens retain information about their original positions, which can
be inferred using a linear layer. Based on this observation, we train a 2-layer MLP classifier to
predict the probability that a token Hi,: is originally at position argmax pθ(Hi,:). Once trained, the

7
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Figure 3: Reconstruction data against the models deployed with defenses.

Figure 4: Obfuscating by randomly permuting tokens. While the attacker is unaware that the patch
tokens are permuted, the loss gives an incorrect guidance to reconstruct the data.

classifier allows us to reorder the patch tokens by solving a bipartite matching problem, maximizing
the joint probability using the Hungarian algorithm (Kuhn, 1955).

In Fig. 5, we present the reconstruction results under three configurations: 1) tokens are randomly
permuted, and the adversary is unaware of the permutation, 2) the adversary employs a token posi-
tion classifier to reorder the tokens, and 3) the client drops 50% of the patch tokens before sending
them to the server, leaving the adversary to infer their correct placement. The experiments are
conducted with model splitting at layer 12. The position prediction model achieves 12.78% top-1
accuracy in predicting token positions, with an average ℓ1 distance of 3.077 from the correct posi-
tion, as evaluated on ImageNet-1K. Comparing Fig. 5a) and Fig. 5b), we observe that rMLE and
LM fail to reconstruct the target images, whereas the normal configuration succeeds. For GLASS
and DRAG, the reconstruction performance is weaker, but some reconstructed results retain key
properties of the original images.

6 CONCLUSION

This work reveals significant privacy risks in Split Inference (SI) with large vision foundation mod-
els like Vision Transformers, extending beyond previous attacks on smaller models like ResNet18.
We propose a novel data reconstruction attack leveraging LDMs pretrained on large-scale datasets.
Our method generates high-fidelity images from IR and outperforms state-of-the-art approaches in
reconstructing data from deep-layer IR. These findings underscore the need for stronger defenses to
protect privacy when deploying transformer-based models in SI settings.
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Table 2: Performance of the optimization-based attack against various defenses. The model is split
at the output of layer 12.

Defense Method MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓) DINO (↑)
a) DISCO rMLE 0.0564 12.7443 0.2831 0.5973 0.6067
(ρ = 0.95, r = 0.1) LM 0.1193 10.4978 0.3101 0.6340 0.3009
(Acc = 79.61%) GLASS 0.1372 9.2676 0.2454 0.5444 0.4398

DRAG 0.0755 12.4247 0.3670 0.4113 0.6710
DRAG++ 0.0474 14.3449 0.4099 0.4603 0.6973

b) DISCO rMLE 0.0629 12.3146 0.2687 0.6587 0.4912
(ρ = 0.75, r = 0.2) LM 0.1143 9.7468 0.2783 0.6684 0.2329
(Acc = -%) GLASS 0.1372 9.1868 0.1981 0.5641 0.4168

DRAG 0.0927 11.3654 0.3124 0.4914 0.5690
DRAG++ 0.0556 13.2949 0.3767 0.5191 0.6347

c) DISCO rMLE 0.0720 11.7121 0.2517 0.7957 0.0079
(ρ = 0.95, r = 0.5) LM 0.0967 10.6190 0.3134 0.6456 0.0627
(Acc = -%) GLASS 0.1345 9.3663 0.1992 0.5673 0.1854

DRAG 0.0779 12.0319 0.3343 0.4761 0.4366
DRAG++ 0.0973 10.5521 0.2934 0.6751 0.1821

d) NoPeek rMLE 0.0673 12.1172 0.2488 0.6604 0.4729
(λ = 1.0) LM 0.2863 5.9663 0.3011 0.7159 0.2272
(Acc = 79.28%) GLASS 0.2049 7.4435 0.1730 0.6503 0.3866

DRAG 0.1009 10.6299 0.2668 0.5563 0.5300
DRAG++ 0.0351 15.0698 0.4112 0.4750 0.6799

e) NoPeek rMLE 0.0725 11.6398 0.2096 0.6938 0.3863
(λ = 3.0) LM 0.2677 6.5185 0.2967 0.7377 0.2113
(Acc = 78.67%) GLASS 0.2076 7.3598 0.1678 0.6751 0.3367

DRAG 0.0934 10.6228 0.2418 0.5885 0.4840
DRAG++ 0.0446 13.8540 0.3811 0.4708 0.6823

f) NoPeek rMLE 0.0741 11.5433 0.2059 0.7048 0.3747
(λ = 5.0) LM 0.2387 6.6693 0.2840 0.7917 0.2099
(Acc = 77.88%) GLASS 0.2431 6.7415 0.1685 0.6615 0.3492

DRAG 0.1001 10.5774 0.2511 0.5875 0.4399
DRAG++ 0.0474 13.6302 0.3630 0.4721 0.6779

Figure 5: Illustration of the reconstruction result against random shuffle defense.
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A PRIOR RECONSTRUCTION ALGORITHM

rMLE. He et al. (2019) first proposed an optimization-based reconstruction approach that recon-
structs xprivate by iteratively updating x to minimize the distance between Hprivate and H, incorpo-
rating Total Variation (Rudin et al., 1992) as an image prior:

min
x

dH(fc(x),Hprivate) + λTVRTV(x). (9)

LM. Singh et al. (2021) investigated white-box, optimization based data reconstruction, improving
the quality by applying a deep image prior (Ulyanov et al., 2018) to regularize x. They used a CNN
model as the prior, synthesizing x = fθ(n) from noise n ∼ N (0, I), with the noise fixed after
initialization:

min
θ

dH(fc(x),Hprivate) + λTVRTV(x). (10)

GLASS. (Li et al., 2024) considered a scenario where the adversary has knowledge of the test data
distribution, and available to collect auxiliary data to train a StyleGAN. Instead of directly updating
x, the adversary updates the latent code z ∈ Z or w ∈ W+ to enhance the quality of the generated
image. In first stage, they randomly initialize z then update it:

min
z

dH(fc(G(z)),Hprivate) + λTVRTV(x) + λKLRKL(z). (11)

After several updates, they obtain w+ = fmapping(z) through the StyleGAN’s mapping network
fmapping : Z → W+, and proceed to update w+ for fine-grained reconstruction:

min
w+

dH(fc(G(w+)),Hprivate) + λTVRTV(x). (12)

GradViT. Hatamizadeh et al. (2022) studied a reconstruction problem distinct from ours. They fo-
cused on gradient inversion, aiming to reconstruct training data in the context of federated learning.
They proposed a regularization method specifically designed for ViT:

Rpatch(x) =

H
P −1∑
k=1

∥x[:, P · k, :, :]− x[:, P · k − 1, :, :]∥2

+

W
P −1∑
k=1

∥x[:, :, P · k, :]− x[:, :, P · k − 1, :]∥2,

(13)

where P is the patch size of the ViT model. This regularization term aims to smooth the edges
between patches, achieving higher quality reconstruction.

B DEFENSIVE ALGORITHMS

NoPeek. (Vepakomma et al., 2020) studies the model privacy leaks, and then propose to minimize
privacy leaks by traning the model to minimize distance correlation between X andH.

min
θ

E[dCOR(fc(x; θ),x)]. (14)

DISCO. (Singh et al., 2021) considers to prune out ratio r of IRs’ channels to reduce information
leaks with an auxiliary dynamic channel pruning module fp.

H′
private = fp(Hprivate, r), (15)

where fp is trained with adversarial approach, using an adversarial reconstructor fr.

Lutil = E[ℓutil(fs(H
′
private), y)],

Lprivacy = E[||fr(fs(H′
private))− x||2],

min
fp

[max
fr
−Lprivacy + ρmin

fc,fs
Lutil].

(16)
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Table 3: Hyperparameters for the optimization-based reconstruction.

rMLE LM GLASS

Variable init. x = 0 x ∼ N (0, I) z ∼ N (0, I)
Optimizer Adam (lr = 0.05) Adam (lr = 0.01) Adam (lr = 0.01)
Total iterations (n) 20,000 20,000 20,000
Pretrained model - - StyleGAN2-ADA (FFHQ)
RTV 1.5 0.05 0.03
RKL - - 1.0
Rpatch 0.001 0.001 0

DRAG DRAG++

Variable init. zT ∼ N (0, I) zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I)

Sampler DDIM(w = 1, 000) DDIM(w = 1, 000)
Sampling steps (T ) 250 250 × 0.3 = 75
Self-recurrence (k) 64 64
Noise scale (t) 1.0 0.3
Pretrained model SD v1.5 SD v1.5
RTV 0 0
Rpatch 0 0
λ1 0.02 0.02
λ2 0.5 0.5

Table 4: Hyperparameters for the learning-based reconstruction.

Performance

Optimizer Adam (lr = 0.001)
Scheduler Cosine annealing w/ warm restart (warm-up = 5000 iterations)
Total iterations (n) 50,000
Batch size 256

C TRAINING DETAILS, EXPERIMENT ENVIRONMENT AND TIME COST

We provide the hyperparameters for various optimization-based and learning-based reconstruction
attack in Table 3 and Table 4, respectively.

The experiments were conducted on a server equipped with 384 GB RAM, two Intel Xeon Gold
6226R CPUs, and eight NVIDIA RTX A6000 GPUs. To record time costs, we averaged the time
cost to the experiments at the deepest split point (layer 12) over 5 samples: 2 hours 15 minutes and
41 seconds ± 15.51 seconds.

D ADDITIONAL EXPERIMENTS

D.1 EVALUATION OF OPTIMIZATION-BASED ATTACKS ON THE FFHQ DATASET

We present the results conducted on the FFHQ dataset, which aligns with the assumption that
GLASS has the knowledge of the private data distribution. This allows the adversary to collect
an auxiliary dataset Daux from public sources and train a StyleGAN4.

4We adapted the official StyleGAN2 ADA release from https://github.com/NVlabs/stylegan2-ada-pytorch
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Table 5: Performance of the optimization-based reconstruction at different split points, evaluated
using only the FFHQ dataset.

Split Point Method MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓) DINO (↑)
Layer 0 GLASS 0.0017 28.8557 0.8907 0.0554 0.8751

DRAG 0.0037 24.8653 0.8106 0.1181 0.7875
DRAG++ 0.0036 24.9234 0.8091 0.1152 0.8073

Layer 3 GLASS 0.0117 24.9676 0.8365 0.0476 0.9495
DRAG 0.0057 22.8811 0.7610 0.0944 0.8820
DRAG++ 0.0054 23.1041 0.7620 0.0952 0.8863

Layer 6 GLASS 0.0223 19.7976 0.6731 0.0897 0.9411
DRAG 0.0111 20.0196 0.6753 0.1256 0.8870
DRAG++ 0.0093 20.8714 0.7620 0.0952 0.8923

Layer 9 GLASS 0.0385 16.6343 0.5329 0.1733 0.8908
DRAG 0.0184 17.9911 0.6005 0.1566 0.8792
DRAG++ 0.0132 19.3084 0.6285 0.1823 0.8652

Layer 12 GLASS 0.1153 10.2516 0.3389 0.3740 0.7099
DRAG 0.0454 14.5935 0.4986 0.2464 0.7940
DRAG++ 0.0191 17.7198 0.5851 0.2407 0.8207

Embedding GLASS 0.0733 11.5428 0.2937 0.4139 0.7453
DRAG 0.0995 10.2532 0.2834 0.5848 0.7436

Table 6: Performance of learning-based attacks that solely use fr to decode the IR in CLIP-ViT-B/16
at different split points, with no defenses applied.

Dataset Split Point MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓) DINO (↑)
ImageNet→ Layer 0 0.0001 40.1771 0.9880 0.0002 0.9999
ImageNet Layer 3 0.0019 27.1763 0.8491 0.0826 0.9251

Layer 6 0.0071 21.4938 0.5969 0.3580 0.6740
Layer 9 0.0137 18.6311 0.4632 0.5102 0.4388
Layer 12 0.0198 17.0440 0.4044 0.5617 0.3306

ImageNet→ Layer 0 0.0000 49.7745 0.9975 0.0000 1.0000
FFHQ Layer 3 0.0004 34.2224 0.9495 0.0236 0.9499

Layer 6 0.0028 25.5300 0.7738 0.1901 0.7901
Layer 9 0.0082 20.8773 0.6218 0.3943 0.5805
Layer 12 0.0161 17.9304 0.5263 0.5017 0.4534

D.2 DATA EFFICIENCY OF THE AUXILIARY RECONSTRUCTION NETWORK

We report the performance of fr across various split points without applying any defenses in Table 6.
Additionally, we report the performance when training fr on a smaller dataset in Table 7. The subset
is obtained by randomly sampling from the original dataset. The number indicated below the dataset
name represents the size of the subset used for training and validation (with validation employed
solely for selecting the best checkpoint).
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Table 7: Performance of learning-based attacks that solely use fr to decode the IR in CLIP-ViT-B/16
at different split points, training with different dataset sizes, with no defenses applied.

Dataset Split Point MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓) DINO (↑)
ImageNet→ Layer 6 0.0071 21.4938 0.5969 0.3580 0.6735
ImageNet Layer 9 0.0137 18.6311 0.4632 0.5102 0.3503
(512467:128116) Layer 12 0.0410 13.8742 0.3111 0.6373 0.2543

ImageNet→ Layer 6 0.0095 20.2271 0.5553 0.3523 0.6187
ImageNet Layer 9 0.0232 16.3395 0.4028 0.5096 0.3481
(40000:10000) Layer 12 0.0345 14.6217 0.3431 0.5849 0.2800

ImageNet→ Layer 6 0.0188 17.2608 0.4399 0.3778 0.3805
ImageNet Layer 9 0.0388 14.1170 0.3032 0.5545 0.2145
(4000:1000) Layer 12 0.0576 12.3988 0.2396 0.6385 0.1772
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