
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials:
HybridFlow: Infusing Continuity into Masked Codebook for

Extreme Low-Bitrate Image Compression
Anonymous Authors

1 TRAINING CONFIGURATIONS IN DETAIL
All of our training workload were launched over 8 NVIDIA V100
GPUs with 32GB GPU Memory each, using the AdamW optimizer
(𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 0.05, 𝑏𝑒𝑡𝑎𝑠 = (0.9, 0.95)) and the CosineScheduler
learning rate scheduler, and with the torch.cuda.amp.autocast (for
faster training) turned on.

1.1 Mask Predictor Training
The hyperparameters were set as:
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 : 10
𝑒𝑝𝑜𝑐ℎ𝑠 : 20
𝑤𝑎𝑟𝑚𝑢𝑝_𝑒𝑝𝑜𝑐ℎ𝑠 : 2
𝑏𝑎𝑠𝑒_𝑙𝑒𝑎𝑟𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 : 5𝑒 − 4
𝑑𝑟𝑜𝑝_𝑜𝑢𝑡_𝑟𝑎𝑡𝑖𝑜 : 0.1
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐𝑙𝑖𝑝 = 3.0

For the random mask ratio applied to the indices map 𝑑 in this
training stage, we followed the default setting of Masked Genera-
tive Encoder (MAGE), where the mask ratio was sampled from a
truncated normal distribution of (𝑚𝑒𝑎𝑛 = 0.55, 𝑠𝑡𝑑 = 0.25) ranging
within [0.5, 1]. Our mask predictor transformer can be viewed as
a guided generation module, and it is important to enable enough
generative capacity with high mask ratios (≥ 0.5). As indicated in
the MAGE paper, masking out a huge portion of the indices map 𝑑
would encourage the model to learn the internal semantic relation-
ships between tokens within 𝑑 , which helps to recover the masked
indices map with just a small portion of the ground truth tokens.

We used the 𝐿𝑎𝑏𝑒𝑙𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 () with smoothing =
0.1 as our loss function when calculating the prediction loss on
the masked tokens, optimizing the generalization ability of the
transformer predictor.

The original MAGE pre-training configuration had 400 total epochs
and 40 warmup_epochs. Since we froze most of the weights in the
pret-rained MAGE, and only trained the inserted CrossAttention
module together with the affected MLP module within a single
decoder block and the final output classification linear layer, we
reduced the training workload to just around 1/20 of the original
pre-training workload.

1.2 Pixel Decoder Training
The hyperparameter were set as:
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 : 12
𝑒𝑝𝑜𝑐ℎ𝑠 : 25
𝑤𝑎𝑟𝑚𝑢𝑝_𝑒𝑝𝑜𝑐ℎ𝑠 : 1
𝑏𝑎𝑠𝑒_𝑙𝑒𝑎𝑟𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 : 4𝑒 − 5
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐𝑙𝑖𝑝 = 3.0

For the pixel distortion loss as described in Eq.2 in Section 3.3,
the ratio of 𝑤1 : 𝑤2 for L1_loss versus LPIPS_loss was set as
8 : 1, as the number of L1_loss on pixels was generally 1/8 of the
number of LPIPS_loss using AlexNet. Such settings gave a proper
balance between PSNR and LPIPS, which aligned with our target
that the reconstructed images should pursue both faithfulness and
perceptual quality.

2 BRIDGING THE CONTINUOUS FEATURES
As mentioned in Section 3.1, for the continuous-features based flow,
we initially downsampled the input image by 4x and then fed it
into the MLIC framework to get ultra-low bitrate. Thus, in actual
implementation with default input image patchfied as 256× 256× 3,
the latent 𝑦𝑐 had a shape of 8 × 8 × 320. While the codebook-based
latent𝑦𝑉𝑄 had a shape of 16×16×256 according to the model struc-
ture. Serving as the pixel correction network, our duplicate pixel
decoder had the same network structure with the VQGAN pixel de-
coder, and to combine the continuous-domain and codebook-based
information, 𝑦𝑐 was firstly transformed into the exact same size as
𝑦𝑉𝑄 before fed into the correction network. Also, 𝑦𝑐 was fed into
the CrossAttention modules in Mask Predictor T for Key&Value
computation, serving as the prediction assisting info. Therefore, 𝑦𝑐
was also transformed to match the dimension requirement for the
transformer predictor.

There were several ways to conduct such transformations for di-
mension alignment, and we evaluated them as follows:

Test 1. Appended a linear layer of [320, 768], transformed 𝑦𝑐 into
prediction assisting info with size of 8 × 8 × 768 and fed it into
CrossAttention modules after flattening to (64, 768). Appended an
UpSamping Block with output channels of 256, transformed 𝑦𝑐 into
pixel correction info with the size of 16 × 16 × 256 and fed it into
the correction network.

Test 2. Fed 𝑦𝑐 into the MLIC pixel decoding process, and generated
a low-quality image restoration output of size 128 × 128 × 3. The
restored low-quality image was then resized via interpolation to
the default size of 256 × 256 × 3. Then a pretrained image encoder
(4 Down-sampling Layers, with 256 output channels) took in the
restored low-quality image and encoded it into a 16 × 16 × 256
feature map. The feature map was directly fed into the correction
network, serving as the pixel correction info and also fed into the
CrossAttention module after channel linear transformation from
256 to 768, serving as the prediction assisting info.

Test 3. Fed 𝑦𝑐 into the MLIC pixel decoding process, and generated
a low-quality image restoration output of size 128 × 128 × 3. The
restored low-quality image was then resized via interpolation to



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the default size of 256 × 256 × 3. After that, two separate image
encoders were attached, one for extracting prediction assisting info
and the other for extracting pixel correction info from the resized
output image. Each encoder was trained with other modules for
within its corresponding pipeline.

Evaluation of the above three methods showed that the last method
provided a slightly better performance over the other two for both
Mask Prediction and Image Correction (with the best training &
validation loss).

3 MASK PREDICTION ACCURACY
The pre-trainedMAGE had a converged training loss of about 5.6 on
the ImageNet training set. After our continuous feature integration
with the above method of Test 3, the training loss dropped to
around 4.2 after 6 training epochs and converged to about 4.1 after
entire training process.

We also evaluated the mask prediction accuracy directly by com-
paring the matching ratio between the predicted masked tokens
and their corresponding ground-truth tokens.

With the mask schedule of "1_4" as shown in Fig.3 of the paper,
where the token-based mask prediction aimed at predicting 192
(75%) masked tokens based on 64 (25%) ground-truth tokens, the
originalMAGE could only get an averagematching ratio of about 5%
on CLIC2020 datasets. In comparison, our mask predictor increased
the matching ratio to over 20%. In Fig.4 of the paper, the first row
showed the reconstructed images after pixel decoding with the
single-stream pre-trained VQ-Decoder based on the mask schedule
of "1_4" on indices maps. Results showed that the original MAGE
preserved the shape distribution but had drastic color deviations
(token matching ratio was only 3.7%), while our results were much
better aligned with the ground-truth images in terms of both shape
and color (token matching ratio reached 21.3%).

It is worth nothing that although the matching ratio of the
masked tokens of the predicted indices map was only about 20%,
the restored images still well aligned with the original ones. This is
because the pixel decoder used 𝑦𝑉𝑄 for pixel generation, the over-
all semantic likelihood between the predicted indices map and the
ground-truth mattered more than the absolute value of the token
prediction.


	1 Training Configurations in Detail
	1.1 Mask Predictor Training
	1.2 Pixel Decoder Training

	2 Bridging the Continuous Features
	3 Mask Prediction Accuracy

