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Supplement to ‘“‘Statistical Perspective of
Top-K Sparse Softmax Gating Mixture of Experts”

In this supplementary material, we first provide rigorous proofs for all results under the exact-specified
settings in Appendix [A] while those for the over-specified settings are then presented in Appendix [B]
Next, we study the identifiability of the top-K sparse softmax gating Gaussian mixture of experts
(MoE) in Appendix[C] We then carry out several numerical experiments in Appendix [D]to empirically
justify our theoretical results. Finally, we establish the theories for parameter and density estimation
beyond the settings of top-K sparse softmax Gaussian MoE in Appendix [E}

A PROOF FOR RESULTS UNDER THE EXACT-SPECIFIED SETTINGS

In this appendix, we present the proofs for Theorem 1 in Appendix [A.1] while that for Theorem 2 is
then given in Appendix Lastly, the proof of Lemma 1 is provided in Appendix

A.1 PROOF OF THEOREM 1

In this appendix, we conduct a convergence analysis for density estimation in the top-K sparse
softmax gating Gaussian MoE using proof techniques in (van de Geer, 2000). For that purpose, it is
necessary to introduce some essential notations and key results first.

Let P, (©) := {gc(Y|X) : G € &, (2)} be the set of all conditional density functions of mixing
measures in &, (£2). Next, we denote by N (e, Px. (£2),]| - ||1) the covering number of metric space
(Pr, (), - 7). Meanwhile, Hgp (e, Pk, (2), h) represents for the bracketing entropy of Py, (£2)
under the Hellinger distance. Then, we provide in the following lemma the upper bounds of those
terms.

Lemma 3. If Q) is a bounded set, then the following inequalities hold for any 0 < n < 1/2:

(i) log N (1, P (), [| - 1) < log(1/n);
(ii) Hp(n, Pr. (), h) < log(1/n).
Proof of Lemma[3]is in Appendix[A.T.2] Subsequently, we denote
Pr. () == {g(crcn2(YIX) : G € &. ()}
~1/2 1/2
Pal2(9) = {9l . (Y 1X) : G € &, ().
In addition, for each § > 0, we define a Hellinger ball centered around the conditional density
function gg, (Y| X) and met with the set P;*/Q (Q) as
Pil?(9,6) = {g"/* € Py*(Q) : h(g. 9.) < ).
To capture the size of the above Hellinger ball, van de Geer (2000) suggest using the following
quantity:
)
T (6,P,/*(2,68)) == /2/ ) HY (6, P2 (1), - )dt v 6, )
852 /21

where t V § := max{t, 0}. Given those notations, let us recall a standard result for density estimation
in van de Geer (2000).

Lemma 4 (Theorem 7.4, van de Geer (2000)). Take ¥(5) > Jg(0, 75,1/2(9, 8)) such that W(5) /62 is

a non-increasing function of 0. Then, for some sequence (0,,) and universal constant ¢ which satisfy
V12 > c¥(5), we obtain that

P (Ex |h(gg, (1X).g6. (1X))] > §) < cexp(—nd?/c?),
forany § > 6,
Proof of Lemmaf]can be found in van de Geer (2000). Now, we are ready to provide the proof for

convergence rate of density estimation in Theorem 1 in Appendix
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A.1.1 MAIN PROOF
It is worth noting that for any ¢ > 0, we have
Hp(t, P2 (@0), - 1) < Hp(t Pr.(Q,0), h).

Then, the integral in equation () is upper bounded as follows:

)

5
jB(é,P;*/Q(Qj))g/ H;/Q(t,Pk*(Q,t),h)dt\/ég/ log(1/t)dt V 6, (10)
52/213 62/213

where the second inequality follows from part (ii) of Lemma 3]
As a result, by choosing ¥(§) = 6 - y/log(1/d), we can verify that ¥(§)/§? is a non-increasing
function of 0. Furthermore, the inequality in equation (I0) indicates that ¥'(6) > Jg(9, 73,1 / *(Q,0)).

Next, let us consider a sequence (d,,) defined as ¢,, := /log(n)/n. This sequence can be validated
to satisfy the condition /102 > cW¥(§) for some universal constant c. Therefore, by Lemma we
reach the conclusion of Theorem 1:

P(Ex [h(gg, (1X), gc. (1X))] > Cv/log(n)/n) S n

for some universal constant C' depending only on (2.

A.1.2 PROOF OF LEMMA[3]

Part (i). In this part, we will derive the following upper bound for the covering number of metric
space (P, (Q), || - |]1) for any 0 < n < 1/2 given the bounded set Q:

log N'(1, Pr. (), || - [[1) < log(1/n).

To begin with, we define © := {(a,b,0) € R? x R x R : (Bo, B1,a,b,0) € Q}. Note that
is a bounded set, then © also admits this property. Thus, there exists an n-cover of ©, denoted by
©,). Additionally, we also define A := {(By, 31) € R x R? : (By, B1,a,b,0) € Q}, and A, be an
n-cover of A. Then, it can be validated that |0, | < O(n~(@+Dk-) and A, | < O(n~(d+3)k),

Subsequently, for each G = 2121eXP(BOi)5(61i,ai,bi,ai) € &, (), we take into account
two other mixing measures. The first measure is G/ = Y 0=, exp(Boi)ds,, a, 5,7, Where

(@i, bi, ;) € O, is the closest points to (a;,b;,0;) in this set for all i € [k.]. The second one
is G = Zf;l eXp(BOi)é(BM,Ei,E ;) in which (Bos» B1;) € A, forany i € [k,]. Next, let us define

T = {gé € Pk* (Q) : (BOiaBli) € Z7]7 (a’tagﬁﬁl) € 67]’Vi € [k*]}a

then it is obvious that g~ € 7. Now, we will show that 7" is an 7-cover of metric space (Py, (2), ||-||1)
with a note that it is not necessarily the smallest cover. Indeed, according to the triangle inequality,

lga — gzl < llge — g9a |l + lgar — g9zl (11)

The first term in the right hand side can be upper bounded as follows:

lge — garlhh < Z / F(Yla] X +bi,03) = f(Y]a] X +b;,7:)|[d(X,Y)

XxY

X (= 1=+ o )acey

-y (las = @il + 16 = Ball + ljos — 1))
=1

SR (12)
Next, we will also demonstrate that ||ge — ggll1 S 7. For that purpose, let us consider g := ( Ik{)

K-element subsets of {1, ..., k}, which are assumed to take the form {{1, {o, ..., ¢x } forany £ € [q].
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Additionally, we also denote {{x+1,...,0k} = {1,...,k} \ {f1,..., €k} for any £ € [g]. Then,
we define

Xy = {zeX:,@ExZﬂlTi/x:iE {01,... b}, i € {lry1,  lr. )},

= =T =T .
Xy = {33 eX: ,Blix > Bli’x S {fl, . ,KK},Z/ S {£K+1»- .. ,Ek*}}.
By using the same arguments as in the proof of Lemma 1 in Appendix we achieve that either

Xy = X or X, has measure zero for any ¢ € [¢]. As the Softmax function is differentiable, it is a
Lipschitz function with some Lipschitz constant L > 0. Since X is a bounded set, we may assume
that || X|| < B for any X € X. Next, we denote

mo(X) = (Be+63,) o w0 = (Bt Be)

for any K -element subset {¢1,...¢x} of {1,...,k.}. Then, we get

|[Softmax(m(X)) — Softmax(7e(X))|| < L - | me(X) — 7e(X)]|

<Ly (1816, = Bue, - 1X 1 + Boe, — B, )

.
Il

IN

o

L. (nB + n)

=1

S

Back to the proof for ||ga — ggll1 < 0, it follows from the above results that

lge — galh = /X 96 (Y1) ~ g5 (Y 1X)] d(,Y)
X

X_:/Xwga/ Y|X) — gz(Y|X)| d(X,Y)

q
<y / ’Softmax(m(X)) Softmax(7e(X);) ] FOY@LX + b, 70,)| d(X, )
=1 XexY =1

<
S (13)
From the results in equations (T}, and (T3, we deduce that ||gg — ggll1 < 7. This implies that
T is an n-cover of the metric space (Py, (€2), || - ||1). Consequently, we achieve that

N, Pr. (), 1) S 18] % [6,] < O(1/n'+DF),

which induces the conclusion of this part
log N'(1, Pr. (), || - [[1) < log(1/n).

Part (ii). Moving to this part, we will provide an upper bound for the bracketing entropy of Py, ()
under the Hellinger distance:

Hp(n, Pr, (), h) < log(1/n).

Recall that © and X are bounded sets, we can find positive constants —vy < a’X +b< ~ and
u1 < o < us. Let us define

2
o(~2), forl¥iz 2

_ 1 ex
Q(Y| X') = { V27w
- for |Y| < 2y

V2muy
Then, it can be validated that f(Y]aT X +b,0) < Q(X,Y) forany (X,Y) € X x ).

Next, let 7 < 7 which will be chosen later and {g1,...,gn} be an 7-cover of metric space
(Pr. (), ]| - |[1) with the covering number N := N(7, Pk, (2),] - ||1). Additionally, we also
consider brackets of the form [V (Y| X), \I/?(Y|X )] where

UH(V]X) = max{g,(Y|X) — 7,0}
WY (V|X) = max{g (Y] X) + 7. Q(Y]X)}.
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Then, we can check that Py, (Q) C UN,[WF(V|X), ¥V (V|X)] and Y (V|X) — UE(Y|X) <

min{2n, Q(Y|X)}. Let S := max{2y, v/8uz } log(1/7), we have for any i € [N] that

[ — Ul =/ (U7 (Y]X) = W (V]X)] dXdY+/ (U7 (Y]X) = $F(V]X)] dXdY
|Y|<2y |Y|>2y

2

7) S S/Ta

SST+eXp(—
U2

where S’ is some positive constant. This inequality indicates that
Hp(S'm, P, (), |- 1) <log N(7,Pr.(2), || - [|l1) < log(1/7).

By setting 7 = n/S’, we obtain that Hg (1, Pk, (), || - ||1) < log(1/n). Finally, since the norm || - ||
is upper bounded by the Hellinger distance, we reach the conclusion of this part:

Hp(n, Pk, (2),h) < log(1/n).

Hence, the proof is completed.

A.2 PROOF OF THEOREM 2

Since the Hellinger distance is lower bounded by the Total Variation distance, thatis h > V', we will
prove the following Total Variation lower bound:

Ex[V(ga(1X), ga. (1X))] 2 D1(G, G.),
which is then respectively broken into local part and global part as follows:
Ex[V(ga(1X), 9c. (1X))]

inf 14

Geéy, (Q)}gl(G,G*)SE' Dy (G, G*) =0 (1
. Ex[V(gc(-1X),96.(1X))]

f z 0 15

Gesk*(n)}&(a,c*)x' D1(G, Gy) -0 ()

for some constant &’ > 0.
Proof of claim (14): It is sufficient to show that

e ExV(eUX),0. (1Y)

> 0.
=0 Ge&y, (Q):D1(G,G)<e Dy (G,Gy)

Assume that this inequality does not hold, then since the number of experts k.. is known in this case,
there exists a sequence of mixing measure G,, := Y5, exp(B5;)d(pn ar b ,omy € Ek, (€2) such
that both Dy (G, G,) and Ex [V (g¢, (-|X), 9c. (-1 X))]/D1(Gr, G) approach zero as n tends to
infinity. Now, we define

Cf = Cj(Gn) = {i € [ka] « [lwj — wjl <l — Ll Vs # ),

J

for any j € [k.] as k. Voronoi cells with respect to the mixing measure G,,, where we denote

= (813, af, b7, o) and wi = (B7;,a},b},07). As we use asymptotic arguments in this proof,
we can assume without loss of generality (WLOG) that these Voronoi cells does not depend on n,
thatis, C; = C}'. Next, it follows from the hypothesis D1 (G, G«) — 0 as n — oo that each Voronoi
cell contains only one element. Thus, we contmue to assume WLOG that C; = {j} forany j € [k,],

which implies that (57}, a7, b, 07) — (87, a},b},07) and exp(Sg;) — exp(ﬁoj) asn — oo.

Subsequently, to specify the top K selection in the formulations of g¢, (Y|X) and g, (Y]X), we
divide the covariate space X into some subsets in two ways. In particular, we first consider g := (];()
different K -element subsets of [k, ], which are assumed to take the form {¢1,..., 0k}, for £ € [q].

Additionally, we denote {{x41,...,0k, } := [k«] \ {¢1,..., €K} Then, we define for each ¢ € [¢]
two following subsets of X’

X = {x eX:(8y) w> (BY) e Vi€ b, b} i € (i, ,ek*}},

X = {x €X:(By) a>(Bf) w:Vie{b,. .. lk},i € {lrya,. .. ,ek*}}.
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Since (8y;, 81;) — (85, B1;) asn — oo for any j € [k.], we have for any arbitrarily small n; > 0
that |87, — Bi;1l < m; and |55, — Bg;1 < m; for sufficiently large n. By applying Lemma 1, we
obtain that X" = X} for any ¢ € [g] for sufficiently large n. WLOG, we assume that

where we denote ASY, := B1; — 51, Aal = al —af, Ab} := b} — b} and Ao} := o] — o}.

Let ¢ € [¢] such that {{1,..., ¢k} = {1,..., K}. Then, for almost surely (X,Y) € X} x Y, we
can rewrite the conditional densities g¢, (Y'|X) and g¢, (Y| X) as

K
Dy(Gn ) = Y [exp(85) (IABE] + Az ]| + 186 | + [ A0 ) + | exp(85:) — exp(53)||

i=1

K n\T n
VIX) = eXp((ﬁu) X+50i) (Y Ty b o™,
96, (Y1X) ;Zleexp((%m%) FY|(@)TX + b7, 07)
K * *
g6 (1) = 3 PP XA By )T b o).

K N N
i=1 Zj:l eXp((ﬁu)TX + 50j)
Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:

In this step, we take into account H,, := [Zfil exp((B1) T X + B | - lga, (Y[X) — ga. (Y|X))].
Then, H,, can be represented as follows:

K
Hy = 3 exp(850) [ expl(85) T X) SV (@)X + b7, a7) = exp((85) T X)S(Y](a})TX +87,07)]

K
‘*ji:exp(ﬂ&)[exp((ﬂﬁ)TlY)gcn(YW)f)‘*exp((ﬂL)TlY)gcn(YWJ()

;1
+ 30 [exp(B) — exp(B5)] | xp((B1) T X)I (Y1) TX 457, 07) = exp((B1) Xga, (V|X)].

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by A,,, we get that

Z Z exp 601 Aﬂn)al(Aa”)a2(Abn)a3(A0’n)a
i=1|a|=1

3\042|+043+a4f
Ot g

where R1(X,Y) is a Taylor remainder that satisfies R;(X,Y)/D}(X,Y) — 0 as n — oo. Recall
that f is the univariate Gaussian density, then we have

aou;f 62(14]0
80'(14 90 ah2oc4

X X0 exp((85)TX) - (YV(a))TX +b7,07) + Ra(X.Y),

(2 Z

(V](a}) X +0],07) =

17 Z

(Y1(a7) "X +b},07),

(2 ’L

which leads to
K
exp 6 % ay n\as n\«a n\aq
4,=30 5 SR Ay (aap) (an) (Ao)

a|a2\+a3+2a4f

X X exp((37) T X) X+ 80D+ (X Y)

8h|1042 [+asz+2aq (Y|( )

K
ex
- S SR g e at do)
=1 |y |+n2=1 a€Tny ny

onz f

X an eXp((ﬂrz)TX) ! ahnz
1
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where we denote 171 = a1 + as € N¢, 72 = |as| + a3 + 2a4 € N and an index set

T = {(a)i; e NI X N? x Nx N:aj +as =, az + 2a4 =12 — |az|}. (17)

By arguing in a similar fashion for the second term in the representation of H,,, we also get that
< exp(B;)
By i=—Y > SR AL - X7 exp((81) X)go, (VIX) + Ra(X,Y),

where Ry(X,Y) is a Taylor remainder such that R2(X,Y)/D1(G,,G.) — 0as n — co. Putting
the above results together, we rewrite the quantity H,, as follows:

K
n 8 * *
Hn = Z Z Ui,nl,nz an eXp((ﬂlz)TX) ahnz (Yl( )TX + bza z)

i=1 0<|n1|4+m2<2
K

+3 03 W X7 exp((87) T X)ga, (YIX) + Ri(X,Y) + Ro(X,Y),  (18)
=1 0<]y|<1

in which we respectively define for each i € [K] that

n €Xp IBHZ n\a1 n\oao n\o n\ oy
Ui = Z 2a5a0! ) (AR (Aai')** (Ab)** (Aay')
€Ty ,mo
n exp ﬂni n
Wiy =~ ,5! . )(ABM)W,

for any (11,7m2) # (04,0) and |y| # 04. Otherwise, Ulo,0= Wi, == exp(By;) — exp(Bg;)-
Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios U}", . /D1(Gr, Gx) tend to zero
as n goes to infinity. Assume by contrary that all of them approa Zero when n — oo, then for
(m1,m2) = (04, 0), it follows that

1 J 711,712
W Z ’ exp(Bg;) — exp(Bg;) Z D1 (G, G = 0. (19)
Additionally, for tuples (11,72) where 71 € {e1,e2,...,eq} withe; := (0,...,0, 1 ,0,...,0)
j—th
and o = 0, we get
] 7717712
Dl Gn,G ZGXP 501 ||A/611||1 D Gn,G — 0.

By using similar arguments, we end up having

1

K
- - . n AB" Aa™ N Ag™ .
DG 2 A 18 + ATl + 188 + |adf ] =0

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

K
DG G ZQXP(ﬂoz‘) [HAﬁle + [[Aai || + [Ab}] + |Ao; |] — 0. (20)

i=1
Combine equation (T9) with equation (20), we deduce that Dy (Gn7 G.)/D1(G,,Gy) — 0, which is
a contradiction. Consequently, at least one among the ratios U /D1(Gy, G) does not vanish as

o L1 1o
n tends to infinity.
Step 3 - Fatou’s contradiction:

Let us denote by m, the maximum of the absolute values of U!, . /Di(Gn,G.) and

W /D1(Gy, G.). 1t follows from the result achieved in Step 2 that 1/m,, /> oc.
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Recall from the hypothesis that Ex [V (ga, (-] X), 9c. (| X))]/D1(Gpn, G+) — 0 as n — oo. Thus,
by the Fatou’s lemma, we have

o Ex[V(ge, (1X), 96, (1X))] | 1 / 196, (VX)) = g6, (V]X))
e n * > . n * .
0=, Dy(Gn, G-) SR e N (R R

This result indicates that [g¢, (Y|X) — g, (Y]X)|/D1(Gy, G+) tends to zero as n goes to infinity
for almost surely (X,Y). As a result, it follows that
. H, 96, (Y[X) — ga. (VX))
lim —————— = lim
n—o0 My Dy (Gna G*) n—00 mp Dy (Gna G*)
Next, let us denote U}, /[mnD1(Grn, Gi)| = Ty, and W /[mn, D1 (G, Gi)] — ki With
a note that at least one among them is non-zero. From the formulation of H,, in equation (I8), we
deduce that

=0.

= n *\ T 8772f *\ T k%
Y X T X" (85T X) Gy (V@)X 4+ 0)

=1 0< | [+n2<2

K
Y Ry X7exp((87) " X)ga, (Y]X) =0, (21)
i=10<[n|<1

for almost surely (X, Y"). This equation is equivalent to

X 87’2]0 *\ T * *
Z Z Z Ti,m,mw(y‘(ai) X +b7,07) + Kig ga. (Y]X)
i=10<[m|<1 [0<n2<2—|n)| !

x XM exp((B;) T X) =0,

for almost surely (X,Y). Note that 57,..., 7, admits pair-wise different values, then
{exp((B7;) T X) : i € [K]} is a linearly independent set, which leads to

o/ Y|(aH)TX 4+ b, 0F YIX)| XM =0
Z Z Tiﬂhﬂlzw( |(as) +b,07)+ Riv"]lgG*( 1 X) =Y
0<|m|<1 [0<na<2—|9]| !

for any 7 € [K] for almost surely (X,Y"). It is clear that the left hand side of the above equation is a
polynomial of X belonging to the compact set X. As a result, we get that

8772f *\ T * *
E : Ti,n1,m2 BT (Y|(az) X+bi70i) + Kim 9G.. (Y|X) =0,
0<n><2— |yl !

forany ¢ € [K], 0 < || < 1 and almost surely (X,Y). Since (a}, b}, 07), ..., (a}, b}, 0% ) have
pair-wise distinct values, those of ((a})" X + b},07),...,((a%) " X + bl, 0% ) are also pair-wise
different. Thus, the set {%(YK@Q‘)TX +b508), go. (Y|X) i€ [K]} is linearly independent.
Consequently, we obtain that 7; ,, n, = Ky = 0foranyi € [K],0 < |n|+n2 <2and0 < |y| < 1,
which contradicts the fact that at least one among these terms is different from zero.

Hence, we can find some constant €’ > 0 such that

it Ex[V(9c(1X),9c. (1X))]

> 0.
GEEy, (Q):D1(G,G)<e’ Dy (G,G.)

Proof of claim (T5): Assume by contrary that this claim is not true, then we can seek a sequence
Gl € &, (Q) such that D1 (G),G,) > ¢’ and

Ex[V(gG;L(|X)7gG*(‘X))] -0

I

no Di(G},. L)
which directly implies that Ex [V (g (-|X), g9a. (-|X))] — 0 as n — co. Recall that €2 is a compact
set, therefore, we can replace the sequence G, by one of its subsequences that converges to a mixing
measure G’ € &, (). Since D (G, G,) > £, this result induces that D, (G',G,) > €.

n’
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Subsequently, by means of the Fatou’s lemma, we achieve that
0= lim Ex[2V (9o, (1), 6. (1X))] > / lim inf |ga, (V1X) = g, (Y1) dpu(Y ) (X).

It follows that g+ (Y| X) = g, (Y| X) for almost surely (X,Y"). From Proposition[2] we know that
the top-K sparse softmax gating Gaussian mixture of experts is identifiable, thus, we obtain that
G’ = G.. As a consequence, D1 (G', G,) = 0, contradicting the fact that D1 (G’, G,) > &’ > 0.

Hence, the proof is completed.

A.3 PROOF OF LEMMA 1

Let n; = M;e, where ¢ is some fixed positive constant and M; will be chosen later. For an arbitrary
¢ € [q], since X and () are bounded sets, there exists some constant ¢; > 0 such that

min [(31) 72— (81,)Ta] = cie, @)

x,i,1

where the minimum is subject to z € X;,i € {{1,...,lx} and ¢’ € {{xi1,..., 0, }. We will
point out that ¢; > 0. Assume by contrary that ¢; = 0. For x € X, we may assume for any
1<i<j <k, that

(Bikz,i)Tx > (mej)Tx.

Since ¢ = 0, it follows from equation 22) that (85, ) "= — (87,,.,,) " = 0, or equivalently

(Blex — BTEK_H)Tf =0.

In other words, X} is a subset of

Z:={zeX: (B, — 5ikeK+1)Tx = 0}.

Since B1oy — Bregesy # 04 and the distribution of X is continuous, it follows that the set Z has
measure zero. Since X, C Z, we can conclude that X also has measure zero, which contradicts the
hypothesis of Lemma 1. Therefore, we must have c; > 0.

As X is a bounded set, we assume that ||z|| < B for any z € X. Let z € X, then we have for any
xS {51,...781(} and ¢ € {€K+1,...,£k*}that

Bl = (B — A1) "o+ (By) T2
> —M;eB + (B1y) "z +cje
= —M;eB + cje + (Bt — Prir) "+ By
> —2M;eB + +cje + By

*

By setting M; < %, we get that x € Xy, which means that X; C X,. Similarly, assume that there

exists some constant ¢, > 0 that satisfies

min |(81,) 7w — (8) Te| = cje.

x 1,1
Here, the above minimum is subject to x € Xy, @ € {l1,..., 0k} and i’ € {€xyq1,... 0 }. If
c .
M; < %, then we also receive that X, C X}

. 1 . .
Hence, if we set M; = 5B min{cj}, ¢, }, we reach the conclusion that X, = X.

B PROOF FOR RESULTS UNDER OVER-SPECIFIED SETTINGS

In this appendix, we first provide the proofs of Theorem [B.T|and Theorem 4 in Appendix [B.T|and
Appendix [B.2] respectively. Subsequently, we present the proof for Proposition 1 in Appendix [B.3]
while that for Lemma 2 is put in Appendix

20



Published as a conference paper at ICLR 2024

B.1 PROOF OF THEOREM 3

In this appendix, we follow proof techniques presented in Appendix to demonstrate the result of

Theorem 3. Recall that under the over-specified settings, the MLE G, belongs to the set of all mixing
measures with at most k > k., components, i.e. O (£2). Interestingly, if we can adapt the result of
part (i) of Lemma [3]to the over-specified settings, then other results presented in Appendix [A.T| will
also hold true. Therefore, our main goal is to derive following bound for any 0 < 7 < 1/2 under the
over-specified settings:

log N (1, P (), [| - 1) < log(1/7),

where P () := {go(Y|X) : G € Or(2)}. For ease of presentation, we will reuse the notations
defined in Appendix|A.1|with &, () being replaced by O (2). Now, let us recall necessary notations
for this proof.

Firstly, we define © = {(a,b,0) € RY x R x R} : (8o, B1,a,b,0) € Q}, and ©,) is an n-cover of
©. Additionally, we also denote A := {(Bo, 1) € R? x R : (B, f1,a,b,0) € N}, and A, be an
n-cover of A. Next, for each mixing measure G = Zle exp(B0i)0(811,a1,bs,00) € Or(Q2), we denote
G = Zle exp(Boi)d (Bri@s.5.70) in which (a@;, b;,7;) € ©,, is the closest point to (a;, b;, 0;) in this
set for any i € [k]. We also consider another mixing measure G := Z 1 exp(ﬁol) Broaibis) €
Oy () where (By,, B1;) € A, is the closest point to (8y;, 51;) in this set for any i € [k].
Subsequently, we define

L :={gg € Pr() : (Boi, Brs) € Ay, (@i, b3, ) € Oy}
We demonstrate that £ is an n-cover of the metric space (Px(£2), || - ||1), that is, for any G € P (),
there exists a density gz € £ such that ||g; — Ggl[1 < 7. By the triangle inequality, we have

19¢ — 9zl <196 — 9a/lh + 9 — Tzl (23)
From the formulation of G’, we get that

196 - Forlh < Z / F(YV|al X + bioy) — f(Y[a) X + B m)|d(x,v)
X XY
N |ai*5i||+|bi*5i|+\0i*5i| d(X,Y)
Z X><)1 )
Sn (24)

Based on inequalities in equations [23) and ([24), it is sufficient to show that ||go — g&ll1 S 0. For
any / € [ ] let us define

= {l‘ eX: (ﬁu)—rﬂ? > (ﬁh‘/)—rl’, Vi € {21, - ,Zf},i/ S {Z?—H""’Zk}}’
XZ’ ={zeX:(By) x> B) a Vie{l,. .. lghi € {lg,, ... l}}.

Since the Softmax function is differentiable, it is a Lipschitz function with some Lipschitz constant
L > 0. Assume that || X|| < B for any X € X and denote

m7(X) ::( Eix+6&i)? P (X)) = (BIZ,LHBOT@);’

i=1

3

for any K -element subset {/1,...¢x } of {1,...,k}. Then, we have
||Softmax(ms(X)) — Softmax(7;(X ))|| S L-||lmp(X) = 7(X)||

?
|

SO (G R A EE )

Mw\ ﬂMw\

IA
h

3

-
Il

N
=
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By arguing similarly to the proof of Lemma 2 in Appendix we receive that either YZ = Xzf or

X7 has measure zero for any ¢ € [g]. As a result, we deduce that

q
-0 32 [ (30 (YIX) - g5 O Y)
7=1 X7xY

q K
<> L > ‘Softmax(ﬂz(X)i) — Softmax(7z(X);)| - ‘ f(Y|a, X +bg,,0;,)|d(X,Y)
XY : T
=1 13 =1
S
Thus, £ is an n-cover of the metric space (P (£2), || - ||1), which implies that
N Pr(), 11 1) S [By] x [6,] < O~ TFIR) x O(n~ ¥y = Oy~ PHI%). - (25)

Hence, log N (1, P(2), [| - 1) < log(1/7).

B.2 PROOF OF THEOREM 4

Similar to the proof of Theorem 2 in Appendix [A] our objective here is also to derive the Total
Variation lower bound adapted to the over-fitted settings:

Ex[V(3a(1X), 9c.(1X))] 2 D2(G, Gy).

Since the global part of the above inequality can be argued in the same fashion as in Appendix [A] we
will focus only on demonstrating the following local part via the proof by contradiction method:

E G (| X || X
L xlV (1%, 96 (1))
=0 GEOL(0):Ds(G,G )<e Do (G, Gy)

> 0. (26)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures G, = 21‘21 exp(By;)(pr ar promy € Ok(S2) such that both Do(G,,,Gx) and
Ex[V(gq, (:|X), 9c.(-1X))]/D2(G,, G.) vanish when n goes to infinity. Additionally, by abuse of
notation, we reuse the set of Voronoi cells C;, for j € [k+], defined in Appendix |Al Due to the limit
Do (Gr, Gy) — 0asn — oo, it follows that for any j € [k.], we have Zz‘ecj exp(Bh;) — exp(55;)
and (67}, ai', b7, o) — (B}, aj, b7, 07) foralli € C;. WLOG, we may assume that

7999099 2773770
n n 17(1C;]) P ) n  Z0%0
DG, Gu) = 3 D expl(Ba) [1ABL 17090 + Al 75 + b 70D 4 |Acy | =5 |
JE[K], 1€C;y
[Cjl1>1

K
D03 ex(850) I8 | + IAag | + |65+ 1Ach]] + D[ D exp(dr) — exp(8i,)|-
JE[K], 1€C; j=1 iec;
ICsl=1

Regarding the top-K selection in the conditional density gs, , we partition the covariate space X in

a similar fashion to Appendix More specifically, we consider ¢ = (’;;) subsets {¢1,...,lx} of

{1,...,k.} forany ¢ € [q], and denote {€f 11, ..., Lk, } := [k«] \ {¢1,...,¢x}. Then, we define

Xp = {x eX:(B) > (B) e, Vi € (. ik, i € {licin, e ,ek*}},

for any £ € [¢]. On the other hand, we need to introduce a new partition method of the covariate
space for the weight selection in the conditional density g, . In particular, let K € N such that
Max (g} | k] Efil C,| < K < kand := (£). Then, for any / € [g], we denote ({1, ..., 0x)
as a subset of [k] and {¢7_ ,..., 0k} = [k] \ {{1,..., lx}. Additionally, we define

Xp = {a: ex: By x> By x,Vie {,... I}, € {Zﬂl,...,zk}}.
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Let X € X} forsome ¢ € [q] suchthat {¢1,..., 0} ={1,..., K} If {{1,... (%} #C1U...UCk
for any ¢ € [g], then Ex[V(g¢, (-1X), 9c. (:|X))]/D2(Gyr, G+) # 0 as n tends to infinity. This
contradicts the fact that this term must approach zero. Therefore, we only need to consider the
scenario when there exists ¢ € [q] such that {/1,...¢%} = C; U...UCk. Recall that we have
(Bois B1:) — (B, B1j) as n — oo for any j € [k.] and i € C;. Thus, for any arbitrarily small
n; > 0, we have that || 37; — 87, < n; and |55; — B5;| < n; for sufficiently large n. Then, it follows
from Lemma 2 that X = in for sufficiently large n. This result indicates that X € XZ".

Then, we can represent the conditional densities g¢, (Y| X) and g¢, (Y| X) for any sufficiently large
n as follows:

i eXP((ﬂikj)TX + B5;)

(Y|X) = f(Y|(a)TX +b%, 0%
ga ( | ) j_l Zlf,lexp((ﬁfj,)—'—X—i-ﬁ(*,j,) ( |( ) J J)
) =3 Y e R0 X ) FOYI(@)TX 4 b o).

j=14€eC; Z’ 121 ECleXp((ﬂll’)TX+IBOz)

Now, we reuse the three-step framework in Appendix [A]
Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity
K
Hyi= [ 37 exp((81)TX + 63)| - [56, (V1X) = g6 (VIX)].
j=1
Similar to Step 1 in Appendix [A] we can express this term as

K
Hy =337 exp(8g) | exp(B1)TX) (V@) TX + b 07) = exp(81) T X)F(Y |(@)TX + b5, 07)]
j=1liec;

K
=303 e85 [ exp((51) T X)ge, (YIX) — exp((57,) T X)ga, (Y1)

j=1ieC;

K
3013 exp(8) — exp(Bi)] [ exol(81)TX) (V1) TX + b, 07) — exp(85) T X)ger, (V1)

j=1 4i€eC;
=A, + B, +E,.

Next, we proceed to decompose A,, based on the cardinality of the Voronoi cells as follows:

Aw= D37 exp() [ exp((B1) T X) S (VI(@2)TX + b 07) = exp(B1) T X)F(YI(a5)TX + 5, 07)]

j:lcsl=11€C;
D0 D exp(8) [ exp((B) TSV @) TX + 67 07) — exp((8)TX)F(¥](a)TX +15.07)]
j:1Cj]>114€C;

By applying the Taylor expansions of order 1 and 7(|C;|) to the first and second terms of A,,
respectively, and following the derivation in equation (6], we arrive at

A= XYYy SR a0

J:1C;|=11€C; 1<|m |+n2<2 A€ Ty ny
a’fizf

< X exp((B1)TX) - L (@)X 4 b7,07) + By(X,Y)

1

exp 6ni n\a1 n\as nyas n\o4

FYYY Y SO s aap) (e (ad)
3:1C;1>14€C; 1<y [+m2<27(IC;5 ) A€ Tny my .
* \ T 8772f T *

x XM eXp((ﬁli) X) 8h772 (Y|( ) X+bz7 7,)+R4(X’Y)7

1
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where the set J;, n, is defined in equation while R;(X,Y) is a Taylor remainder such that
Ri(X,Y)/D2(Gp,Gx) = 0asn — oo fori € {3,4}. Similarly, we also decompose B,, according
to the Voronoi cells as A,, but then invoke the Taylor expansions of order 1 and 2 to the first term and
the second term, respectively. In particular, we get

Bom— Y 3 Y U (a7 exp((81) T X)ge, (V1X) + Re(X.Y)

3:1C51=114€C; |y|=1

S X Y O s exn((8) Ko, (V) + RalX,Y),

J:1C;|>14€C; 1<||<2

where R5(X,Y) and Rg(X,Y") are Taylor remainders such that their ratios over Do (G, G.) ap-
proach zero as n — oo. Subsequently, let us define

exp(fg;) . ol A @
Stman =D Do pargr (BB (M) (A6) (Ag))™
1€Cj a€Tyy ny
: exp(55;)
T, =) T G
i€C;
for any (11,7m2) # (04,0) and |7| 7é 04, while for (11,72) = (04,0) we set
Stouo = ~Tio, = D exp() — exp(s,).
i€C;
As a consequence, it follows that
K 27(IC;]) o= f
Hi=3, > S X" e((8)7X) g (V@) X+, 07)
J=1ml+n2=0
K 1t1lgc;i>1)
+3 Y 1 X7 exp((81) T X)ge, (YIX) + Rs(X,Y) + Rg(X,Y).  (27)
i=1  |yl=0

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios S7, /Da2(G,, Gy)
does not converge to zero as n — o0. Assume that all these terms go to zero, then by employing
arguments for deriving equations (I9) and (20), we get that

Gn, G.) [Z‘ Z exp(f;) eXp(ﬁo;)

j=1 i€eC;
+ 3 Y (s (|\A,31”||+\\Aa;;.||+|Ab"|+|Aa \)}%0.
j:|Cj|=11€C;
Combine this limit with the representation of Do (G,,, G.), we have that
1 #(1¢51) r(1¢;1)
. (¢;h 5 n | 7(1C;1) 5
DGy o 2 e (IABE 19D + 1 Aa |7 + A D 4 ach TET) 0.
J:C;[>114€C;
This result implies that we can find some index j’ € [K] : |C' | > 1 that satisfies
1 7(|C; n |7(|C/ n IC D
N ; exp(5) (108155 170D + ([ Aagy | “F + [Ab 700D + Aoy [ “F7) 4 0.

For simplicity, we may assume that j = 1. Since S7, . /D2(G.,, G.) vanishes as n — oo for any

(m,m2) € N% x N such that 1 < |n1| 4+ n2 < 7(|C;|), we divide this term by the left hand side of the
above equation and achieve that

exp(fg;)
Eie(h ZaeJm 0y -

20¢4al

Sicc, exp(85) (I1ABLIICD + | Aaty |

(ABT)* (Aajy)*2 (Abf ) (Aojy )

=0, (28

T(\CH)

+AB PG 4 |Ag 1|r<wcm>
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for any (11,m2) € N% x N such that 1 < |n;| + 72 < 7(|C1]).

Subsequently, we define M,, := max{||ABY, |, [|Aak ||*/2, |AbY |, |Ack|Y/? 2 i € C1} and p, :=
max{exp(By;) : ¢ € C1}. As aresult, the sequence exp(S(;)/pn, is bounded, which indicates that
we can substitute it with its subsequence that admits a positive limit 22, := lim,, o0 exp(85;)/Pn-
Therefore, at least one among the limits zgz equals to one. Furthermore, we also denote

(ABT) /My — 214, (Aajy)/Mp — z2i, (Aby) /My — 234, (Aoyy)/(2My) — 244

From the above definition, it follows that at least one among the limits z1,, 22;, z3; and z4; equals to
either 1 or —1. By dividing both the numerator and the denominator of the term in equation (28] by

p,,,Mrlf71 H”Q, we arrive at the following system of polynomial equations:

2 o1 oo a3 Oy
Z Z Z5i F1i Z2i F3i i _
ol as! as! ay! ’

1€CL A€ Ty ms ’

for all (1,7m2) € N x N : 1 < || 4+ n2 < 7(|C1]). Nevertheless, from the definition of #(|C1]),
we know that the above system does not admit any non-trivial solutions, which is a contradiction.

Consequently, not all the ratios 7', /D2(G,,, G.) tend to zero as n goes to infinity.

Step 3 - Fatou’s contradiction:
It follows from the hypothesis that Ex [V (gg, (-|X), gc, (-|X))]/D2(Gr,Gx) — 0 asn — oo.
Then, by applying the Fatou’s lemma, we get
_ o Ex[V(5e, (1X),96.CIXD] 1[G, (VIX) — g6, (Y]X)]
0= lim = — . [ liminf
n— 00 Do (Gn, G*) n—00 Dy (Gnv G*)

which implies that [go (Y'|X) —ga, (Y|X)|/D2(Gr,G+) — 0asn — oo for almost surely (X,Y).

dxady;,

3 n
Next, we define m,, as the maximum of the absolute values of S s /D2 (GG It follows from

Step 2 that 1/m,, /4 co. Moreover, by arguing in the same way as in Step 3 in Appendix [A] we
receive that

Hy /[ Do (G, G )] — 0 (29)
as n — oo. By abuse of notations, let us denote

S7 /[mnD? (GTM G*)} = Tjmimes

7:M1,M2

T2 /112D (Gos G)] = 1

Here, at least one among 7; y,, ., K;,~ 1S non-zero. Then, by putting the results in equations (27) and
([29) together, we get

K 20(lC;)) »

Z Z Tigmme - X eXp((ﬁu)TX)ahnz (Y|(a})" X +b;,07)
=1 |n1[+n2=0 !

K 1tl{c;i>1n

Jrz Z Kiy - X7 exp((ﬂfi)TX)gG* (Y]X) =0.

=1 |yl=0

Arguing in a similar fashion as in Step 3 of Appendix[A] we obtain that 7; ,,, ,,, = k; , = 0 for any
J € [K], 0 < |m|+n2 <27(|Cj[) and 0 < |y| < 1+ 1yj¢;j>1}- This contradicts the fact that at
least one among them is non-zero. Hence, the proof is completed.

B.3 PROOF OF PROPOSITION 1

Since the Hellinger distance is lower bounded by the Total Variation distance, i.e. h > V, it is
sufficient to show that

o o ExIV(36(1X), 9a. (1X)] > 0.
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For that purpose, we first demonstrate that

I inf Ex[V(3(-1X), gc. (1X))] > 0. 30
ool g o)< EXIVECX, g6. (1X))] (30)

Assume by contrary that the above claim is not true, then we can find a sequence G, =
Zf;l exp(Bh;)d(pn ar b omy € Ok(€2) that satisfies D2 (G, Gx) — 0 and

Ex[V(ge, (1X), 96.(-1X))] =0

when n tends to infinity. By applying the Fatou’s lemma, we have

0= lim Ex[V(gc, (1X).ga. (1X)]

1
>5[ timinf g, (V1) - ge. (VIX)WCX ), G31)
2 XY

n—r oo

The above results indicates that g5 (Y|X) — ga, (Y|X) — 0asn — oo for almost surely (X,Y).
WLOG, we may assume that

K

max Y |Co| = |Ci]+[Co| + ... + [Ck].

Ly,...,0
(et}

Let us consider X € X, where ¢ € [g] such that {¢,...,lx} = {1,..., K}. Since D2(Gp, G)
converges to zero, it follows that (87;,ai’,b;',07') — (B1;,a},b},07) and Ziecj exp(By;) —
exp(f;) forany i € C; and j € [k.]. Thus, we must have that X € A7 for some £ € [g] such that
{t1,... I} =C1U...UCk. Otherwise, g, (Y|X) — ga, (Y|X) # 0, which is a contradiction.
However, as K < ZJK:1 |C;|, the fact that {¢1,...,f%} = C1 U...UCk cannot occur. Therefore,
we reach the claim in equation (30). Consequently, there exists some positive constant €’ such that

inf E Jo(|X X .
oo o Ex[V(@el1X).g6.(1X))] > 0

Given the above result, it suffices to point out that

inf Ex[V(ga(-]X), 1X))] > 0. 32
peona o Bx[V(@a(1X).96.(1X)) (32)
We continue to use the proof by contradiction method here. In particular, assume that the inequal-
ity does not hold, then there exists a sequence of mixing measures G}, € O () such that
Dy(G!,Gy) > €’ and

Ex[V(9e;, (1X), 9c. (1X))] = 0.

By invoking the Fatou’s lemma as in equation (31), we get that g, (Y|X) — g5, (Y[X) — 0
as n — oo for almost surely (X,Y’). Since 2 is a compact set, we can substitute (G,,) with its
subsequence which converges to some mixing measure G’ € O (). Then, the previous limit
implies that g, (Y] X) = g, (Y|X) for almost surely (X, Y). From the result of Proposition[2]in
Appendix [C| we know that the top-K sparse softmax gating Gaussian MoE is identifiable. Therefore,
we obtain that G’ = G, or equivalently, D2(G',G.) =0

On the other hand, due to the hypothesis D2(G),,G,) > ¢’ for any n € N, we also get that
Dy (G',G) > & > 0, which contradicts the previous result. Hence we reach the claim in equa-
tion (32) and totally completes the proof.

B.4 PROOF OF LEMMA 2

Let n; = Mje, where € is some fixed positive constant and M; will be chosen later. As X and (2 are
bounded sets, we can find some constant c¢; > 0 such that

(8172 = (81;) 2] = cie,

min
z,5,5’

where the above minimum is subject to x € X, j € {{1,...,lx} and j' € {{x11,..., 0 }. By
arguing similarly to the proof of Lemma 1 in Appendix we deduce that ¢ > 0.
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Since X is a bounded set, we may assume that ||z|| < B forany x € X. Letz € X} and { € [q]
such that {{1,..., ¢} =Cp, U...UCy,. Then, forany i € {{,... {z}tandd’ € {{x ..., {x},
we have that
Bl = (Bui = Biy) o+ (Bly) T
> —M;eB+ (Bi;) x + cje
= —M;eB + cje + (Bi; — Biir) x4+ By
—2M;eB + cje + By,

*

where j € {{1,..., ¢k} and j' € {{x41,...,0, } suchthati € Cjandi' € Cjr. If M; < — QB , then
we get that 2 € A7, which leads to X C X 7

Analogously, assume that there exists some constant ¢, > 0 such that

min [(81,) T — (8;) x| = e,
where the minimum is subject to x € X, i € {l1,..., 0} and i’ € {5 ,,...,¢}. Then, if
M; < — 2B then we receive that X3 C X/

As a consequence, by setting M; = min{cj}, ¢, }, we achieve the conclusion that ?Z =X

2B
C IDENTIFIABILITY OF THE TOP-K SPARSE SOFTMAX GATING GAUSSIAN
MIXTURE OF EXPERTS

In this appendix, we study the identifiability of the top-K sparse softmax gating Gaussian MoE, which
plays an essential role in ensuring the convergence of the MLE G,, to the true mixing measure G,
under Voronoi loss functions.

Proposition 2 (Identifiability). Let G and G’ be two arbitrary mixing measures in Oy (0). Suppose
that the equation g (Y|X) = go (Y| X) holds for almost surely (X,Y) € X x ), then it follows
that G = G'.

Proof of Proposition2] First, we assume that two mixing measures G and G’ take the follow-

ing forms: G = Zle exp(B0i)0(811,a1,b5,00) aNd G' = Zf 16xP(B0;)0(s;, a2 b!,0)- Recall that
9c(Y1X) = g (Y| X) for almost surely (X, Y), then we have

k
> Softmax(TopK((81:) " X, K; Boi)) - f(V]a] X + b, 03)
=1
.
=" Softmax(TopK((8;,) " X, K; 8),)) - f(Y[(a})" +b},0}).  (33)
1=1

Due to the identifiability of the location-scale Gaussian mixtures Teicher (1960; 1961; 1963), we get
that K = k&’ and

{Softmax(TopK((ﬂu)TX, K:foi)) i€ [k:]} = {Softmax(TopK((ﬂii)TX, K:Bl))ie [k]},
for almost surely X. WLOG, we may assume that
Softmax(TopK((61:) " X, K; oi)) = Softmax(TopK((3};) " X, K; 85,)), (34)

for almost surely X for any ¢ € [k]. Since the Softmax function is invariant to translations, it follows
from equation (34) that 31; = B}; + v1 and By; = B); + vo for some v; € R% and vy € R. Notably,
from the assumption of the model, we have (15, = 1, = 04 and Sor, = S, = 0, which implies that
v1 = 0g and vy = 0. As a result, we obtain that 1; = (1, and Sy, = 3, for any i € [k].
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Let us consider X € A, where £ € [g] such that {¢1,...,¢x} = {1,..., K}. Then, equation (33)
can be rewritten as

K K
> exp(Boi) exp(BLX) f(Y]a] X +bi,00) = Y exp(Boi) exp(BLX) f(Y](af) T X + b, 07),
i=1 =1

(35)

for almost surely (X, Y"). Next, we denote Jy, Ja, ..., J,, as a partition of the index set [k], where
m < k, such that exp(Bo;) = exp(Boi) for any 7,7’ € J; and j € [m]. On the other hand, when
i and i’ do not belong to the same set J;, we let exp(8o;) # exp(Boir). Thus, we can reformulate
equation (33) as
m
> exp(Boi) exp(B5X) f(Y]al X + bi,04)
J=1ieJ;
= > exp(Boi) exp(BLX) S (Y(a)) X + b, 07),

j=1ieJ;

for almost surely (X, Y"). This results leads to {((a;) " X + b;,03) :i € J;} = {((a})) "X + b}, 0}) :
i € J;}, for almost surely X for any j € [m]. Therefore, we have

{(ai7bi70i) RS Jj} = {(a;,b;,a;) (i€ Jj}7

for any j € [m]. As a consequence,

G= Z Z exp(B0i)0(B1;,a1,b1.00) = Z Z exp(Bo;)d(p1,at pt,0r) = G

j=1ieJ; j=lieJ;

Hence, we reach the conclusion of this proposition. O

D NUMERICAL EXPERIMENTS

In this appendix, we conduct a few numerical experiments to illustrate the theoretical convergence

rates of the MLE G, to the true mixing measure GG, under both the exact-specified and the over-
specified settings.

D.1 EXPERIMENTAL SETUP

Synthetic Data. First, we assume that the true mixing measure G, = Y%=, exp(B5;:)0(sz, ,az b5 o)
is of order k., = 2 and associated with the following ground-truth parameters:

Bor = =38, Bi1 = 25, ay = —20, b =15, o} =0.3,
ﬂEJkQ =0, BTQ =0, a; =20, b; = -9, O'; =0.4.

Then, we generate i.i.d samples {(X;, Y;)}?_; by first sampling X;’s from the uniform distribution
Uniform[0, 1] and then sampling Y;’s from the true conditional density g¢, (Y| X) of top-K sparse
softmax gating Gaussian mixture of experts (MoE) given in equation (1). In Figure[2] we visualize
the relationship between X and Y when the numbers of experts chosen from g, (Y| X) are K =1
(Figure[2a) and K = 2 (Figure2b), respectively. However, throughout the following experiments,
we will consider only the scenario when K = 1, that is, we choose the best expert from the true
conditional density gg, (Y|X).

Maximum Likelihood Estimation (MLE). A popular approach to determining the MLE G/, for
each set of samples is to use the EM algorithm Dempster et al. (1977). However, since there are not
any closed-form expressions for updating the gating parameters (3y;, 81, in the maximization steps,
we have to leverage an EM-based numerical scheme, which was previously used in Chamroukhi et al.
(2009). In particular, we utilize a simple coordinate gradient descent algorithm in the maximization
steps. Additionally, we select the convergence criterion of ¢ = 10~ and run a maximum of 2000
EM iterations.
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Figure 2: A visual representation showcasing the relationship between X and Y, along with their
respective marginal distributions when K = 1 and K = 2.

Initialization. For each k € {k., k. + 1}, we randomly distribute elements of the set {1,2, ..., k}
into k, different Voronoi cells C1,Cs, ..., Ck,, each contains at least one element. Moreover, we
repeat this process for each replication. Subsequently, for each j € [k,], we initialize parameters
B by sampling from a Gaussian distribution centered around its true counterpart 57; with a small
variance, where ¢ € C;. Other parameters S;, a;, b;, 0; are also initialized in a similar fashion.

D.2 EXACT-SPECIFIED SETTINGS

Under the exact-specified settings, we conduct 40 sample generations for each configuration, across
a spectrum of 200 different sample sizes n ranging from 102 to 10°. It can be seen from Figure
that the MLE G, empirically converges to the true mixing measure G, under the Voronoi metric D;

at the rate of order (5(n_1/ 2), which perfectly matches the theoretical parametric convergence rate
established in Theorem 2.

D.3 OVER-SPECIFIED SETTINGS

Under the over-specified settings, we continue to generate 40 samples of size n for each setting,
given 100 different choices of sample size n € [102,10%]. As discussed in Section 3, to guarantee
the convergence of density estimation to the true density, we need to select K = 2 experts from
the density estimation. As far as we know, existing works, namely Kwon et al. (2019); Kwon &
Caramanis (2020); Kwon et al. (2021), only focus on the global convergence of the EM algorithm for
parameter estimation under the input-free gating MoE, while that under the top-K sparse softmax
gating MoE has remained poorly understood. Additionally, it is worth noting that the sample size
must be sufficiently large so that the empirical convergence rate of the MLE returned by the EM

algorithm aligns with the theoretical rate of order O(n~'/2) derived in Theorem 4.

E ADDITIONAL RESULTS

In this appendix, we study the convergence rates of parameter estimation under the model (1) when f
is a probability density function of an arbitrary location-scale distribution. For that purpose, we first
characterize the family of probability density functions of location-scale distributions

F ={f(Y|hi(X,a,b),0) : (a,b,0) € O}, (36)
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Figure 3: Log-log scaled plots illustrating simulation results under the exact-specified and the over-
specified settings. We analyze the MLE G, across 40 independent samples, spanning sample sizes
from 102 to 10°. The blue curves depict the mean discrepancy between the MLE @n and the true
mixing measure G, accompanied by error bars signifying two empirical standard deviations under
the exact-specified settings. Additionally, an orange dash-dotted line represents the least-squares
fitted linear regression line for these data points.

where (X, a,b) := a’ X + b stands for the location, o denotes the scale and © is a compact subset
of R? x R x R, based on the following notion of strong identifiability, which was previously studied
in Manole & Ho (2022) and Ho & Nguyen (2016):

Definition 1 (Strong Identifiability). We say that the family F is strongly identifiable if the probability
density function f(Y |h1(X,a,b), o) is twice differentiable w.r.t its parameters and the following
assumption holds true:

For any k > 1 and k pairwise different tuples (a1,b1,01), ..., (ak, br,0r) € O, if there exist real

coefficients ag)’gz,fori € [ki] and 0 < £y + €y < 2, such that

o2 , it f
> > O‘Z),ez : W(YW(X, ai, bi),0(X,04)) =0,
i=1 £, 4£>=0 190

for almost surely (X,Y), then we obtain that O‘Z),Zz =0foranyi € [k and 0 < {1 + {5 < 2.

Example 1. The families of Student’s t-distributions and Laplace distributions are strongly identifi-
able, while the family of location-scale Gaussian distributions is not.

In high level, we need to establish the Total Variation lower bound Ex [V (9¢(|X), g9, (|1 X))] 2
D(G,G,) for any G € O(2). Then, this bound together with the density estimation rate in
Theorem 1 (resp. Theorem 3) leads to the parameter estimation rates in Theorem 2 (resp. Theorem 4).
Here, the key step is to decompose the difference g5 (Y[X) — ge. (Y[X) into a combination of
linearly independent terms using Taylor expansions. Therefore, we have to involve the above notion
of strong identifiability, and separate our convergence analysis based on that notion.

Subsequently, since the convergence rates of maximum likelihood estimation when F is a family of
location-scale Gaussian distributions, which is not strongly identifiable, have already been studied in
Section 2 and Section 3, we will focus on the scenario when the family F is strongly identifiable
in the sequel. Under that assumption, the density f(Y'|hy, o) is twice differentiable in (hq, o),
therefore, it is also Lipschitz continuous. As a consequence, the density estimation rates under both
the exact-specified and over-specified in Theorem 1 and Theorem 3 still hold true. Therefore, we aim
to establish the parameter estimation rates under those settings in Appendix [E.T|and Appendix [E.2}
respectively.
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E.1 EXACT-SPECIFIED SETTINGS

In this appendix, by using the Voronoi loss function D; (G, G) defined in equation (5), we demon-
strate in the following theorem that the rates for estimating true parameters exp(3g;), 51, ar, b, o

are of parametric order o (n~=1/2), which totally match those in Theorem 2.

Theorem 5. Under the exact-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound Ex [h(gc(-|X), 9c.(-|X))] = D1(G, G.) holds for any mixing measure
G € &, (). Consequently, we can find a universal constant C5 > 0 depending only on G, 2 and
K such that

P(Dl (G, Gy) > Cs log(n)/n) SnTe,
where c3 > 0 is a universal constant that depends only on §).

Proof of Theorem 3]is in Appendix [E.3.1]

E.2 OVER-SPECIFIED SETTINGS

In this appendix, we capture the convergence rates of parameter estimation under the over-specified
settings when the family F is strongly identifiable.

Voronoi metric. It is worth noting that when F is strongly identifiable, the interaction among expert
parameters in the second PDE (6) no longer holds true. As a result, it is not necessary to involve the
solvability of the system (7) in the formulation of the Voronoi loss as in equation (8). Instead, let us
consider the Voronoi loss function D3 (G, G..) defined as

D3(G,Gy) :==  max { > > exp(Bui) [”ABIZ‘@ I+ N1 Aaie, | + [Abie | + |A0Mj|}
{5352, Clk.] JE[K], i€Cy;
ICe; =1
20 D exn(Bon) 188, I + 1Aaie | + | Abis, [ + | Ao, P
JEIK], iecz]
\Czj\>1

K
+ Z‘ > exp(Bor) — exp(Bg,) } (37)
J=1 4€Cy;

for any mixing measure G € Ok (). Equipped with loss function, we are ready to illustrate the
convergence behavior of maximum likelihood estimation in the following theorem:

Theorem 6. Under the over-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound Ex [h(gc(-|X), g9c.(-|X))] = D2(G, G.) holds for any mixing measure
G € Ok(Q). As a consequence, we can find a universal constant Cy > 0 depending only on G, )
and K such that

P(Ds(ém G.) > C1y/log(n) /n) <pe,
where c4 > 0 is a universal constant that depends only on §).

Proof of Theorem []is in Appendix Theorem [6indicates that true parameters 33;, a;, b}, o,

which are fitted by a single component, share the same estimation rates of order o (nil/ 2) as those
in Theorem 4. By contrast, the estimation rates for true parameters 55;, a}, b}, o7, which are fitted by

R I A
more than one component, are of order O(n~'/4). Notably, these rates are no longer determined by
the solvability of the system (7). Thus, they are significantly faster than those in Theorem 4. The
main reason for this improvement is when F is strongly identifiable, the interaction among expert
parameters via the second PDE in equation (6) does not occur.
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E.3 PROOFS OF ADDITIONAL RESULTS

E.3.1 PROOF OF THEOREM[3

Following from the result of Theorem 1 and since the Hellinger distance is lower bounded by the Total
Variation distance, i.e. h > V/, it is sufficient to demonstrate for any mixing measure G € Oy (O) that

Ex[V(g9a(-1X), 9a.(-1X))] 2 D1(G, G.),
which is then respectively broken into local part and global part as follows:

Ex[V(ge(1X), ga. (1X))]

inf >0, 38
G€£k*(52):111711(G,G*)§5’ D1(G,Gy) (38)
GEEL, (0):D1 (GG )>e’ Dy (G,Gy)

for some constant & > 0. Subsequently, we will prove only the local part (38), while the proof of the
global part (39) can be done similarly to that in Appendix [A.2]

Proof of claim (38): It is sufficient to show that

e ExV(eelX), 0. (1))
=0 GeEp, (Q):D1(G,Gy)<e D1 (G, Gy)

> 0.

Assume that this inequality does not hold, then since the number of experts k., is known in this case,
there exists a sequence of mixing measure G, := Y., exp(B5;)d(pn ar b ,omy € Ek, (€2) such
that both D1 (G, G,) and Ex [V (g¢, (-|X), 9c. (-1 X))]/D1(Gr, G) approach zero as n tends to
infinity. Since D;(G,,G.) — 0 as n — oo, each Voronoi cell contains only one element. Thus,
we may assume WLOG that C; = {j} for any j € [k.], which implies that (37}, a?,b},07) —
(81, a;,b5,07) and exp(By;) — exp(55;) as n — co. WLOG, we assume that

K
DG, Gu) = [exo(B5) (18851 + 180z + A7 + [ Ac?]) + | exp(8) — exp(Bi)

i=1

J

where we denote ASY, := B1; — 51, Aal = a} —af, Ab} := b} — b} and Ao} := o] — o}.

K2

Subsequently, by arguing in the same fashion as in Appendix we obtain that X' = A, where

xp = {g; X (B) x> (BY) Vi €{ly,... lic},j € {4K+1,...,£k*}},
XE* = {I S (/BT])TI > (BT_]’)T‘T : vj € {617"'761(}7]./ € {£K+1a"'a€k’*}}a

for any ¢ € [q] for sufficiently large n.

Let ¢ € [¢] such that {¢1,...,lx} = {1,..., K}. Then, for almost surely (X,Y) € X} x Y, we
can rewrite the conditional densities g¢,, (Y|X) and g, (Y]X) as

K n\T n
VIX) = eXp((ﬁu) X+ﬂ0i) (Y Ty b o™,
96, (Y]X) ;Zleexp((%)TX%) FY|(@)TX + b7, 07)
K * *
g 1) = 3 S XA By b7 ).

K exp((8)TX +83,)

Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:
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In this step, we take into account H,, := [Zfil exp((B1) "X + B3| - lgc, (Y[X) — ga. (Y|X))].
Note that the quantity H,, can be represented as follows:

H, ZeXp [exp(( 8 X F(Y|(af) "X + b, 0f) — exp((81:) T X)F(Y|(af) T X + 07, Z)]

- Z exp(f5;) [exp((ﬂﬁ)TX)gcn (Y]X) — exp((65;) " X)ga,, (Y]X)

K
+ 30 [exp(8) — exp(85)] [ xp((B1)TX + B0 (Y [(a)TX +b7.07) = exp((B1) X)ga, (VIX)].

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by A,,, we get that

=50 RO gy (aay s (A
=1 |a|=1
8\a2|+a3+a4f

onlezlTes ggau

where R;(X,Y) is a Taylor remainder that satisfies R;(X,Y)/D1(X,Y) — 0asn — oo. Let
nm =1+ as € N¢, N2 = |as| + a3 € Nand n3 = a4 € N, then we can rewrite A,, as follows:

Ll exp(A5,)
=30 Y Y TR (AR (Aa)) R (Ab)) (Ag)

1=113=0[n1|+n2=1-n3 ®€Ln; ny,n3

x Xo1+02 exp((81) T X) - (Y|(a}) "X +bF,07) + Ri(X,Y),

o2 +ns3 f‘

x XM eXP((»Biki)TX) : ahn2aa_n3
1

where we define
Loy mams = {(i)iz) € N'x N x NxN:ag +az =n, |as| + a3 =1, as =n3}.  (41)

By arguing in a similar fashion for the second term in the representation of H,,, we also get that
. exp(5;)
Byi=—) Y — (AL - X7 exp((6) T X)ga, (YIX) + Ro(X,Y),

where Ry (X,Y) is a Taylor remainder such that Ro(X,Y)/D1(Gr, Gi) — 0 as n — oco. Putting
the above results together, we rewrite the quantity H,, as follows:

2—mn3 T 6772+7]3f T . .
Hn—ZZ . Ul X" B80T X) gy (V@)X 487, 07)

i=1 73=0 |5 |[+72=0

+3° 5 W X7 exp((85) T X)ge, (Y1X) + Ri(X,Y) + Ro(X,Y), 42)
i=10<]y|<1

in which we respectively define for each ¢ € [K] that

n eXp "i n\aq nyas ny\as n\ay
Ui mams = Z o(z! 6) (ABY) M (Aaf )2 (AL ) (Ady')
a€lyy ny .03
n . eXp(BOz)
Wi, = T (ABT;)7,

for any (11,72,73) # (04,0,0) and |y| # 04. Additionally, Uy, o = =W/, := exp(8y;) —
exp(5;)-
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Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios U", . .. /D1(Gy, G.) tend to zero

as n goes to infinity. Assume by contrary that all of them approach zero when n — oo, then for
(m,m2,m3) = (04,0, 0), it follows that

.
D1(Gn, Gs)

Additionally, for tuples (71,72, 7]3) where 11 € {e1,ea,... ,ed} w1th ej :==(0,...,0, .1 ,0,...,0)

Z | ]7]177]27713 0. (43)

Z ’ exp(B4;) — exp(55;) Dy (G, Ga)

and 2 = 13 = 0, we get

U 0,0l
G G Zexp 501 ||Aﬁle1 - Z Z #70&0) -0

i=1n€{er,...,ea}
By using similar arguments, we end up with

1
Dl (Gn7 G*)

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1
Dl (Gru G*)
Combine equation (@3) with equation (@4)), we deduce that D;(G,,, G.)/D1(Gy,, G«) — 0, which is

a contradictiop. ansequently, at least one among the ratios U;", /D1(G, G.) does not vanish
as n tends to infinity.

K
> exp(8) (148l + 180z | + A6+ |Ac7]] .
=1

K
3 exp(A5) [IABE + 1Aaz ] + 167 + 07| = o0. (44)
=1

Step 3 - Fatou’s contradiction:

Let us denote by m,, the maximum of the absolute values of U/, . . /Di(Gn,Gs) and

Wi, /D1(Gr, G.). It follows from the result achieved in Step 2 that 1/m,, /> oc.

Recall from the hypothesis that Ex [V (gq, (| X), 9a. (-|X))]/D1(Gr, G«) — 0 as n — co. Thus,
by the Fatou’s lemma, we have
o Ex[V(ge, (1X), 9a. (1X)] _ 1 / e 96, (YX) = ga. (Y]X))
=] . - =~ [ liminf %= - dxdy.
0= lm D1(Gn, Gy) PR e D1(Gy,G.)
This result indicates that |gg, (Y|X) — ga. (Y]X)|/D1(G,, G.) tends to zero as n goes to infinity
for almost surely (X, Y). As a result, it follows that

. H, 196, (Y[X) — ga. (Y|X)|
1 TX n * = 0.
n00 My D(Gr, G [ZeXp (Bra) " X+ foi )} nooo mpD1(Gn, Gy) 0
Next, let us denote UZL,,1 7,21773/[7%1)1(Gn, G.)] = Tinmams and Wi /[mnDl (Gn, G.)) = Kin

with a note that at least one among them is non-zero. From the formulation of H,, in equation @I)
we deduce that

2—13
onz2tns -
S Y - X" en((5)7X) S V()X +5.7)

i=1 13=0 |0 |+n2=0

K
373 iy X7 exp((85) T X)ga. (Y]X) =0,

i=1 0<|y|<1
for almost surely (X, Y"). This equation is equivalent to

2—|m]|

82+3
3 [z S T X051 X) S (V)X 48, 07)

[n1]=0 =1 n2+n3=0

+ Ki exp((B1) T X)ga. (YIX)} x XM =0,
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for almost surely (X, Y"). It is clear that the left hand side of the above equation is a polynomial of X
belonging to the compact set X'. As a result, we get that

2—|m|

T 8n2+713f T * *
Z Z Tin1,m2,m3 eXp((ﬁlz) X) 12 (Y|( ) X + bzv 7,)
Oh?0oms
i=1 n2+n3=0
+ ki ga. (Y1X) exp((81;) T X) = 0,
forany ¢ € [K], 0 < |n1| < 1 and almost surely (X,Y). Since (a},b%,07),..., (a}k, b, 05 ) have
pair-wise distinct values and the family F is strongly identifiable, the set
8772+773f T v )
{ S (V@)X 01,07 i € [K], 0 s < 2= s

is linearly independent w.r.t (X,Y"). Consequently, we obtain that 7; ,, n,.n, = Kin, = 0 for any
1€ [K],0<|m| <1land0 < n9+n3 <2 —|n1|, which contradicts the fact that at least one among
these terms is different from zero.

Hence, we reach the desired conclusion.

E.3.2 PROOF OF THEOREMI6I

Similar to the proof of Theorem 5]in Appendix our objective here is also to derive the local
part of the following Total Variation lower bound:

Ex[V(ga(1X), 96.(1X))] Z Ds(G, G.),

for any G € O(0©). In particular, we aim to show that

b wr ExVECX). g6 (1)
=0 GEOL(O): D3(G G.)<e Dy (G, Gy)

> 0. (45)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures G, = Zf;lexp(ﬁé‘i)é(ﬁﬁ’a%b?’a?) € O(Q) such that both D3(G,,G) and
Ex[V(9gq, (-|X), 9a.(:|X))]/D3(Gr, G«) vanish when n goes to infinity. Then, it follows that
for any j € [k.], we have Ziecj exp(By;) — exp(Ba‘j) and (B}, al, b, o) — (31*37%719;, ]) for
all i € C;. WLOG, we may assume that

Ds(GnsGu) = 3 D exp(8) [|ABL, 12 + 1 Aaly |2 + |Ab5 [ + A0y 2]
JE[K], 1€C;
[C51>1

30D exp(8) 18851+ Aa |+ k5] + | Adk|] +Z\Zexp Bi) — exp(8,)|.
JE[K], i€Cy Jj=1 i€eC;
[Cj|=1

Subsequently, let X € X} for some ¢ € [¢] such that {¢1,...,¢x} = {1,..., K}, where
X = {x eX:(8) e > (B) e Vi€ by, .. Lk}, € {KKH,...,@*}}.
Then, for any ¢ € [g], we denote ({1, ..., /) as a permutation of (1,...,k) and
Xz = {x X (By) w> (BY) w Vi€ {T, ... Tgh i € {Tgyys .- ,Zk}}.
If {(1,... 0%} #C1U...UCk forany € [q], then V(g¢. (-|X), g9c. (1X))/D3(Gn,G+) # O as
n tends to infinity. This contradlcts the fact that this term must approach zero. Therefore, we only

need to consider the scenario when there exists ¢ € [g] such that {1, .../} =C U...UCk. By
using the same arguments as in Appendix we obtain that X € A7".
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Then, we can represent the conditional densities g¢, (Y| X) and g, (Y| X) for any sufficiently large
n as follows:

eXP((ﬁikj)TX'f‘ﬁékj) T  _x
(VX)) =) [y X +07,
ga. ( | ) j_l ZﬁleXp((ﬁi‘j/)TXJrﬁéj/) f( |( ) J J)
B oxp((B) X + ) F¥|@)TX + b7, 07).

j=14€eC; Z =1 Zz '€Cjr exp((ﬁlz/)TX + /BOZ )

Now, we reuse the three-step framework in Appendix
Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity
K
Hyi= [ D7 exp(B1)TX + 83)| - [96, (V1X) = g6 (VIX)].
j=1
Similar to Step 1 in Appendix [A] we can express this term as

K
Ha =303 exp(85) | exo((81)TX) S (V1(@)TX + b, o7) = exp((81)TX) (Y 1(@))TX +b7,07)]

j=11iec;

=303 (@) [ ep((81) T Xga, (VIX) — exp(87) T X)ga, (V1X))]

j=1 i€C]‘

K
3 [ D7 exol85) - exolBi)] [ exo((81) T X)FY 1) TX + 0, 07) = exp((81)T X)ga, (Y]X)]
j=1 iec;
=A,+B,+FE,.
Next, we proceed to decompose A,, based on the cardinality of the Voronoi cells as follows:
An= 7 D exp(8) | exp((B1)TX)F(YI(@)TX + b 07) = exp(81)TX) F(Y1(a)) X +b7.07)
j:Cj|=114€C;
30D exn(E) [ exp((BE) TX)FY 1@ TX 402, 07) — exp((85) T X)F(Y (@)X +b7,07)]
jiCi|>14i€C;
By applying the Taylor expansions of first and second orders to the first and second terms of A,,,
respectively, and following the derivation in equation {@0), we arrive at

2-ms n
-y Yy Y S P A (Aag) e (ang) e (Acp)
J: |C_ |=14€C; n3=0 |9y |+n2=1—n3 aez’nﬂ/zmg :

8712+7]3f

x XM exp((B1;) ' X) - W(Y\( TX +03,07) + Ra(X,Y)
- = exp(B;)
QPO SD VDD D ar (BB (Aaly) (A (Ach)
J:1C[>11€C; m3=0|n1|4+n2=1-1(y, 50} ®€Ln; my,n3 '

1 * \ T 8772+77 f T *
x XM exp((81;) X)- W(Y\( ;) X +0b},07) + Ra(X,Y),

where the set Z,,, ,,, ,,, is defined in equation @I) while R;(X,Y") is a Taylor remainder such that
Ri(X,Y)/D3(Gp,G.) = 0asn — oo fori € {3,4}. Similarly, we also decompose B,, as

Y Yy e 50z (AB) - X7 exp((87;) ' X)ga, (Y[X) + Rs(X,Y)

j:|Cj|=14€C; |y|=1

DD “péf&)@ﬁm-XWexp((ﬁwX)an(YX)+RG<X,Y>,

3:1C51>14€C; 1<|y|<2
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where R5(X,Y’) and Rg(X,Y") are Taylor remainders such that their ratios over D3(G,,, G..) ap-
proach zero as n — oo. Subsequently, let us define

€xp an n \ai n\o2 n Q3 n\Qg
71177727773' Z Z M ’ (Aﬂuj) (Aa’ij) (Asz) ‘(Aaij) )

|
1€C; €Ly ng g @
n exp(55:) n
T’j,'y = Z ! (Aﬂlz]) 7Sj,'y,0,03
i€Cy fy
for any (n1,m2,713) # (04,0,0) and |y| # 04, while for (n1,12,73) = (04,0) we set
Sﬁod,o = —Tfod = Z exp(By;) — exp(fBy;)-

i€,
As a consequence, it follows that
K 1HLc;i>13 20+ gc;>13) s -y
s, _Z Z Z Shmmams - X exp((ﬂ’fj)TX)' GTRE (Yl(a )TX"‘b;a o)
n3=0 [71]4n2=0 1
K 1tl{c;i>1
+>0 > T X exp((855) T X)g6, (YIX) + Rs(X,Y) + Re(X,Y). (46)

=1 =0

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios S7, . /Ds3(Gy, Gy)
does not converge to zero as n — co. Assume that all these terms go to zero, then by employing
arguments for deriving equations {@3) and {@4), we get that

(e [j{j\jij exp(85:) — exp(5;)

j=1 i€eCy
+ 3 > e85 (1481 |+ l1Aag ] + 1205 + |Aag])| - 0.
jiC;|=14€C;

Next, let e; := (0, ...,0, ,0,...,0) for any j € [d]. Then, we have

1
~~
—th

K K
Ur ool
2 | J,11,0,0
Gn,G ; exp 502 ”AthH Z Z Dj(Gn,G*) — 0.

i=1n1€{2e1,...,2eq}

M

Similarly, we also get that

1 1
_— YIADE |2 — —_— WAGE|? —
(RN Zm%nn PG Zm%nw
Moreover, note that
1 i (ﬁ")HA n H2 Z Z |U77Lm 2A0| 0
: exp(bo; a;s — = — 0.
D n * J D ny *
B(G G ) i=1 =1 m1€{2e1,...,2e4} 3(G ¢ )
Gathering all the above limits, we obtain that 1 = D3(G,,, G«)/D3(G,, G.) — 0 as n — oo, which
is a contradiction. Thus, at least one among the terms S7, . /Ds(Gr, G.) does not converge to

Zero as n — 00
Step 3 - Fatou’s contradiction:

It follows from the hypothesis that Ex [V (g5, (-|X), 9a. (1X))]/D3(Gn,G+) — 0 as n — oo.
Then, by applying the Fatou’s lemma, we get

0— tim ExXVEe,(1X) 96. (X)) :%-/liminf 9, (Y1X) — ga. (Y]X)|

n— oo Dg(Gn, G*) n—00 DS(Gnv G*)

dxady;,
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which implies that [, (Y'|X) —ga, (Y|X)|/D3(Grn,G+) — 0asn — oo for almost surely (X,Y).

3 n
Next, we define m,, as the maximum of the absolute values of Sj)mm2 /D5 (G sGa)* It follows from

Step 2 that 1/m,, / co. Moreover, by arguing in the same way as in Step 3 in Appendix we
receive that

as n — oo. By abuse of notations, let us denote
SZThﬂlz,%/[m”D:g(G"’ G*)] — Tjn1,m2.m3

Here, at least one among 7; ,,, ., », is non-zero. Then, by putting the results in equations (#6) and
together, we get

K MHlgc;i>13 2041 c;1>13) -3

. 3772+773f . . .
>y > Timomams - XM exp((815) T X) gmma—— (Y|(a) X +b%,07)

‘ OhJ? o
j=1 m3=0 [m1]+nm2=0

K 1tl{c;i>1y
+> Y =00 XV exp((81) T X)ge. (YIX) =0,

=1 Jyl=0

for almost surely (X, Y'). Arguing in a similar fashion as in Step 3 of Appendix we obtain that
Tjmomams = 0 forany j € [K], 0 <[m[+n2+mn3 <2(1+1gc;>13) and 0 < [y < 1+ 1,513
This contradicts the fact that at least one among them is non-zero. Hence, the proof is completed.
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