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1 TRAINING CONFIGURATIONS IN DETAIL

All of our training workload were launched over 8 NVIDIA V100
GPUs with 32GB GPU Memory each, using the AdamW optimizer
(weight_decay = 0.05, betas = (0.9,0.95)) and the CosineScheduler
learning rate scheduler, and with the torch.cuda.amp.autocast (for
faster training) turned on.

1.1 Mask Predictor Training

The hyperparameters were set as:
batch_size : 10

epochs : 20

warmup_epochs : 2
base_learing_rate : 5e — 4
drop_out_ratio : 0.1
gradient_clip = 3.0

For the random mask ratio applied to the indices map d in this
training stage, we followed the default setting of Masked Genera-
tive Encoder (MAGE), where the mask ratio was sampled from a
truncated normal distribution of (mean = 0.55, std = 0.25) ranging
within [0.5, 1]. Our mask predictor transformer can be viewed as
a guided generation module, and it is important to enable enough
generative capacity with high mask ratios (> 0.5). As indicated in
the MAGE paper, masking out a huge portion of the indices map d
would encourage the model to learn the internal semantic relation-
ships between tokens within d, which helps to recover the masked
indices map with just a small portion of the ground truth tokens.

We used the LabelSmoothingCrossEntropy() with smoothing =
0.1 as our loss function when calculating the prediction loss on
the masked tokens, optimizing the generalization ability of the
transformer predictor.

The original MAGE pre-training configuration had 400 total epochs
and 40 warmup_epochs. Since we froze most of the weights in the
pret-rained MAGE, and only trained the inserted CrossAttention
module together with the affected MLP module within a single
decoder block and the final output classification linear layer, we
reduced the training workload to just around 1/20 of the original
pre-training workload.

1.2 Pixel Decoder Training

The hyperparameter were set as:
batch_size : 12

epochs : 25

warmup_epochs : 1
base_learing rate : 4e — 5
gradient_clip = 3.0

For the pixel distortion loss as described in Eq.2 in Section 3.3,
the ratio of w1l : w2 for L1_loss versus LPIPS loss was set as
8 : 1, as the number of L1_loss on pixels was generally 1/8 of the
number of LPIPS_loss using AlexNet. Such settings gave a proper
balance between PSNR and LPIPS, which aligned with our target
that the reconstructed images should pursue both faithfulness and
perceptual quality.

2 BRIDGING THE CONTINUOUS FEATURES

As mentioned in Section 3.1, for the continuous-features based flow,
we initially downsampled the input image by 4x and then fed it
into the MLIC framework to get ultra-low bitrate. Thus, in actual
implementation with default input image patchfied as 256 X 256 X 3,
the latent g had a shape of 8 x 8 x 320. While the codebook-based
latent gy o had a shape of 16X 16 x 256 according to the model struc-
ture. Serving as the pixel correction network, our duplicate pixel
decoder had the same network structure with the VQGAN pixel de-
coder, and to combine the continuous-domain and codebook-based
information, 7. was firstly transformed into the exact same size as
7y Q before fed into the correction network. Also, . was fed into
the CrossAttention modules in Mask Predictor T for Key&Value
computation, serving as the prediction assisting info. Therefore, ¢
was also transformed to match the dimension requirement for the
transformer predictor.

There were several ways to conduct such transformations for di-
mension alignment, and we evaluated them as follows:

Test 1. Appended a linear layer of [320, 768], transformed . into
prediction assisting info with size of 8 X 8 X 768 and fed it into
CrossAttention modules after flattening to (64, 768). Appended an
UpSamping Block with output channels of 256, transformed g, into
pixel correction info with the size of 16 X 16 X 256 and fed it into
the correction network.

Test 2. Fed 9 into the MLIC pixel decoding process, and generated
a low-quality image restoration output of size 128 x 128 x 3. The
restored low-quality image was then resized via interpolation to
the default size of 256 X 256 X 3. Then a pretrained image encoder
(4 Down-sampling Layers, with 256 output channels) took in the
restored low-quality image and encoded it into a 16 X 16 X 256
feature map. The feature map was directly fed into the correction
network, serving as the pixel correction info and also fed into the
CrossAttention module after channel linear transformation from
256 to 768, serving as the prediction assisting info.

Test 3. Fed i into the MLIC pixel decoding process, and generated
a low-quality image restoration output of size 128 x 128 X 3. The
restored low-quality image was then resized via interpolation to

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

the default size of 256 X 256 X 3. After that, two separate image
encoders were attached, one for extracting prediction assisting info
and the other for extracting pixel correction info from the resized
output image. Each encoder was trained with other modules for
within its corresponding pipeline.

Evaluation of the above three methods showed that the last method
provided a slightly better performance over the other two for both
Mask Prediction and Image Correction (with the best training &
validation loss).

3 MASK PREDICTION ACCURACY

The pre-trained MAGE had a converged training loss of about 5.6 on
the ImageNet training set. After our continuous feature integration
with the above method of Test 3, the training loss dropped to
around 4.2 after 6 training epochs and converged to about 4.1 after
entire training process.

We also evaluated the mask prediction accuracy directly by com-
paring the matching ratio between the predicted masked tokens
and their corresponding ground-truth tokens.

Anonymous Authors

With the mask schedule of "1_4" as shown in Fig.3 of the paper,
where the token-based mask prediction aimed at predicting 192
(75%) masked tokens based on 64 (25%) ground-truth tokens, the
original MAGE could only get an average matching ratio of about 5%
on CLIC2020 datasets. In comparison, our mask predictor increased
the matching ratio to over 20%. In Fig.4 of the paper, the first row
showed the reconstructed images after pixel decoding with the
single-stream pre-trained VQ-Decoder based on the mask schedule
of "1_4" on indices maps. Results showed that the original MAGE
preserved the shape distribution but had drastic color deviations
(token matching ratio was only 3.7%), while our results were much
better aligned with the ground-truth images in terms of both shape
and color (token matching ratio reached 21.3%).

It is worth nothing that although the matching ratio of the
masked tokens of the predicted indices map was only about 20%,
the restored images still well aligned with the original ones. This is
because the pixel decoder used gy for pixel generation, the over-
all semantic likelihood between the predicted indices map and the
ground-truth mattered more than the absolute value of the token
prediction.
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