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Supplement to “Statistical Perspective of
Top-K Sparse Softmax Gating Mixture of Experts”

In this supplementary material, we first provide rigorous proofs for all results under the exact-specified
settings in Appendix A, while those for the over-specified settings are then presented in Appendix B.
Next, we study the identifiability of the top-K sparse softmax gating Gaussian mixture of experts
(MoE) in Appendix C. We then carry out several numerical experiments in Appendix D to empirically
justify our theoretical results. Finally, we establish the theories for parameter and density estimation
beyond the settings of top-K sparse softmax Gaussian MoE in Appendix E.

A PROOF FOR RESULTS UNDER THE EXACT-SPECIFIED SETTINGS

In this appendix, we present the proofs for Theorem 1 in Appendix A.1, while that for Theorem 2 is
then given in Appendix A.2. Lastly, the proof of Lemma 1 is provided in Appendix A.3.

A.1 PROOF OF THEOREM 1

In this appendix, we conduct a convergence analysis for density estimation in the top-K sparse
softmax gating Gaussian MoE using proof techniques in (van de Geer, 2000). For that purpose, it is
necessary to introduce some essential notations and key results first.

Let Pk∗(Θ) := {gG(Y |X) : G ∈ Ek∗(Ω)} be the set of all conditional density functions of mixing
measures in Ek∗(Ω). Next, we denote by N(ε,Pk∗(Ω), ∥ · ∥1) the covering number of metric space
(Pk∗(Ω), ∥ · ∥1). Meanwhile, HB(ε,Pk∗(Ω), h) represents for the bracketing entropy of Pk∗(Ω)
under the Hellinger distance. Then, we provide in the following lemma the upper bounds of those
terms.
Lemma 3. If Ω is a bounded set, then the following inequalities hold for any 0 < η < 1/2:

(i) logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η);

(ii) HB(η,Pk∗(Ω), h) ≲ log(1/η).

Proof of Lemma 3 is in Appendix A.1.2. Subsequently, we denote

P̃k∗(Ω) := {g(G+G∗)/2(Y |X) : G ∈ Ek∗(Ω)};

P̃1/2
k∗

(Ω) := {g1/2(G+G∗)/2
(Y |X) : G ∈ Ek∗(Ω)}.

In addition, for each δ > 0, we define a Hellinger ball centered around the conditional density
function gG∗(Y |X) and met with the set P̃1/2

k∗
(Ω) as

P̃1/2
k∗

(Ω, δ) := {g1/2 ∈ P̃1/2
k∗

(Ω) : h(g, gG∗) ≤ δ}.
To capture the size of the above Hellinger ball, van de Geer (2000) suggest using the following
quantity:

JB(δ, P̃1/2
k∗

(Ω, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃1/2

k∗
(Ω, t), ∥ · ∥)dt ∨ δ, (9)

where t∨ δ := max{t, δ}. Given those notations, let us recall a standard result for density estimation
in van de Geer (2000).

Lemma 4 (Theorem 7.4, van de Geer (2000)). Take Ψ(δ) ≥ JB(δ, P̃1/2
k∗

(Ω, δ)) such that Ψ(δ)/δ2 is
a non-increasing function of δ. Then, for some sequence (δn) and universal constant c which satisfy√
nδ2n ≥ cΨ(δ), we obtain that

P
(
EX

[
h(gĜn

(·|X), gG∗(·|X))
]
> δ

)
≤ c exp(−nδ2/c2),

for any δ ≥ δn

Proof of Lemma 4 can be found in van de Geer (2000). Now, we are ready to provide the proof for
convergence rate of density estimation in Theorem 1 in Appendix A.1.1.
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A.1.1 MAIN PROOF

It is worth noting that for any t > 0, we have

HB(t, P̃1/2
k∗

(Ω, t), ∥ · ∥) ≤ HB(t,Pk∗(Ω, t), h).

Then, the integral in equation (9) is upper bounded as follows:

JB(δ, P̃1/2
k∗

(Ω, δ)) ≤
∫ δ

δ2/213
H

1/2
B (t,Pk∗(Ω, t), h)dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ, (10)

where the second inequality follows from part (ii) of Lemma 3.

As a result, by choosing Ψ(δ) = δ ·
√
log(1/δ), we can verify that Ψ(δ)/δ2 is a non-increasing

function of δ. Furthermore, the inequality in equation (10) indicates that Ψ(δ) ≥ JB(δ, P̃1/2
k∗

(Ω, δ)).
Next, let us consider a sequence (δn) defined as δn :=

√
log(n)/n. This sequence can be validated

to satisfy the condition
√
nδ2n ≥ cΨ(δ) for some universal constant c. Therefore, by Lemma 4, we

reach the conclusion of Theorem 1:

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > C
√
log(n)/n

)
≲ n−c,

for some universal constant C depending only on Ω.

A.1.2 PROOF OF LEMMA 3

Part (i). In this part, we will derive the following upper bound for the covering number of metric
space (Pk∗(Ω), ∥ · ∥1) for any 0 < η < 1/2 given the bounded set Ω:

logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η).

To begin with, we define Θ := {(a, b, σ) ∈ Rd × R × R+ : (β0, β1, a, b, σ) ∈ Ω}. Note that Ω
is a bounded set, then Θ also admits this property. Thus, there exists an η-cover of Θ, denoted by
Θη. Additionally, we also define ∆ := {(β0, β1) ∈ R× Rd : (β0, β1, a, b, σ) ∈ Ω}, and ∆η be an
η-cover of ∆. Then, it can be validated that |Θη| ≤ O(η−(d+1)k∗) and |∆η| ≤ O(η−(d+3)k∗).

Subsequently, for each G =
∑k∗

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ek∗(Ω), we take into account
two other mixing measures. The first measure is G′ =

∑k∗
i=1 exp(β0i)δ(β1i,ai,bi,σi)

, where
(ai, bi, σi) ∈ Θη is the closest points to (ai, bi, σi) in this set for all i ∈ [k∗]. The second one
is G :=

∑k∗
i=1 exp(β0i)δ(β1i,ai,bi,σi)

in which (β0i, β1i) ∈ ∆η for any i ∈ [k∗]. Next, let us define

T := {gG ∈ Pk∗(Ω) : (β0i, β1i) ∈ ∆η, (ai, bi, σi) ∈ Θη,∀i ∈ [k∗]},
then it is obvious that gG ∈ T . Now, we will show that T is an η-cover of metric space (Pk∗(Ω), ∥·∥1)
with a note that it is not necessarily the smallest cover. Indeed, according to the triangle inequality,

∥gG − gG∥1 ≤ ∥gG − gG′∥1 + ∥gG′ − gG∥1. (11)

The first term in the right hand side can be upper bounded as follows:

∥gG − gG′∥1 ≤
k∗∑
i=1

∫
X×Y

∣∣∣f(Y |a⊤i X + bi, σi)− f(Y |a⊤i X + bi, σi)
∣∣∣d(X,Y )

≲
k∗∑
i=1

∫
X×Y

(
∥ai − ai∥+ ∥bi − bi∥+ ∥σi − σi∥

)
d(X,Y )

=

k∗∑
i=1

(
∥ai − ai∥+ ∥bi − bi∥+ ∥σi − σi∥

)
≲ η. (12)

Next, we will also demonstrate that ∥gG′ − gG∥1 ≲ η. For that purpose, let us consider q :=
(
k
K

)
K-element subsets of {1, . . . , k}, which are assumed to take the form {ℓ1, ℓ2, . . . , ℓK} for any ℓ ∈ [q].
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Additionally, we also denote {ℓK+1, . . . , ℓk} := {1, . . . , k} \ {ℓ1, . . . , ℓK} for any ℓ ∈ [q]. Then,
we define

Xℓ := {x ∈ X : β⊤
1ix ≥ β⊤

1i′x : i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}},

X̃ℓ := {x ∈ X : β
⊤
1ix ≥ β

⊤
1i′x : i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}}.

By using the same arguments as in the proof of Lemma 1 in Appendix A.3, we achieve that either
Xℓ = X̃ℓ or Xℓ has measure zero for any ℓ ∈ [q]. As the Softmax function is differentiable, it is a
Lipschitz function with some Lipschitz constant L ≥ 0. Since X is a bounded set, we may assume
that ∥X∥ ≤ B for any X ∈ X . Next, we denote

πℓ(X) :=
(
β⊤
1ℓix+ β⊤

0ℓi

)K

i=1
; πℓ(X) :=

(
β
⊤
1ℓix+ β

⊤
0ℓi

)K

i=1
,

for any K-element subset {ℓ1, . . . ℓK} of {1, . . . , k∗}. Then, we get

∥Softmax(πℓ(X))− Softmax(πℓ(X))∥ ≤ L · ∥πℓ(X)− πℓ(X)∥

≤ L ·
K∑
i=1

(
∥β1ℓi − β1ℓi∥ · ∥X∥+ |β0ℓi − β0ℓi |

)
≤ L ·

K∑
i=1

(
ηB + η

)
≲ η.

Back to the proof for ∥gG′ − gG∥1 ≲ η, it follows from the above results that

∥gG′ − gG∥1 =

∫
X×Y

|gG′(Y |X)− gG(Y |X)| d(X,Y )

≤
q∑

ℓ=1

∫
Xℓ×Y

|gG′(Y |X)− gG(Y |X)| d(X,Y )

≤
q∑

ℓ=1

∫
Xℓ×Y

K∑
i=1

∣∣∣Softmax(πℓ(X)i)− Softmax(πℓ(X)i)
∣∣∣ · ∣∣∣f(Y |a⊤ℓiX + bℓi , σℓi)

∣∣∣ d(X,Y )

≲ η, (13)

From the results in equations (11), (12) and (13), we deduce that ∥gG − gG∥1 ≲ η. This implies that
T is an η-cover of the metric space (Pk∗(Ω), ∥ · ∥1). Consequently, we achieve that

N(η,Pk∗(Ω), ∥ · ∥1) ≲ |∆η| × |Θη| ≤ O(1/η(d+3)k),

which induces the conclusion of this part

logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η).

Part (ii). Moving to this part, we will provide an upper bound for the bracketing entropy of Pk∗(Ω)
under the Hellinger distance:

HB(η,Pk∗(Ω), h) ≲ log(1/η).

Recall that Θ and X are bounded sets, we can find positive constants −γ ≤ a⊤X + b ≤ γ and
u1 ≤ σ ≤ u2. Let us define

Q(Y |X) :=

{
1√
2πu1

exp
(
− Y 2

8u2

)
, for |Y | ≥ 2γ

1√
2πu1

, for |Y | < 2γ

Then, it can be validated that f(Y |a⊤X + b, σ) ≤ Q(X,Y ) for any (X,Y ) ∈ X × Y .

Next, let τ ≤ η which will be chosen later and {g1, . . . , gN} be an τ -cover of metric space
(Pk∗(Ω), ∥ · ∥1) with the covering number N := N(τ,Pk∗(Ω), ∥ · ∥1). Additionally, we also
consider brackets of the form [ΨL

i (Y |X),ΨU
i (Y |X)] where

ΨL
i (Y |X) := max{gi(Y |X)− τ, 0}

ΨU
i (Y |X) := max{gi(Y |X) + τ,Q(Y |X)}.
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Then, we can check that Pk∗(Ω) ⊆
⋃N

i=1[Ψ
L
i (Y |X),ΨU

i (Y |X)] and ΨU
i (Y |X) − ΨL

i (Y |X) ≤
min{2η,Q(Y |X)}. Let S := max{2γ,

√
8u2} log(1/τ), we have for any i ∈ [N ] that

∥ΨU
i −ΨL

i ∥1 =

∫
|Y |<2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] dXdY +

∫
|Y |≥2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] dXdY

≤ Sτ + exp
(
− S2

2u2

)
≤ S′τ,

where S′ is some positive constant. This inequality indicates that

HB(S
′τ,Pk∗(Ω), ∥ · ∥1) ≤ logN(τ,Pk∗(Ω), ∥ · ∥1) ≤ log(1/τ).

By setting τ = η/S′, we obtain that HB(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η). Finally, since the norm ∥ · ∥1
is upper bounded by the Hellinger distance, we reach the conclusion of this part:

HB(η,Pk∗(Ω), h) ≲ log(1/η).

Hence, the proof is completed.

A.2 PROOF OF THEOREM 2

Since the Hellinger distance is lower bounded by the Total Variation distance, that is h ≥ V , we will
prove the following Total Variation lower bound:

EX [V (gG(·|X), gG∗(·|X))] ≳ D1(G,G∗),

which is then respectively broken into local part and global part as follows:

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (14)

inf
G∈Ek∗ (Ω):D1(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (15)

for some constant ε′ > 0.

Proof of claim (14): It is sufficient to show that

lim
ε→0

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Assume that this inequality does not hold, then since the number of experts k∗ is known in this case,
there exists a sequence of mixing measure Gn :=

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ek∗(Ω) such

that both D1(Gn, G∗) and EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) approach zero as n tends to

infinity. Now, we define

Cn
j = Cj(Gn) := {i ∈ [k∗] : ∥ωn

i − ω∗
j ∥ ≤ ∥ωn

i − ω∗
s∥, ∀s ̸= j},

for any j ∈ [k∗] as k∗ Voronoi cells with respect to the mixing measure Gn, where we denote
ωn
i := (βn

1i, a
n
i , b

n
i , σ

n
i ) and ω∗

j := (β∗
1j , a

∗
j , b

∗
j , σ

∗
j ). As we use asymptotic arguments in this proof,

we can assume without loss of generality (WLOG) that these Voronoi cells does not depend on n,
that is, Cj = Cn

j . Next, it follows from the hypothesis D1(Gn, G∗) → 0 as n → ∞ that each Voronoi
cell contains only one element. Thus, we continue to assume WLOG that Cj = {j} for any j ∈ [k∗],
which implies that (βn

1j , a
n
j , b

n
j , σ

n
j ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and exp(βn

0j) → exp(β∗
0j) as n → ∞.

Subsequently, to specify the top K selection in the formulations of gGn
(Y |X) and gG∗(Y |X), we

divide the covariate space X into some subsets in two ways. In particular, we first consider q :=
(
k∗
K

)
different K-element subsets of [k∗], which are assumed to take the form {ℓ1, . . . , ℓK}, for ℓ ∈ [q].
Additionally, we denote {ℓK+1, . . . , ℓk∗} := [k∗] \ {ℓ1, . . . , ℓK}. Then, we define for each ℓ ∈ [q]
two following subsets of X :

Xn
ℓ :=

{
x ∈ X : (βn

1j)
⊤x ≥ (βn

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
.
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Since (βn
0j , β

n
1j) → (β∗

0j , β
∗
1j) as n → ∞ for any j ∈ [k∗], we have for any arbitrarily small ηj > 0

that ∥βn
1j − β∗

1j∥ ≤ ηj and |βn
0j − β∗

0j | ≤ ηj for sufficiently large n. By applying Lemma 1, we
obtain that Xn

ℓ = X ∗
ℓ for any ℓ ∈ [q] for sufficiently large n. WLOG, we assume that

D1(Gn, G∗) =

K∑
i=1

[
exp(βn

0i)
(
∥∆βn

1i∥+ ∥∆ani ∥+ ∥∆bni ∥+ ∥∆σn
i ∥

)
+

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣],

where we denote ∆βn
1i := βn

1i − β∗
1i, ∆ani := ani − a∗i , ∆bni := bni − b∗i and ∆σn

i := σn
i − σ∗

i .

Let ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, for almost surely (X,Y ) ∈ X ∗
ℓ × Y , we

can rewrite the conditional densities gGn
(Y |X) and gG∗(Y |X) as

gGn
(Y |X) =

K∑
i=1

exp((βn
1i)

⊤X + βn
0i)∑K

j=1 exp((β
n
1j)

⊤X + βn
0j)

· f(Y |(ani )⊤X + bni , σ
n
i ),

gG∗(Y |X) =

K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑K

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ).

Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:

In this step, we take into account Hn :=
[∑K

i=1 exp((β
∗
1i)

⊤X + β∗
0i)

]
· [gGn

(Y |X)− gG∗(Y |X)].
Then, Hn can be represented as follows:

Hn =

K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

−
K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1i)
⊤X)gGn(Y |X)

]
+

K∑
i=1

[
exp(βn

0i)− exp(β∗
0i)

][
exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )− exp((β∗

1i)
⊤X)gGn(Y |X)

]
.

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by An, we get that

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂|α2|+α3+α4f

∂h
|α2|+α3

1 ∂σα4

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ),

where R1(X,Y ) is a Taylor remainder that satisfies R1(X,Y )/D′
1(X,Y ) → 0 as n → ∞. Recall

that f is the univariate Gaussian density, then we have
∂α4f

∂σα4
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) =

1

2α4
· ∂

2α4f

∂h2α4
1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ),

which leads to

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂
|α2|+α3+2α4f

∂h
|α2|+α3+2α4

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y )

=

K∑
i=1

2∑
|η1|+η2=1

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ), (16)
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where we denote η1 = α1 + α2 ∈ Nd, η2 = |α2|+ α3 + 2α4 ∈ N and an index set

Jη1,η2 := {(αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = η1, α3 + 2α4 = η2 − |α2|}. (17)

By arguing in a similar fashion for the second term in the representation of Hn, we also get that

Bn := −
K∑
i=1

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R2(X,Y ),

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D1(Gn, G∗) → 0 as n → ∞. Putting
the above results together, we rewrite the quantity Hn as follows:

Hn =

K∑
i=1

∑
0≤|η1|+η2≤2

Un
i,η1,η2

·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

Wn
i,γ ·Xγ exp((β∗

1i)
⊤X)gGn

(Y |X) +R1(X,Y ) +R2(X,Y ), (18)

in which we respectively define for each i ∈ [K] that

Un
i,η1,η2

:=
∑

α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Wn
i,γ := −exp(βn

0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2) ̸= (0d, 0) and |γ| ≠ 0d. Otherwise, Un
i,0d,0

= −Wn
i,0d

:= exp(βn
0i)− exp(β∗

0i).

Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios Un
i,η1,η2

/D1(Gn, G∗) tend to zero
as n goes to infinity. Assume by contrary that all of them approach zero when n → ∞, then for
(η1, η2) = (0d, 0), it follows that

1

D1(Gn, G∗)
·

K∑
i=1

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣ = K∑

i=1

|Un
j,η1,η2

|
D1(Gn, G∗)

→ 0. (19)

Additionally, for tuples (η1, η2) where η1 ∈ {e1, e2, . . . , ed} with ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0)

and η2 = 0, we get

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1i∥1 =

K∑
i=1

|Un
j,η1,η2

|
D1(Gn, G∗)

→ 0.

By using similar arguments, we end up having

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥1 + ∥∆ani ∥1 + |∆bni |+ |∆σn
i |
]
→ 0.

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥+ ∥∆ani ∥+ |∆bni |+ |∆σn
i |
]
→ 0. (20)

Combine equation (19) with equation (20), we deduce that D1(Gn, G∗)/D1(Gn, G∗) → 0, which is
a contradiction. Consequently, at least one among the ratios Un

i,η1,η2
/D1(Gn, G∗) does not vanish as

n tends to infinity.

Step 3 - Fatou’s contradiction:

Let us denote by mn the maximum of the absolute values of Un
i,η1,η2

/D1(Gn, G∗) and
Wn

i,γ/D1(Gn, G∗). It follows from the result achieved in Step 2 that 1/mn ̸→ ∞.
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Recall from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0 as n → ∞. Thus,

by the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn(·|X), gG∗(·|X))]

D1(Gn, G∗)
≥ 1

2
·
∫

lim inf
n→∞

|gGn(Y |X)− gG∗(Y |X)|
D1(Gn, G∗)

dXdY.

This result indicates that |gGn(Y |X)− gG∗(Y |X)|/D1(Gn, G∗) tends to zero as n goes to infinity
for almost surely (X,Y ). As a result, it follows that

lim
n→∞

Hn

mnD1(Gn, G∗)
= lim

n→∞

|gGn(Y |X)− gG∗(Y |X)|
mnD1(Gn, G∗)

= 0.

Next, let us denote Un
i,η1,η2

/[mnD1(Gn, G∗)] → τi,η1,η2 and Wn
i,γ/[mnD1(Gn, G∗)] → κi,γ with

a note that at least one among them is non-zero. From the formulation of Hn in equation (18), we
deduce that

K∑
i=1

∑
0≤|η1|+η2≤2

τi,η1,η2 ·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0, (21)

for almost surely (X,Y ). This equation is equivalent to

K∑
i=1

∑
0≤|η1|≤1

 ∑
0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1

gG∗(Y |X)


× Xη1 exp((β∗

1i)
⊤X) = 0,

for almost surely (X,Y ). Note that β∗
11, . . . , β

∗
1K admits pair-wise different values, then

{exp((β∗
1i)

⊤X) : i ∈ [K]} is a linearly independent set, which leads to

∑
0≤|η1|≤1

 ∑
0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1

gG∗(Y |X)

Xη1 = 0,

for any i ∈ [K] for almost surely (X,Y ). It is clear that the left hand side of the above equation is a
polynomial of X belonging to the compact set X . As a result, we get that∑

0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1gG∗(Y |X) = 0,

for any i ∈ [K], 0 ≤ |η1| ≤ 1 and almost surely (X,Y ). Since (a∗1, b
∗
1, σ

∗
1), . . . , (a

∗
K , b∗K , σ∗

K) have
pair-wise distinct values, those of ((a∗1)

⊤X + b∗1, σ
∗
1), . . . , ((a

∗
K)⊤X + b∗K , σ∗

K) are also pair-wise

different. Thus, the set
{

∂η2f
∂h

η2
1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ), gG∗(Y |X) : i ∈ [K]

}
is linearly independent.

Consequently, we obtain that τi,η1,η2
= κi,γ = 0 for any i ∈ [K], 0 ≤ |η1|+η2 ≤ 2 and 0 ≤ |γ| ≤ 1,

which contradicts the fact that at least one among these terms is different from zero.

Hence, we can find some constant ε′ > 0 such that

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Proof of claim (15): Assume by contrary that this claim is not true, then we can seek a sequence
G′

n ∈ Ek∗(Ω) such that D1(G
′
n, G∗) > ε′ and

lim
n→∞

EX [V (gG′
n
(·|X), gG∗(·|X))]

D1(G′
n, G∗)

= 0,

which directly implies that EX [V (gG′
n
(·|X), gG∗(·|X))] → 0 as n → ∞. Recall that Ω is a compact

set, therefore, we can replace the sequence G′
n by one of its subsequences that converges to a mixing

measure G′ ∈ Ek∗(Ω). Since D1(G
′
n, G∗) > ε′, this result induces that D1(G

′, G∗) > ε′.
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Subsequently, by means of the Fatou’s lemma, we achieve that

0 = lim
n→∞

EX [2V (gG′
n
(·|X), gG∗(·|X))] ≥

∫
lim inf
n→∞

∣∣∣gG′
n
(Y |X)− gG∗(Y |X)

∣∣∣ dµ(Y )ν(X).

It follows that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). From Proposition 2, we know that
the top-K sparse softmax gating Gaussian mixture of experts is identifiable, thus, we obtain that
G′ ≡ G∗. As a consequence, D1(G

′, G∗) = 0, contradicting the fact that D1(G
′, G∗) > ε′ > 0.

Hence, the proof is completed.

A.3 PROOF OF LEMMA 1

Let ηi = Miε, where ε is some fixed positive constant and Mi will be chosen later. For an arbitrary
ℓ ∈ [q], since X and Ω are bounded sets, there exists some constant c∗ℓ ≥ 0 such that

min
x,i,i′

[
(β∗

1i)
⊤x− (β∗

1i′)
⊤x

]
= c∗ℓε, (22)

where the minimum is subject to x ∈ X ∗
ℓ , i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗}. We will

point out that c∗ℓ > 0. Assume by contrary that c∗ℓ = 0. For x ∈ X ∗
ℓ , we may assume for any

1 ≤ i < j ≤ k∗ that

(β∗
1ℓi)

⊤x ≥ (β∗
1ℓj )

⊤x.

Since c∗ℓ = 0, it follows from equation (22) that (β∗
1ℓK

)⊤x− (β∗
1ℓK+1

)⊤x = 0, or equivalently

(β∗
1ℓK − β∗

1ℓK+1
)⊤x = 0.

In other words, X ∗
ℓ is a subset of

Z := {x ∈ X : (β∗
1ℓK − β∗

1ℓK+1
)⊤x = 0}.

Since β1ℓK − β1ℓK+1
̸= 0d and the distribution of X is continuous, it follows that the set Z has

measure zero. Since X ∗
ℓ ⊆ Z , we can conclude that X ∗

ℓ also has measure zero, which contradicts the
hypothesis of Lemma 1. Therefore, we must have c∗ℓ > 0.

As X is a bounded set, we assume that ∥x∥ ≤ B for any x ∈ X . Let x ∈ X ∗
ℓ , then we have for any

i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗} that

β⊤
1ix = (β1i − β∗

1i)
⊤x+ (β∗

1i)
⊤x

≥ −MiεB + (β∗
1i′)

⊤x+ c∗ℓε

= −MiεB + c∗ℓε+ (β∗
1i′ − β1i′)

⊤x+ β⊤
1i′x

≥ −2MiεB ++c∗ℓε+ β⊤
1i′x.

By setting Mi ≤
c∗ℓ
2B

, we get that x ∈ Xℓ, which means that X ∗
ℓ ⊆ Xℓ. Similarly, assume that there

exists some constant cℓ ≥ 0 that satisfies

min
x,i,i′

[
(β∗

1i)
⊤x− (β∗

1i′)
⊤x

]
= c∗ℓε.

Here, the above minimum is subject to x ∈ Xℓ, i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗}. If
Mi ≤

cℓ
2B

, then we also receive that Xℓ ⊆ X ∗
ℓ .

Hence, if we set Mi =
1

2B
min{c∗ℓ , cℓ}, we reach the conclusion that X ∗

ℓ = Xℓ.

B PROOF FOR RESULTS UNDER OVER-SPECIFIED SETTINGS

In this appendix, we first provide the proofs of Theorem B.1 and Theorem 4 in Appendix B.1 and
Appendix B.2, respectively. Subsequently, we present the proof for Proposition 1 in Appendix B.3,
while that for Lemma 2 is put in Appendix B.4.
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B.1 PROOF OF THEOREM 3

In this appendix, we follow proof techniques presented in Appendix A.1 to demonstrate the result of
Theorem 3. Recall that under the over-specified settings, the MLE Ĝn belongs to the set of all mixing
measures with at most k > k∗ components, i.e. Ok(Ω). Interestingly, if we can adapt the result of
part (i) of Lemma 3 to the over-specified settings, then other results presented in Appendix A.1 will
also hold true. Therefore, our main goal is to derive following bound for any 0 < η < 1/2 under the
over-specified settings:

logN(η,Pk(Ω), ∥ · ∥1) ≲ log(1/η),

where Pk(Ω) := {gG(Y |X) : G ∈ Ok(Ω)}. For ease of presentation, we will reuse the notations
defined in Appendix A.1 with Ek∗(Ω) being replaced by Ok(Ω). Now, let us recall necessary notations
for this proof.

Firstly, we define Θ = {(a, b, σ) ∈ Rd × R× R+ : (β0, β1, a, b, σ) ∈ Ω}, and Θη is an η-cover of
Θ. Additionally, we also denote ∆ := {(β0, β1) ∈ Rd × R : (β0, β1, a, b, σ) ∈ Ω}, and ∆η be an
η-cover of ∆. Next, for each mixing measure G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Ω), we denote

G′ =
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi)
in which (ai, bi, σi) ∈ Θη is the closest point to (ai, bi, σi) in this

set for any i ∈ [k]. We also consider another mixing measure G :=
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi)
∈

Ok(Ω) where (β0i, β1i) ∈ ∆η is the closest point to (β0i, β1i) in this set for any i ∈ [k].

Subsequently, we define

L := {gG ∈ Pk(Ω) : (β0i, β1i) ∈ ∆η, (ai, bi, σi) ∈ Θη}.
We demonstrate that L is an η-cover of the metric space (Pk(Ω), ∥ · ∥1), that is, for any gG ∈ Pk(Ω),
there exists a density gG ∈ L such that ∥gG − gG∥1 ≤ η. By the triangle inequality, we have

∥gG − gG∥1 ≤ ∥gG − gG′∥1 + ∥gG′ − gG∥1. (23)

From the formulation of G′, we get that

∥gG − gG′∥1 ≤
k∑

i=1

∫
X×Y

∣∣∣f(Y |a⊤i X + bi, σi)− f(Y |a⊤i X + bi, σi)
∣∣∣d(X,Y )

≲
k∑

i=1

∫
X×Y

(
∥ai − ai∥+ |bi − bi|+ |σi − σi|

)
d(X,Y )

≲ η (24)

Based on inequalities in equations (23) and (24), it is sufficient to show that ∥gG′ − gG∥1 ≲ η. For
any ℓ ∈ [q], let us define

X ℓ := {x ∈ X : (β1i)
⊤x ≥ (β1i′)

⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}},
X ′

ℓ
:= {x ∈ X : (β1i)

⊤x ≥ (β1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}}.

Since the Softmax function is differentiable, it is a Lipschitz function with some Lipschitz constant
L ≥ 0. Assume that ∥X∥ ≤ B for any X ∈ X and denote

πℓ(X) :=
(
β⊤
1ℓi

x+ β⊤
0ℓi

)K

i=1
; πℓ(X) :=

(
β
⊤
1ℓix+ β

⊤
0ℓi

)K

i=1
,

for any K-element subset {ℓ1, . . . ℓK} of {1, . . . , k}. Then, we have

∥Softmax(πℓ(X))− Softmax(πℓ(X))∥ ≤ L · ∥πℓ(X)− πℓ(X)∥

≤ L ·
K∑
i=1

(
∥β1ℓi

− β1ℓi
∥ · ∥X∥+ |β0ℓi

− β0ℓi
|
)

≤ L ·
K∑
i=1

(
ηB + η

)
≲ η.

21



Published as a conference paper at ICLR 2024

By arguing similarly to the proof of Lemma 2 in Appendix B.4, we receive that either X ℓ = X ′
ℓ

or
X ℓ has measure zero for any ℓ ∈ [q]. As a result, we deduce that

∥gG′ − gG∗
∥1 ≤

q∑
ℓ=1

∫
X ℓ×Y

|gG′(Y |X)− gG(Y |X)|d(X,Y )

≤
q∑

ℓ=1

∫
X ℓ×Y

K∑
i=1

∣∣∣Softmax(πℓ(X)i)− Softmax(πℓ(X)i)
∣∣∣ · ∣∣∣f(Y |a⊤

ℓi
X + bℓi , σℓi

)
∣∣∣d(X,Y )

≲ η.

Thus, L is an η-cover of the metric space (Pk(Ω), ∥ · ∥1), which implies that

N(η,Pk(Ω), ∥ · ∥1) ≲ |∆η| × |Θη| ≤ O(η−(d+1)k)×O(η−(d+3)k) = O(η−(2d+4)k). (25)

Hence, logN(η,Pk(Ω), ∥ · ∥1) ≲ log(1/η).

B.2 PROOF OF THEOREM 4

Similar to the proof of Theorem 2 in Appendix A, our objective here is also to derive the Total
Variation lower bound adapted to the over-fitted settings:

EX [V (gG(·|X), gG∗(·|X))] ≳ D2(G,G∗).

Since the global part of the above inequality can be argued in the same fashion as in Appendix A, we
will focus only on demonstrating the following local part via the proof by contradiction method:

lim
ε→0

inf
G∈Ok(Θ):D2(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0. (26)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures Gn :=

∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) such that both D2(Gn, G∗) and

EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) vanish when n goes to infinity. Additionally, by abuse of

notation, we reuse the set of Voronoi cells Cj , for j ∈ [k∗], defined in Appendix A. Due to the limit
D2(Gn, G∗) → 0 as n → ∞, it follows that for any j ∈ [k∗], we have

∑
i∈Cj

exp(βn
0i) → exp(β∗

0j)

and (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for all i ∈ Cj . WLOG, we may assume that

D2(Gn, G∗) =
∑

j∈[K],
|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥r̄(|Cj |) + ∥∆anij∥
r̄(|Cj |)

2 + |∆bnij |r̄(|Cj |) + |∆σn
ij |

r̄(|Cj |)
2

]

+
∑

j∈[K],
|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
]
+

K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣.

Regarding the top-K selection in the conditional density gG∗ , we partition the covariate space X in
a similar fashion to Appendix A. More specifically, we consider q =

(
k∗
K

)
subsets {ℓ1, . . . , ℓK} of

{1, . . . , k∗} for any ℓ ∈ [q], and denote {ℓK+1, . . . , ℓk∗} := [k∗] \ {ℓ1, . . . , ℓK}. Then, we define

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x, ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

for any ℓ ∈ [q]. On the other hand, we need to introduce a new partition method of the covariate
space for the weight selection in the conditional density gGn

. In particular, let K ∈ N such that
max{ℓj}K

j=1⊂[k∗]

∑K
j=1 |Cℓj | ≤ K ≤ k and q :=

(
k
K

)
. Then, for any ℓ ∈ [q], we denote (ℓ1, . . . , ℓk)

as a subset of [k] and {ℓK+1, . . . , ℓk} := [k] \ {ℓ1, . . . , ℓK}. Additionally, we define

Xn
ℓ
:=

{
x ∈ X : (βn

1i)
⊤x ≥ (βn

1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}

}
.
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Let X ∈ X ∗
ℓ for some ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. If {ℓ1, . . . ℓK} ≠ C1 ∪ . . .∪CK

for any ℓ ∈ [q], then EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) ̸→ 0 as n tends to infinity. This

contradicts the fact that this term must approach zero. Therefore, we only need to consider the
scenario when there exists ℓ ∈ [q] such that {ℓ1, . . . ℓK} = C1 ∪ . . . ∪ CK . Recall that we have
(βn

0i, β
n
1i) → (β∗

0j , β
∗
1j) as n → ∞ for any j ∈ [k∗] and i ∈ Cj . Thus, for any arbitrarily small

ηj > 0, we have that ∥βn
1i − β∗

1j∥ ≤ ηj and |βn
0i − β∗

0j | ≤ ηj for sufficiently large n. Then, it follows
from Lemma 2 that X ∗

ℓ = Xn
ℓ

for sufficiently large n. This result indicates that X ∈ Xn
ℓ

.

Then, we can represent the conditional densities gG∗(Y |X) and gGn
(Y |X) for any sufficiently large

n as follows:

gG∗(Y |X) =

K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)∑K

j′=1 exp((β
∗
1j′)

⊤X + β∗
0j′)

· f(Y |(a∗j )⊤X + b∗j , σ
∗
j ),

gGn
(Y |X) =

K∑
j=1

∑
i∈Cj

exp((βn
1i)

⊤X + βn
0i)∑K

j′=1

∑
i′∈Cj′

exp((βn
1i′)

⊤X + βn
0i′)

· f(Y |(ani )⊤X + bni , σ
n
i ).

Now, we reuse the three-step framework in Appendix A.

Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity

Hn :=
[ K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)

]
· [gGn

(Y |X)− gG∗(Y |X)].

Similar to Step 1 in Appendix A, we can express this term as

Hn =

K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

−
K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1j)
⊤X)gGn(Y |X)

]

+

K∑
j=1

[ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
][

exp((β∗
1j)

⊤X)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1j)
⊤X)gGn

(Y |X)
]

:= An +Bn + En.

Next, we proceed to decompose An based on the cardinality of the Voronoi cells as follows:

An =
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

+
∑

j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]
.

By applying the Taylor expansions of order 1 and r̄(|Cj |) to the first and second terms of An,
respectively, and following the derivation in equation (16), we arrive at

An =
∑

j:|Cj |=1

∑
i∈Cj

∑
1≤|η1|+η2≤2

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R3(X,Y )

+
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|η1|+η2≤2r̄(|Cj |)

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R4(X,Y ),

23



Published as a conference paper at ICLR 2024

where the set Jη1,η2
is defined in equation (17) while Ri(X,Y ) is a Taylor remainder such that

Ri(X,Y )/D2(Gn, G∗) → 0 as n → ∞ for i ∈ {3, 4}. Similarly, we also decompose Bn according
to the Voronoi cells as An but then invoke the Taylor expansions of order 1 and 2 to the first term and
the second term, respectively. In particular, we get

Bn = −
∑

j:|Cj |=1

∑
i∈Cj

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R5(X,Y )

−
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|γ|≤2

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R6(X,Y ),

where R5(X,Y ) and R6(X,Y ) are Taylor remainders such that their ratios over D2(Gn, G∗) ap-
proach zero as n → ∞. Subsequently, let us define

Sn
j,η1,η2

:=
∑
i∈Cj

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Tn
j,γ :=

∑
i∈Cj

exp(βn
0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2) ̸= (0d, 0) and |γ| ≠ 0d, while for (η1, η2) = (0d, 0) we set

Sn
i,0d,0

= −Tn
i,0d

:=
∑
i∈Cj

exp(βn
0i)− exp(β∗

0i).

As a consequence, it follows that

Hn =

K∑
j=1

2r̄(|Cj |)∑
|η1|+η2=0

Sn
j,η1,η2

·Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

Tn
j,γ ·Xγ exp((βn

1i)
⊤X)gGn(Y |X) +R5(X,Y ) +R6(X,Y ). (27)

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios Sn
j,η1,η2

/D2(Gn, G∗)
does not converge to zero as n → ∞. Assume that all these terms go to zero, then by employing
arguments for deriving equations (19) and (20), we get that

1

D2(Gn, G∗)
·
[ K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣

+
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
)]

→ 0.

Combine this limit with the representation of D2(Gn, G∗), we have that
1

D2(Gn, G∗)
·

∑
j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥r̄(|Cj |) + ∥∆anij∥
r̄(|Cj |)

2 + |∆bnij |r̄(|Cj |) + |∆σn
ij |

r̄(|Cj |)
2

)
̸→ 0.

This result implies that we can find some index j′ ∈ [K] : |Cj′ | > 1 that satisfies
1

D2(Gn, G∗)
·
∑
i∈Cj′

exp(βn
0i)

(
∥∆βn

1ij′∥r̄(|Cj′ |) + ∥∆anij′∥
r̄(|C

j′ |)
2 + |∆bnij′ |r̄(|Cj′ |) + |∆σn

ij′ |
r̄(|C

j′ |)
2

)
̸→ 0.

For simplicity, we may assume that j′ = 1. Since Sn
1,η1,η2

/D2(Gn, G∗) vanishes as n → ∞ for any
(η1, η2) ∈ Nd × N such that 1 ≤ |η1|+ η2 ≤ r̄(|Cj |), we divide this term by the left hand side of the
above equation and achieve that∑

i∈C1

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
(∆βn

1i1)
α1(∆ani1)

α2(∆bni1)
α3(∆σn

i1)
α4∑

i∈C1
exp(βn

0i)
(
∥∆bni1∥r̄(|C1|) + ∥∆ani1∥

r̄(|C1|)
2 + |∆bni1|r̄(|C1|) + |∆σn

i1|
r̄(|C1|)

2

) → 0, (28)
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for any (η1, η2) ∈ Nd × N such that 1 ≤ |η1|+ η2 ≤ r̄(|C1|).

Subsequently, we define Mn := max{∥∆βn
1i1∥, ∥∆ani1∥1/2, |∆bni1|, |∆σn

i1|1/2 : i ∈ C1} and pn :=
max{exp(βn

0i) : i ∈ C1}. As a result, the sequence exp(βn
0i)/pn is bounded, which indicates that

we can substitute it with its subsequence that admits a positive limit z25i := limn→∞ exp(βn
0i)/pn.

Therefore, at least one among the limits z25i equals to one. Furthermore, we also denote

(∆βn
1i1)/Mn → z1i, (∆ani1)/Mn → z2i, (∆bni1)/Mn → z3i, (∆σn

i1)/(2Mn) → z4i.

From the above definition, it follows that at least one among the limits z1i, z2i, z3i and z4i equals to
either 1 or −1. By dividing both the numerator and the denominator of the term in equation (28) by
pnM

|η1|+η2
n , we arrive at the following system of polynomial equations:∑

i∈C1

∑
α∈Jη1,η2

z25i z
α1
1i zα2

2i zα3
3i zα4

4i

α1! α2! α3! α4!
= 0,

for all (η1, η2) ∈ Nd × N : 1 ≤ |η1| + η2 ≤ r̄(|C1|). Nevertheless, from the definition of r̄(|C1|),
we know that the above system does not admit any non-trivial solutions, which is a contradiction.
Consequently, not all the ratios Sn

j,η1,η2
/D2(Gn, G∗) tend to zero as n goes to infinity.

Step 3 - Fatou’s contradiction:

It follows from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) → 0 as n → ∞.

Then, by applying the Fatou’s lemma, we get

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D2(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D2(Gn, G∗)

dXdY,

which implies that |gGn
(Y |X)−gG∗(Y |X)|/D2(Gn, G∗) → 0 as n → ∞ for almost surely (X,Y ).

Next, we define mn as the maximum of the absolute values of Sn
j,η1,η2/D2(Gn,G∗)

. It follows from
Step 2 that 1/mn ̸→ ∞. Moreover, by arguing in the same way as in Step 3 in Appendix A, we
receive that

Hn/[mnD2(Gn, G∗)] → 0 (29)

as n → ∞. By abuse of notations, let us denote

Sn
j,η1,η2

/[mnD2(Gn, G∗)] → τj,η1,η2
,

Tn
j,γ/[mnD2(Gn, G∗)] → κj,γ .

Here, at least one among τj,η1,η2
, κj,γ is non-zero. Then, by putting the results in equations (27) and

(29) together, we get

K∑
i=1

2r̄(|Cj |)∑
|η1|+η2=0

τi,η1,η2 ·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

1+1{|Cj |>1}∑
|γ|=0

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0.

Arguing in a similar fashion as in Step 3 of Appendix A, we obtain that τj,η1,η2
= κj,γ = 0 for any

j ∈ [K], 0 ≤ |η1| + η2 ≤ 2r̄(|Cj |) and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}. This contradicts the fact that at
least one among them is non-zero. Hence, the proof is completed.

B.3 PROOF OF PROPOSITION 1

Since the Hellinger distance is lower bounded by the Total Variation distance, i.e. h ≥ V , it is
sufficient to show that

inf
G∈Ok(Ω)

EX [V (gG(·|X), gG∗(·|X))] > 0.
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For that purpose, we first demonstrate that

lim
ε→0

inf
G∈Ok(Ω):D2(G,G∗)≤ε

EX [V (g(·|X), gG∗(·|X))] > 0. (30)

Assume by contrary that the above claim is not true, then we can find a sequence Gn =∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) that satisfies D2(Gn, G∗) → 0 and

EX [V (gGn
(·|X), gG∗(·|X))] → 0

when n tends to infinity. By applying the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

≥ 1

2

∫
X×Y

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|d(X,Y ). (31)

The above results indicates that gGn
(Y |X)− gG∗(Y |X) → 0 as n → ∞ for almost surely (X,Y ).

WLOG, we may assume that

max
{ℓ1,...,ℓK}

K∑
j=1

|Cℓj | = |C1|+ |C2|+ . . .+ |CK |.

Let us consider X ∈ X ∗
ℓ , where ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Since D2(Gn, G∗)

converges to zero, it follows that (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and

∑
i∈Cj

exp(βn
0i) →

exp(β∗
0j) for any i ∈ Cj and j ∈ [k∗]. Thus, we must have that X ∈ X ℓ for some ℓ ∈ [q] such that

{ℓ1, . . . , ℓK} = C1 ∪ . . . ∪ CK . Otherwise, gGn
(Y |X)− gG∗(Y |X) ̸→ 0, which is a contradiction.

However, as K <
∑K

j=1 |Cj |, the fact that {ℓ1, . . . , ℓK} = C1 ∪ . . . ∪ CK cannot occur. Therefore,
we reach the claim in equation (30). Consequently, there exists some positive constant ε′ such that

inf
G∈Ok(Ω):D2(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))] > 0.

Given the above result, it suffices to point out that

inf
G∈Ok(Ω):D2(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))] > 0. (32)

We continue to use the proof by contradiction method here. In particular, assume that the inequal-
ity (32) does not hold, then there exists a sequence of mixing measures G′

n ∈ Ok(Ω) such that
D2(G

′
n, G∗) > ε′ and

EX [V (gG′
n
(·|X), gG∗(·|X))] → 0.

By invoking the Fatou’s lemma as in equation (31), we get that gG′
n
(Y |X) − gG∗(Y |X) → 0

as n → ∞ for almost surely (X,Y ). Since Ω is a compact set, we can substitute (Gn) with its
subsequence which converges to some mixing measure G′ ∈ Ok(Ω). Then, the previous limit
implies that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). From the result of Proposition 2 in
Appendix C, we know that the top-K sparse softmax gating Gaussian MoE is identifiable. Therefore,
we obtain that G′ ≡ G∗, or equivalently, D2(G

′, G∗) = 0

On the other hand, due to the hypothesis D2(G
′
n, G∗) > ε′ for any n ∈ N, we also get that

D2(G
′, G∗) > ε′ > 0, which contradicts the previous result. Hence we reach the claim in equa-

tion (32) and totally completes the proof.

B.4 PROOF OF LEMMA 2

Let ηj = Mjε, where ε is some fixed positive constant and Mi will be chosen later. As X and Ω are
bounded sets, we can find some constant c∗ℓ ≥ 0 such that

min
x,j,j′

[
(β∗

1j)
⊤x− (β∗

1j′)
⊤x

]
= c∗ℓε,

where the above minimum is subject to x ∈ X ∗
ℓ , j ∈ {ℓ1, . . . , ℓK} and j′ ∈ {ℓK+1, . . . , ℓk∗}. By

arguing similarly to the proof of Lemma 1 in Appendix A.3, we deduce that c∗ℓ > 0.
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Since X is a bounded set, we may assume that ∥x∥ ≤ B for any x ∈ X . Let x ∈ X ∗
ℓ and ℓ ∈ [q]

such that {ℓ1, . . . , ℓK} = Cℓ1 ∪ . . . ∪ CℓK . Then, for any i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk},
we have that

β⊤
1ix = (β1i − β∗

1j)
⊤x+ (β∗

1j)
⊤x

≥ −MiεB + (β∗
1j′)

⊤x+ c∗ℓε

= −MiεB + c∗ℓε+ (β∗
1j′ − β1i′)

⊤x+ β⊤
1i′x

≥ −2MiεB + c∗ℓε+ β⊤
1i′x,

where j ∈ {ℓ1, . . . , ℓK} and j′ ∈ {ℓK+1, . . . , ℓk∗} such that i ∈ Cj and i′ ∈ Cj′ . If Mj ≤
c∗ℓ
2B

, then

we get that x ∈ Xℓ, which leads to X ∗
ℓ ⊆ X ℓ.

Analogously, assume that there exists some constant cℓ ≥ 0 such that

min
x,j,j′

[
(β∗

1j)
⊤x− (β∗

1j′)
⊤x

]
= c∗ℓε,

where the minimum is subject to x ∈ X ℓ, i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk}. Then, if

Mj ≤
cℓ
2B

, then we receive that X ℓ ⊆ X ∗
ℓ .

As a consequence, by setting Mj =
1

2B
min{c∗ℓ , cℓ}, we achieve the conclusion that X ℓ = X ∗

ℓ .

C IDENTIFIABILITY OF THE TOP-K SPARSE SOFTMAX GATING GAUSSIAN
MIXTURE OF EXPERTS

In this appendix, we study the identifiability of the top-K sparse softmax gating Gaussian MoE, which
plays an essential role in ensuring the convergence of the MLE Ĝn to the true mixing measure G∗
under Voronoi loss functions.

Proposition 2 (Identifiability). Let G and G′ be two arbitrary mixing measures in Ok(Θ). Suppose
that the equation gG(Y |X) = gG′(Y |X) holds for almost surely (X,Y ) ∈ X × Y , then it follows
that G ≡ G′.

Proof of Proposition 2. First, we assume that two mixing measures G and G′ take the follow-
ing forms: G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) and G′ =

∑k′

i=1 exp(β
′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)

. Recall that
gG(Y |X) = gG′(Y |X) for almost surely (X,Y ), then we have

k∑
i=1

Softmax(TopK((β1i)
⊤X,K;β0i)) · f(Y |a⊤i X + bi, σi)

=

k′∑
i=1

Softmax(TopK((β′
1i)

⊤X,K;β′
0i)) · f(Y |(a′i)⊤ + b′i, σ

′
i). (33)

Due to the identifiability of the location-scale Gaussian mixtures Teicher (1960; 1961; 1963), we get
that k = k′ and{
Softmax(TopK((β1i)

⊤X,K;β0i)) : i ∈ [k]
}
≡

{
Softmax(TopK((β′

1i)
⊤X,K;β′

0i)) : i ∈ [k]
}
,

for almost surely X . WLOG, we may assume that

Softmax(TopK((β1i)
⊤X,K;β0i)) = Softmax(TopK((β′

1i)
⊤X,K;β′

0i)), (34)

for almost surely X for any i ∈ [k]. Since the Softmax function is invariant to translations, it follows
from equation (34) that β1i = β′

1i + v1 and β0i = β′
0i + v0 for some v1 ∈ Rd and v0 ∈ R. Notably,

from the assumption of the model, we have β1k = β′
1k = 0d and β0k = β′

0k = 0, which implies that
v1 = 0d and v0 = 0. As a result, we obtain that β1i = β′

1i and β0i = β′
0i for any i ∈ [k].

27



Published as a conference paper at ICLR 2024

Let us consider X ∈ Xℓ where ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, equation (33)
can be rewritten as

K∑
i=1

exp(β0i) exp(β
⊤
1iX)f(Y |a⊤i X + bi, σi) =

K∑
i=1

exp(β0i) exp(β
⊤
1iX)f(Y |(a′i)⊤X + b′i, σ

′
i),

(35)

for almost surely (X,Y ). Next, we denote J1, J2, . . . , Jm as a partition of the index set [k], where
m ≤ k, such that exp(β0i) = exp(β0i′) for any i, i′ ∈ Jj and j ∈ [m]. On the other hand, when
i and i′ do not belong to the same set Jj , we let exp(β0i) ̸= exp(β0i′). Thus, we can reformulate
equation (35) as

m∑
j=1

∑
i∈Jj

exp(β0i) exp(β
⊤
1iX)f(Y |a⊤i X + bi, σi)

=

m∑
j=1

∑
i∈Jj

exp(β0i) exp(β
⊤
1iX)f(Y |(a′i)⊤X + b′i, σ

′
i),

for almost surely (X,Y ). This results leads to {((ai)⊤X + bi, σi) : i ∈ Jj} ≡ {((a′i)⊤X + b′i, σ
′
i) :

i ∈ Jj}, for almost surely X for any j ∈ [m]. Therefore, we have

{(ai, bi, σi) : i ∈ Jj} ≡ {(a′i, b′i, σ′
i) : i ∈ Jj},

for any j ∈ [m]. As a consequence,

G =

m∑
j=1

∑
i∈Jj

exp(β0i)δ(β1i,ai,bi,σi) =

m∑
j=1

∑
i∈Jj

exp(β′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)
= G′.

Hence, we reach the conclusion of this proposition.

D NUMERICAL EXPERIMENTS

In this appendix, we conduct a few numerical experiments to illustrate the theoretical convergence
rates of the MLE Ĝn to the true mixing measure G∗ under both the exact-specified and the over-
specified settings.

D.1 EXPERIMENTAL SETUP

Synthetic Data. First, we assume that the true mixing measure G∗ =
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

is of order k∗ = 2 and associated with the following ground-truth parameters:

β∗
01 = −8, β∗

11 = 25, a∗1 = −20, b∗1 = 15, σ∗
1 = 0.3,

β∗
02 = 0, β∗

12 = 0, a∗2 = 20, b∗2 = −5, σ∗
2 = 0.4.

Then, we generate i.i.d samples {(Xi, Yi)}ni=1 by first sampling Xi’s from the uniform distribution
Uniform[0, 1] and then sampling Yi’s from the true conditional density gG∗(Y |X) of top-K sparse
softmax gating Gaussian mixture of experts (MoE) given in equation (1). In Figure 2, we visualize
the relationship between X and Y when the numbers of experts chosen from gG∗(Y |X) are K = 1
(Figure 2a) and K = 2 (Figure 2b), respectively. However, throughout the following experiments,
we will consider only the scenario when K = 1, that is, we choose the best expert from the true
conditional density gG∗(Y |X).

Maximum Likelihood Estimation (MLE). A popular approach to determining the MLE Ĝn for
each set of samples is to use the EM algorithm Dempster et al. (1977). However, since there are not
any closed-form expressions for updating the gating parameters β0i, β1i in the maximization steps,
we have to leverage an EM-based numerical scheme, which was previously used in Chamroukhi et al.
(2009). In particular, we utilize a simple coordinate gradient descent algorithm in the maximization
steps. Additionally, we select the convergence criterion of ϵ = 10−6 and run a maximum of 2000
EM iterations.
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Figure 2: A visual representation showcasing the relationship between X and Y , along with their
respective marginal distributions when K = 1 and K = 2.

Initialization. For each k ∈ {k∗, k∗ + 1}, we randomly distribute elements of the set {1, 2, ..., k}
into k∗ different Voronoi cells C1, C2, . . . , Ck∗ , each contains at least one element. Moreover, we
repeat this process for each replication. Subsequently, for each j ∈ [k∗], we initialize parameters
β1i by sampling from a Gaussian distribution centered around its true counterpart β∗

1j with a small
variance, where i ∈ Cj . Other parameters β0i, ai, bi, σi are also initialized in a similar fashion.

D.2 EXACT-SPECIFIED SETTINGS

Under the exact-specified settings, we conduct 40 sample generations for each configuration, across
a spectrum of 200 different sample sizes n ranging from 102 to 105. It can be seen from Figure 3a
that the MLE Ĝn empirically converges to the true mixing measure G∗ under the Voronoi metric D1

at the rate of order Õ(n−1/2), which perfectly matches the theoretical parametric convergence rate
established in Theorem 2.

D.3 OVER-SPECIFIED SETTINGS

Under the over-specified settings, we continue to generate 40 samples of size n for each setting,
given 100 different choices of sample size n ∈ [102, 105]. As discussed in Section 3, to guarantee
the convergence of density estimation to the true density, we need to select K = 2 experts from
the density estimation. As far as we know, existing works, namely Kwon et al. (2019); Kwon &
Caramanis (2020); Kwon et al. (2021), only focus on the global convergence of the EM algorithm for
parameter estimation under the input-free gating MoE, while that under the top-K sparse softmax
gating MoE has remained poorly understood. Additionally, it is worth noting that the sample size
must be sufficiently large so that the empirical convergence rate of the MLE returned by the EM
algorithm aligns with the theoretical rate of order Õ(n−1/2) derived in Theorem 4.

E ADDITIONAL RESULTS

In this appendix, we study the convergence rates of parameter estimation under the model (1) when f
is a probability density function of an arbitrary location-scale distribution. For that purpose, we first
characterize the family of probability density functions of location-scale distributions

F := {f(Y |h1(X, a, b), σ) : (a, b, σ) ∈ Θ}, (36)
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Figure 3: Log-log scaled plots illustrating simulation results under the exact-specified and the over-
specified settings. We analyze the MLE Ĝn across 40 independent samples, spanning sample sizes
from 102 to 105. The blue curves depict the mean discrepancy between the MLE Ĝn and the true
mixing measure G∗, accompanied by error bars signifying two empirical standard deviations under
the exact-specified settings. Additionally, an orange dash-dotted line represents the least-squares
fitted linear regression line for these data points.

where h1(X, a, b) := a⊤X + b stands for the location, σ denotes the scale and Θ is a compact subset
of Rd×R×R+, based on the following notion of strong identifiability, which was previously studied
in Manole & Ho (2022) and Ho & Nguyen (2016):

Definition 1 (Strong Identifiability). We say that the family F is strongly identifiable if the probability
density function f(Y |h1(X, a, b), σ) is twice differentiable w.r.t its parameters and the following
assumption holds true:

For any k ≥ 1 and k pairwise different tuples (a1, b1, σ1), . . . , (ak, bk, σk) ∈ Θ, if there exist real
coefficients α(i)

ℓ1,ℓ2
, for i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ 2, such that

k∑
i=1

2∑
ℓ1+ℓ2=0

α
(i)
ℓ1,ℓ2

· ∂ℓ1+ℓ2f

∂hℓ1
1 ∂σℓ2

(Y |h1(X, ai, bi), σ(X,σi)) = 0,

for almost surely (X,Y ), then we obtain that α(i)
ℓ1,ℓ2

= 0 for any i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ 2.

Example 1. The families of Student’s t-distributions and Laplace distributions are strongly identifi-
able, while the family of location-scale Gaussian distributions is not.

In high level, we need to establish the Total Variation lower bound EX [V (gG(·|X), gG∗(·|X))] ≳
D(G,G∗) for any G ∈ Ok(Ω). Then, this bound together with the density estimation rate in
Theorem 1 (resp. Theorem 3) leads to the parameter estimation rates in Theorem 2 (resp. Theorem 4).
Here, the key step is to decompose the difference gĜn

(Y |X) − gG∗(Y |X) into a combination of
linearly independent terms using Taylor expansions. Therefore, we have to involve the above notion
of strong identifiability, and separate our convergence analysis based on that notion.

Subsequently, since the convergence rates of maximum likelihood estimation when F is a family of
location-scale Gaussian distributions, which is not strongly identifiable, have already been studied in
Section 2 and Section 3, we will focus on the scenario when the family F is strongly identifiable
in the sequel. Under that assumption, the density f(Y |h1, σ) is twice differentiable in (h1, σ),
therefore, it is also Lipschitz continuous. As a consequence, the density estimation rates under both
the exact-specified and over-specified in Theorem 1 and Theorem 3 still hold true. Therefore, we aim
to establish the parameter estimation rates under those settings in Appendix E.1 and Appendix E.2,
respectively.
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E.1 EXACT-SPECIFIED SETTINGS

In this appendix, by using the Voronoi loss function D1(G,G∗) defined in equation (5), we demon-
strate in the following theorem that the rates for estimating true parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i

are of parametric order Õ(n−1/2), which totally match those in Theorem 2.

Theorem 5. Under the exact-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound EX [h(gG(·|X), gG∗(·|X))] ≳ D1(G,G∗) holds for any mixing measure
G ∈ Ek∗(Ω). Consequently, we can find a universal constant C3 > 0 depending only on G∗, Ω and
K such that

P
(
D1(Ĝn, G∗) > C3

√
log(n)/n

)
≲ n−c3 ,

where c3 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 5 is in Appendix E.3.1.

E.2 OVER-SPECIFIED SETTINGS

In this appendix, we capture the convergence rates of parameter estimation under the over-specified
settings when the family F is strongly identifiable.

Voronoi metric. It is worth noting that when F is strongly identifiable, the interaction among expert
parameters in the second PDE (6) no longer holds true. As a result, it is not necessary to involve the
solvability of the system (7) in the formulation of the Voronoi loss as in equation (8). Instead, let us
consider the Voronoi loss function D3(G,G∗) defined as

D3(G,G∗) := max
{ℓj}K

j=1⊂[k∗]

{ ∑
j∈[K],
|Cℓj

|=1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥+ ∥∆aiℓj∥+ |∆biℓj |+ |∆σiℓj |

]

+
∑

j∈[K],
|Cℓj

|>1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥2 + ∥∆aiℓj∥2 + |∆biℓj |2 + |∆σiℓj |2

]

+

K∑
j=1

∣∣∣ ∑
i∈Cℓj

exp(β0i)− exp(β∗
0ℓj )

∣∣∣}, (37)

for any mixing measure G ∈ Ok(Ω). Equipped with loss function, we are ready to illustrate the
convergence behavior of maximum likelihood estimation in the following theorem:

Theorem 6. Under the over-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound EX [h(gG(·|X), gG∗(·|X))] ≳ D2(G,G∗) holds for any mixing measure
G ∈ Ok(Ω). As a consequence, we can find a universal constant C4 > 0 depending only on G∗, Ω
and K such that

P
(
D3(Ĝn, G∗) > C4

√
log(n)/n

)
≲ n−c4 ,

where c4 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 6 is in Appendix E.3.2. Theorem 6 indicates that true parameters β∗
1i, a

∗
i , b

∗
i , σ

∗
i ,

which are fitted by a single component, share the same estimation rates of order Õ(n−1/2) as those
in Theorem 4. By contrast, the estimation rates for true parameters β∗

1i, a
∗
i , b

∗
i , σ

∗
i , which are fitted by

more than one component, are of order Õ(n−1/4). Notably, these rates are no longer determined by
the solvability of the system (7). Thus, they are significantly faster than those in Theorem 4. The
main reason for this improvement is when F is strongly identifiable, the interaction among expert
parameters via the second PDE in equation (6) does not occur.
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E.3 PROOFS OF ADDITIONAL RESULTS

E.3.1 PROOF OF THEOREM 5

Following from the result of Theorem 1 and since the Hellinger distance is lower bounded by the Total
Variation distance, i.e. h ≥ V , it is sufficient to demonstrate for any mixing measure G ∈ Ok(Θ) that

EX [V (gG(·|X), gG∗(·|X))] ≳ D1(G,G∗),

which is then respectively broken into local part and global part as follows:

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (38)

inf
G∈Ek∗ (Ω):D1(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (39)

for some constant ε′ > 0. Subsequently, we will prove only the local part (38), while the proof of the
global part (39) can be done similarly to that in Appendix A.2.

Proof of claim (38): It is sufficient to show that

lim
ε→0

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Assume that this inequality does not hold, then since the number of experts k∗ is known in this case,
there exists a sequence of mixing measure Gn :=

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ek∗(Ω) such

that both D1(Gn, G∗) and EX [V (gGn(·|X), gG∗(·|X))]/D1(Gn, G∗) approach zero as n tends to
infinity. Since D1(Gn, G∗) → 0 as n → ∞, each Voronoi cell contains only one element. Thus,
we may assume WLOG that Cj = {j} for any j ∈ [k∗], which implies that (βn

1j , a
n
j , b

n
j , σ

n
j ) →

(β∗
1j , a

∗
j , b

∗
j , σ

∗
j ) and exp(βn

0j) → exp(β∗
0j) as n → ∞. WLOG, we assume that

D1(Gn, G∗) =

K∑
i=1

[
exp(βn

0i)
(
∥∆βn

1i∥+ ∥∆ani ∥+ ∥∆bni ∥+ ∥∆σn
i ∥

)
+

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣],

where we denote ∆βn
1i := βn

1i − β∗
1i, ∆ani := ani − a∗i , ∆bni := bni − b∗i and ∆σn

i := σn
i − σ∗

i .

Subsequently, by arguing in the same fashion as in Appendix A.2, we obtain that Xn
ℓ = X ∗

ℓ , where

Xn
ℓ :=

{
x ∈ X : (βn

1j)
⊤x ≥ (βn

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

for any ℓ ∈ [q] for sufficiently large n.

Let ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, for almost surely (X,Y ) ∈ X ∗
ℓ × Y , we

can rewrite the conditional densities gGn
(Y |X) and gG∗(Y |X) as

gGn
(Y |X) =

K∑
i=1

exp((βn
1i)

⊤X + βn
0i)∑K

j=1 exp((β
n
1j)

⊤X + βn
0j)

· f(Y |(ani )⊤X + bni , σ
n
i ),

gG∗(Y |X) =

K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑K

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ).

Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:
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In this step, we take into account Hn :=
[∑K

i=1 exp((β
∗
1i)

⊤X + β∗
0i)

]
· [gGn

(Y |X)− gG∗(Y |X)].
Note that the quantity Hn can be represented as follows:

Hn =

K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

−
K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn

(Y |X)− exp((β∗
1i)

⊤X)gGn
(Y |X)

]
+

K∑
i=1

[
exp(βn

0i)− exp(β∗
0i)

][
exp((β∗

1i)
⊤X + β∗

0i)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1i)
⊤X)gGn

(Y |X)
]
.

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by An, we get that

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂|α2|+α3+α4f

∂h
|α2|+α3

1 ∂σα4

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ),

where R1(X,Y ) is a Taylor remainder that satisfies R1(X,Y )/D1(X,Y ) → 0 as n → ∞. Let
η1 = α1 + α2 ∈ Nd, η2 = |α2|+ α3 ∈ N and η3 = α4 ∈ N, then we can rewrite An as follows:

An =

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=1−η3

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) +R1(X,Y ), (40)

where we define

Iη1,η2,η3 := {(αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = η1, |α2|+ α3 = η2, α4 = η3}. (41)

By arguing in a similar fashion for the second term in the representation of Hn, we also get that

Bn := −
K∑
i=1

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R2(X,Y ),

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D1(Gn, G∗) → 0 as n → ∞. Putting
the above results together, we rewrite the quantity Hn as follows:

Hn =

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=0

Un
i,η1,η2,η3

·Xη1 exp((β∗
1i)

⊤X)
∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

Wn
i,γ ·Xγ exp((β∗

1i)
⊤X)gGn(Y |X) +R1(X,Y ) +R2(X,Y ), (42)

in which we respectively define for each i ∈ [K] that

Un
i,η1,η2,η3

:=
∑

α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Wn
i,γ := −exp(βn

0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2, η3) ̸= (0d, 0, 0) and |γ| ≠ 0d. Additionally, Un
i,0d,0,0

= −Wn
i,0d

:= exp(βn
0i) −

exp(β∗
0i).
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Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios Un
i,η1,η2,η3

/D1(Gn, G∗) tend to zero
as n goes to infinity. Assume by contrary that all of them approach zero when n → ∞, then for
(η1, η2, η3) = (0d, 0, 0), it follows that

1

D1(Gn, G∗)
·

K∑
i=1

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣ = K∑

i=1

|Un
j,η1,η2,η3

|
D1(Gn, G∗)

→ 0. (43)

Additionally, for tuples (η1, η2, η3) where η1 ∈ {e1, e2, . . . , ed} with ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0)

and η2 = η3 = 0, we get

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1i∥1 =

K∑
i=1

∑
η1∈{e1,...,ed}

|Un
j,η1,0,0

|
D1(Gn, G∗)

→ 0.

By using similar arguments, we end up with

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥1 + ∥∆ani ∥1 + |∆bni |+ |∆σn
i |
]
→ 0.

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥+ ∥∆ani ∥+ |∆bni |+ |∆σn
i |
]
→ 0. (44)

Combine equation (43) with equation (44), we deduce that D1(Gn, G∗)/D1(Gn, G∗) → 0, which is
a contradiction. Consequently, at least one among the ratios Un

i,η1,η2,η3
/D1(Gn, G∗) does not vanish

as n tends to infinity.

Step 3 - Fatou’s contradiction:

Let us denote by mn the maximum of the absolute values of Un
i,η1,η2,η3

/D1(Gn, G∗) and
Wn

i,γ/D1(Gn, G∗). It follows from the result achieved in Step 2 that 1/mn ̸→ ∞.

Recall from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0 as n → ∞. Thus,

by the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D1(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D1(Gn, G∗)

dXdY.

This result indicates that |gGn
(Y |X)− gG∗(Y |X)|/D1(Gn, G∗) tends to zero as n goes to infinity

for almost surely (X,Y ). As a result, it follows that

lim
n→∞

Hn

mnD(Gn, G∗)
=

[ K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)

]
· lim
n→∞

|gGn(Y |X)− gG∗(Y |X)|
mnD1(Gn, G∗)

= 0.

Next, let us denote Un
i,η1,η2,η3

/[mnD1(Gn, G∗)] → τi,η1,η2,η3
and Wn

i,γ/[mnD1(Gn, G∗)] → κi,γ

with a note that at least one among them is non-zero. From the formulation of Hn in equation (42),
we deduce that

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=0

τi,η1,η2,η3
·Xη1 exp((β∗

1i)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ). This equation is equivalent to
1∑

|η1|=0

[ K∑
i=1

2−|η1|∑
η2+η3=0

τi,η1,η2,η3 exp((β
∗
1i)

⊤X)
∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+ κi,η1
exp((β∗

1i)
⊤X)gG∗(Y |X)

]
×Xη1 = 0,
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for almost surely (X,Y ). It is clear that the left hand side of the above equation is a polynomial of X
belonging to the compact set X . As a result, we get that

K∑
i=1

2−|η1|∑
η2+η3=0

τi,η1,η2,η3
exp((β∗

1i)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+ κi,η1
gG∗(Y |X) exp((β∗

1i)
⊤X) = 0,

for any i ∈ [K], 0 ≤ |η1| ≤ 1 and almost surely (X,Y ). Since (a∗1, b
∗
1, σ

∗
1), . . . , (a

∗
K , b∗K , σ∗

K) have
pair-wise distinct values and the family F is strongly identifiable, the set{ ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) : i ∈ [K], 0 ≤ η2 + η3 ≤ 2− |η1|

}
is linearly independent w.r.t (X,Y ). Consequently, we obtain that τi,η1,η2,η3

= κi,η1
= 0 for any

i ∈ [K], 0 ≤ |η1| ≤ 1 and 0 ≤ η2 + η3 ≤ 2− |η1|, which contradicts the fact that at least one among
these terms is different from zero.

Hence, we reach the desired conclusion.

E.3.2 PROOF OF THEOREM 6

Similar to the proof of Theorem 5 in Appendix E.3.1, our objective here is also to derive the local
part of the following Total Variation lower bound:

EX [V (gG(·|X), gG∗(·|X))] ≳ D3(G,G∗),

for any G ∈ Ok(Θ). In particular, we aim to show that

lim
ε→0

inf
G∈Ok(Θ):D3(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0. (45)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures Gn :=

∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) such that both D3(Gn, G∗) and

EX [V (gGn
(·|X), gG∗(·|X))]/D3(Gn, G∗) vanish when n goes to infinity. Then, it follows that

for any j ∈ [k∗], we have
∑

i∈Cj
exp(βn

0i) → exp(β∗
0j) and (βn

1i, a
n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for

all i ∈ Cj . WLOG, we may assume that

D3(Gn, G∗) =
∑

j∈[K],
|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥2 + ∥∆anij∥2 + |∆bnij |2 + |∆σn
ij |2

]

+
∑

j∈[K],
|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
]
+

K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣.

Subsequently, let X ∈ X ∗
ℓ for some ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}, where

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x, ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
.

Then, for any ℓ ∈ [q], we denote (ℓ1, . . . , ℓk) as a permutation of (1, . . . , k) and

Xn
ℓ
:=

{
x ∈ X : (βn

1i)
⊤x ≥ (βn

1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}

}
.

If {ℓ1, . . . ℓK} ≠ C1 ∪ . . . ∪ CK for any ℓ ∈ [q], then V (gGn
(·|X), gG∗(·|X))/D3(Gn, G∗) ̸→ 0 as

n tends to infinity. This contradicts the fact that this term must approach zero. Therefore, we only
need to consider the scenario when there exists ℓ ∈ [q] such that {ℓ1, . . . ℓK} = C1 ∪ . . . ∪ CK . By
using the same arguments as in Appendix B.2, we obtain that X ∈ Xn

ℓ
.
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Then, we can represent the conditional densities gG∗(Y |X) and gGn
(Y |X) for any sufficiently large

n as follows:

gG∗(Y |X) =

K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)∑K

j′=1 exp((β
∗
1j′)

⊤X + β∗
0j′)

· f(Y |(a∗j )⊤X + b∗j , σ
∗
j ),

gGn
(Y |X) =

K∑
j=1

∑
i∈Cj

exp((βn
1i)

⊤X + βn
0i)∑K

j′=1

∑
i′∈Cj′

exp((βn
1i′)

⊤X + βn
0i′)

· f(Y |(ani )⊤X + bni , σ
n
i ).

Now, we reuse the three-step framework in Appendix E.3.1.

Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity

Hn :=
[ K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)

]
· [gGn

(Y |X)− gG∗(Y |X)].

Similar to Step 1 in Appendix A, we can express this term as

Hn =

K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

−
K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1j)
⊤X)gGn(Y |X)

]

+

K∑
j=1

[ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
][

exp((β∗
1j)

⊤X)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1j)
⊤X)gGn

(Y |X)
]

:= An +Bn + En.

Next, we proceed to decompose An based on the cardinality of the Voronoi cells as follows:

An =
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

+
∑

j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]
.

By applying the Taylor expansions of first and second orders to the first and second terms of An,
respectively, and following the derivation in equation (40), we arrive at

An =
∑

j:|Cj |=1

∑
i∈Cj

1∑
η3=0

2−η3∑
|η1|+η2=1−η3

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

i )
α4

×Xη1 exp((β∗
1j)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R3(X,Y )

+
∑

j:|Cj |>1

∑
i∈Cj

2∑
η3=0

4−η3∑
|η1|+η2=1−1{η3>0}

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

ij)
α4

×Xη1 exp((β∗
1j)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R4(X,Y ),

where the set Iη1,η2,η3 is defined in equation (41) while Ri(X,Y ) is a Taylor remainder such that
Ri(X,Y )/D3(Gn, G∗) → 0 as n → ∞ for i ∈ {3, 4}. Similarly, we also decompose Bn as

Bn = −
∑

j:|Cj |=1

∑
i∈Cj

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((β∗
1j)

⊤X)gGn
(Y |X) +R5(X,Y )

−
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|γ|≤2

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((β∗
1j)

⊤X)gGn
(Y |X) +R6(X,Y ),
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where R5(X,Y ) and R6(X,Y ) are Taylor remainders such that their ratios over D3(Gn, G∗) ap-
proach zero as n → ∞. Subsequently, let us define

Sn
j,η1,η2,η3

:=
∑
i∈Cj

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

ij)
α4 ,

Tn
j,γ := −

∑
i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ = −Sn

j,γ,0,0,

for any (η1, η2, η3) ̸= (0d, 0, 0) and |γ| ≠ 0d, while for (η1, η2, η3) = (0d, 0) we set

Sn
i,0d,0

= −Tn
i,0d

:=
∑
i∈Cj

exp(βn
0i)− exp(β∗

0i).

As a consequence, it follows that

Hn =

K∑
j=1

1+1{|Cj |>1}∑
η3=0

2(1+1{|Cj |>1})−η3∑
|η1|+η2=0

Sn
j,η1,η2,η3

·Xη1 exp((β∗
1j)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

Tn
j,γ ·Xγ exp((β∗

1j)
⊤X)gGn(Y |X) +R5(X,Y ) +R6(X,Y ). (46)

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios Sn
j,η1,η2,η3

/D3(Gn, G∗)
does not converge to zero as n → ∞. Assume that all these terms go to zero, then by employing
arguments for deriving equations (43) and (44), we get that

1

D3(Gn, G∗)
·
[ K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣

+
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
)]

→ 0.

Next, let ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0) for any j ∈ [d]. Then, we have

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1ij∥2 =

K∑
i=1

∑
η1∈{2e1,...,2ed}

|Un
j,η1,0,0

|
D3(Gn, G∗)

→ 0.

Similarly, we also get that

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆bnij∥2 → 0,

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆σn

ij∥2 → 0

Moreover, note that

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆anij∥2 =

K∑
i=1

∑
η1∈{2e1,...,2ed}

|Un
j,η1,2,0

|
D3(Gn, G∗)

→ 0.

Gathering all the above limits, we obtain that 1 = D3(Gn, G∗)/D3(Gn, G∗) → 0 as n → ∞, which
is a contradiction. Thus, at least one among the terms Sn

j,η1,η2,η3
/D3(Gn, G∗) does not converge to

zero as n → ∞
Step 3 - Fatou’s contradiction:

It follows from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D3(Gn, G∗) → 0 as n → ∞.

Then, by applying the Fatou’s lemma, we get

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D3(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D3(Gn, G∗)

dXdY,
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which implies that |gGn
(Y |X)−gG∗(Y |X)|/D3(Gn, G∗) → 0 as n → ∞ for almost surely (X,Y ).

Next, we define mn as the maximum of the absolute values of Sn
j,η1,η2/D3(Gn,G∗)

. It follows from
Step 2 that 1/mn ̸→ ∞. Moreover, by arguing in the same way as in Step 3 in Appendix E.1, we
receive that

Hn/[mnD3(Gn, G∗)] → 0 (47)

as n → ∞. By abuse of notations, let us denote

Sn
j,η1,η2,η3

/[mnD3(Gn, G∗)] → τj,η1,η2,η3

Here, at least one among τj,η1,η2,η3
is non-zero. Then, by putting the results in equations (46) and

(47) together, we get

K∑
j=1

1+1{|Cj |>1}∑
η3=0

2(1+1{|Cj |>1})−η3∑
|η1|+η2=0

τj,η1,η2,η3
·Xη1 exp((β∗

1j)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

−τnj,γ,0,0 ·Xγ exp((β∗
1j)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ). Arguing in a similar fashion as in Step 3 of Appendix E.1, we obtain that
τj,η1,η2,η3

= 0 for any j ∈ [K], 0 ≤ |η1|+ η2 + η3 ≤ 2(1+1{|Cj |>1}) and 0 ≤ |γ| ≤ 1+1{|Cj |>1}.
This contradicts the fact that at least one among them is non-zero. Hence, the proof is completed.
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