
A Appendix

A.1 Dataset Details & Evaluation Metrics

As stated earlier, the main application of Extreme Multi-label Text Classification is in e-commerce
- product recommendation and dynamic search advertisement - and in document tagging, where
the objective of an algorithm is to correctly recommend/advertise among the top-k slots. Thus, for
evaluation of the methods, we use precision at k (denoted by P@k), and its propensity scored variant
(denoted by PSP@k) [17]. These are standard and widely used metrics by the XMC community
[4]. For each test sample with observed ground truth label vector y ∈ {0, 1}L and predicted vector
ŷ ∈ RL, P@k is given by :

P@k(y, ŷ) :=
1

k

∑
ℓ ∈ top@k(ŷ)

yℓ

where top@k(ŷ) returns the k largest indices of ŷ.

Since P@k treats all the labels equally, it doesn’t reveal the performance of the model on tail labels.
However, because of the long-tailed distribution in XMC datasets, one of the main challenges is to
predict tail labels correctly, which may be more valuable and informative compared to head classes.
A set of metrics that have been established in XMC to evaluate tail performance are propensity-scored
version of precision. These PSP@k were introduced in [17], and use a weighting factor based on a
propensity score pℓ to give more weight to tail labels:

PSP@k(y, ŷ) :=
1

k

∑
ℓ ∈ top@k(ŷ)

yℓ
pℓ

.

We use the empirical values for pℓ as proposed in [17].

Datasets dtf-idf # Labels # Training # Test ALpP APpL

Wiki10-31K 101,938 30,938 14,146 6,616 18.64 8.52
AmazonCat-13K 203,882 13,330 1,186,239 306,782 5.04 448.57

Wiki-500K 2,381,304 501,070 1,779,881 769,421 4.75 16.86
Amazon-670K 135,909 670,091 490,449 153,025 5.45 3.99
Amazon-3M 337,067 2,812,281 1,717,899 742,507 36.04 22.02

Table 8: Dataset Statistics. APpL denotes the average data points per label, ALpP the average number
of labels per point. For a fair comparison with other baselines, we download these five publicly
available benchmark datasets from https://github.com/yourh/AttentionXML.

A.2 Model Details

Datasets Transformer Layer : Label Resolutions Shortlist Size Ep Nx Dropouts

Wiki10-31K {9, 10} : 29 | 11 : 212 | 12 : 30938 29, 29, ~29 15 256 0.3, 0.3, 0.4
AmazonCat-13K {7, 8} : 28 | 10 : 211 | 12:13330 28, 28, ~28 6 256 0.2, 0.3, 0.4

Wiki-500K {5, 6} : 210 | 8 : 213 | 10 : 216 | 12 : 501070 210, 210, 211, ~212 12 128 0.2, 0.25, 0.35, 0.5
Amazon-670K {5, 6} : 210 | 8 : 213 | 10 : 216 | 12 : 670091 210, 210, 211, ~212 15 128 0.2, 0.25, 0.4, 0.5
Amazon-3M {5, 6} : 210 | 8 : 213 | 10 : 216 | 12 : 2812281 210, 210, 211, ~212 15 128 0.2, 0.25, 0.3, 0.5

Table 9: Hyperparameters for CascadeXML. Ep denotes the total number of epochs needed to
fine-tune model over the dataset. Nx is the number of text tokens input to the model after truncation.
Transformer layers put in brackets next to the label resolution imply that a concatenation of the [CLS]
token of the respective layers has been used for label shortlisting at that resolution.

A.2.1 Model Hyperparameters

CascadeXML optimizes the training objective using Binary Cross Entropy loss as the loss function
and AdamW [29] as the optimizer. We use different learning rates for the transformer encoder and
the (meta-)label weight vectors as we need to train the weight vectors from random initialization in

15

https://github.com/yourh/AttentionXML

contrast to fine-tuning the transformer encoder. Specifically, the transformer encoder is fine-tuned at
a learning rate of 10−4, while the weight vectors are trained at a learning rate of 10−3. The learning
rate schedule consists of a constant learning rate for most of the iterations, with a cosine warm-up at
the beginning and cosine annealing towards the end of the schedule. In multi-GPU setting, we use a
batch size of 64 per GPU (256 total) across 4 GPUs. In single GPU setting, we still use a batch size
of 256 by accumulating gradients for 4 iterations. The hyperparameter settings in detail have been
mentioned in Table 9.

A.2.2 Ensemble Training Time

As shown in Table 10, CascadeXML achieves the lowest training time across all datasets except
Amazon-3M using only 4 GPUs as compared to XR-Transformer which leverages 8 GPUs. Note that
on Amazon-3M, XR-Transformer achieves a slightly lower training time. However, XR-Transformer
uses 2× the number of GPUs and does not train the DNN model on full 3 million label resolution.
XR-Transformer trains the DNN model using a classification training object comprising of only 215

label clusters [57, Table 7] and then leverages XR-Linear [56], a linear solver, to scale up to 3M
labels. On the other hand, CascadeXML trains an ensemble of 3 models to full resolution of 3 million
labels in 30 hours using only 4 GPUs.

Dataset AttentionXML-3 X-Transformer-9 LightXML-3 XR-Transformer-3 CascadeXML-3

Wiki10-31K 1.5 14.1 26.9 1.5 0.4
AmazonCat-13K 24.3 147.6 310.6 13.2 9.8

Wiki-500K 37.6 557.1 271.3 38.0 21.6
Amazon-670K 24.2 514.8 159.0 10.5 9.0
Amazon-3M 54.8 542.0 - 29.3 30.0

Table 10: Time taken to train the ensembles of the respective models. Training time AttentionXML,
X-Transformer and XR-Transformer have been reported using 8 NVidia V100 GPUs. Training time
for LightXML is clocked using 1 GPU and that of CascadeXML is clocked using 4 GPUs.

A.3 Leveraging Sparse Features

As we are using BERT for the transformer backbone of our method, we have to truncate the input
sequences to a limited number of tokens (see Table 9). This truncation results in loss of information.
Thus, following XR-Transformer’s lead we combine the features trained by CasadeXML with
statistical information in the form of sparse tf-idf representation of the full input in an additional OVA
classifier. The concatenated features are constructed as [19]:

Φcat(x) =

[
Φdnn(x)

∥Φdnn(x)∥
,

Φtf-idf(x)

∥Φtf-idf(x)∥

]
We use a version of DiSMEC [2] instead of using XR-Linear [56] - as done in XR-Transformer - as
our external OVA classifier for Φcat. Even though XR-Linear achieves slightly better performance than
DiSMEC across datasets (Table: 1), we find DiSMEC to be more resource efficient than XR-Linear.
To quantify, DiSMEC runs successfully on 116GB RAM for all datasets, while XR-Linear requires
close to 470GB RAM for Amazon-3M. Next, we discuss the application of DiSMEC over Φcat.

DiSMEC DiSMEC is a linear multilabel classifier that minimizes an L2-regularized squared hinge-
loss, followed by a pruning step to only keep the most important weights. Thus, the loss for a given
weight matrix W = [w1, . . . ,wL] is given by

L[W] = λ∥W∥22 +
N∑
i=1

L∑
j=1

max (0, 1− yij⟨Φcat(xi),wj⟩)2 . (6)

Crucially, from the point of view of the OVA classifiers, the input features Φcat(xi) are constant. This
means that the task decomposes into independent optimization problems for each label, minimizing

L[wj] = λ∥wj∥22 +
N∑
i=1

max (0, 1− yij⟨Φcat(xi),wj⟩)2 . (7)

16

This allows for trivial parallelization of the task across CPU cores, and also means that the weights
wj can be pruned as soon as the sub-problem is solved. Consequently, there is no need to ever store
the entire weight matrix, improving memory efficiency.

The objective function (7) has a continuous derivative, and its Hessian is well defined everywhere
except exactly at the decision boundary. Consequently, it can be minimized using a second-order
Newton method. A discussion of this in the context of linear classification can be found in [13].

B Visualizations and Analysis

In this section we provide visualizations and additional data that corroborate our interpretation that
different attention- and feature maps are needed for classification at different granularities of the label
tree. In Figure 2, the attention of the [CLS] token to itself in the previous layer is visualized.

If this self-attention were large, then Φ
(t)
CLS would be mostly a function of Φ(t−1)

CLS . In such a case,
Φ

(t−1)
CLS would contain less information than Φ

(t)
CLS (data-processing inequality), but the meta-labels

R(t−1)(y) at level t − 1 contain strictly less information than R(t)(y). Thus, is the [CLS] token
embedding had strong feed-forward characteristics, Φ(t−1)

CLS would have to contain all the information
also about the extreme-level labels, and thus have limited representation capacity for the level-t task.

2 4 6 8 10 12
0

20

40

60

80

100

Layer

Se
lf

-A
tte

nt
io

n

Pretrained Bert
CascadeXML

2 4 6 8 10 12
0

20

40

60

80

100

Layer

Se
lf

-A
tte

nt
io

n

Pretrained Bert
CascadeXML

Figure 2: Average (left) and maximum (right) self-attention of the [CLS] token at a given layer to
the [CLS] token in the preceding layer. The embedding for the [CLS] token is almost exclusively
assembled from the embeddings of the other tokens in the later layers much more strongly in
CascadeXML than in pretrained BERT.

Luckily, Figure 2 is a sanity-check that shows that this is not the case. Starting from layer 6, where
the first meta-task is placed, the [CLS] token is almost entirely re-assembled at each layer from the
embeddings of the other tokens – much more strongly than in a pretrained BERT. This allows each
layer to extract the information best suited for classification at the given hierarchy level.

We can also detect some qualitative differences in the attention maps at different resolutions: The
entropy, i.e. how much the attention is concentrated or spread across different tokens, changes
significantly between levels. This is not an artifact of the pretrained BERT model, but appears to be
learned during fine-tuning.

In Figure 4, we analyse the flow of information and visualize how much processing is happening in a
given layer with respect to the [CLS] token. We rely on projection weighted canonical correlation
analysis [34] for this task. This allows to compare the representations at different layers in a way that
is invariant to any linear transformations.

We primarily make two observations from Figure 4. First, we observe that [CLS] token embeddings
of layers 6, 8, 10 and 12 are more closely related in CascadeXML than in LightXML. This is expected
as LigthXML only trains the (meta-)label weight vectors using the [CLS] token embeddings of
the bottom layers. Because the multi-resolution training objectives differ only in granularity, many

17

5 6 7 8 9 10 11 12

3.5

4

Layer

E
nt

ro
py

Pretrained
CascadeXML

Figure 3: Entropy of the distribution of attention to the input tokens. A large value indicates that
attention is given to many different tokens, whereas a smaller value means that few tokens receive
most of the attention.

6 → 8 6 → 10 6 → 12 8 → 10 8 → 12 10 → 12

0.4

0.6

0.8

Layers

PW
C

C
A

Si
m

ila
ri

ty

Cascade
BERT
LightXML

Figure 4: PWCCA similarity between [CLS] token representations at different levels for CascadeXML
trained on Amazon-670K dataset. For this dataset, we place the weight vectors of different label
resolutions at layers 6, 8, 10 and 12.

features required to distinguish coarse meta-labels are useful in determining finer meta-labels as well.
Hence, the similarity between consecutive representations is expected to be strong. On the other
hand, when only looking at CascadeXML’s points (in blue) in Figure 4, we observe that the tasks
in the first meta-classifier and the extreme classifier are substantially different. This implies both
training objectives require different representations that cannot be provided by a LightXML-/XR-
Transformer-style model which use same attention maps (and hence, same [CLS] token embeddings)
for all resolutions.

Table 11: Recall of the shortlisting tasks.
Dataset Level 1 Level 2 Level 3

Amazon-670K 98.29 91.93 83.1
Wiki-500L 99.54 96.53 93.12

The ability to use earlier layers’ [CLS] token representation for the meta-task crucially depends on
the fact that these representations are still sufficient for achieving high recall in the shortlisting task.
As shown in Table 11, the shortlisting achieves very good recall rates. In particular, the very first
shortlist, with the “weakest” features, achieves almost perfect recall.

18

	Appendix
	Dataset Details & Evaluation Metrics
	Model Details
	Model Hyperparameters
	Ensemble Training Time

	Leveraging Sparse Features

	Visualizations and Analysis

