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Appendix A Implementation, Training, and Evaluation Details

A.1 RETINA Benchmark Software Design Principles

Reproducibility in machine learning is often hampered by the wide variety of experimental artifacts
made available in papers. Perhaps the most common approach is a GitHub dump of experimental
code lacking documentation and testing. This common practice fails to enforce a rigorous standard
across works: for example, experiment protocol on cross-validation, access to distributionally shifted
validation data, and various tweaks in optimization such as learning rate annealing.

The RETINA Benchmark is implemented in the open-sourced Uncertainty Baselines [43] repository.
All models implemented in this repository conform to explicit design principles intended to facilitate
easy extension and reproduction of dataset loading utilities, metrics, and evaluation.

Extensibility. Each model baseline (e.g., MAP, MC DROPOUT, FSVI) is implemented in its own
self-contained experiment pipeline. This minimizes external dependencies, and therefore provides
researchers and practitioners an immediate starting point for experimenting with a particular model.
Datasets are implemented as lightweight wrappers around TensorFlow Datasets [58]. Users that wish
to extend our benchmark with new datasets (e.g., clinical practitioners that wish to apply our methods
on their own diabetic retinopathy tasks) can follow our custom implementation of the APTOS [3] data
loader, which constructs the dataset from raw images and a CSV containing metadata, and applies the
preprocessing used by the winner of the EyePACS Kaggle competition [13]. Dataset implementation
can be found here.’

Framework Agnosticity. RETINA is framework-agnostic. For example, FSVI is implemented in
JAX, a variant of MC Dropout is in PyTorch [49] (though we use in this work a TensorFlow variant
to simplify TPU tuning), and other models in raw TensorFlow [1]. This interoperability means

5https ://github.com/google/uncertainty-baselines/tree/main/uncertainty_baselines/datasets
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that users can easily incorporate our datasets and evaluation utilities, including an arrangement of
robustness and uncertainty metrics such as selective prediction, out-of-distribution detection, and
expected calibration error.

Reproducibility. All models include testing, and all results are reported over multiple seeds. For
each method (e.g., MC DROPOUT or MFVI), downstream task (Country and Severity Shift), and tuning
assumption (whether or not distributionally shifted validation data is available for tuning), we sweep
over at least 32 hyperparameter configurations. Instead of using a domain-specific and limiting
tuning framework for this, we simply provide hyperparameters through Python flags, and implement
for convenience of the user the ability to specify automatic logging to TensorBoard and Weights &
Biases, an increasingly popular deep learning experiment management service [4].

A.2 Class Imbalance Adjustment

We compensate for the class imbalance discussed in Section 2 by reweighing the cross-entropy
portion of each objective function, placing more weight on the minority class based on the relative
class frequencies in each mini-batch of M samples, p(k)mini-batch [36]:

M

1 Ecross-entro (Z)
L—— oy (1), (A1)
KM ; p(k')mini-batch

where k is the class of sample i. We also tried using constant class weights, but found that this
resulted in lower overall performance.

A.3 Mean-Field Variational Inference Implementation

We employ a set of standard optimizations to improve training stability for the MFVI and RADIAL-
MFVI methods. We fix the mean of the prior to that of the variational posterior, which causes the KL
term to only penalize the standard deviation of the weight posterior, and not its mean. We use flipout
for lower-variance gradients in convolutional layers and the final dense layer [61], and KL annealing
using a cyclical schedule, following [7]. Finally, for RADTAL-MFVI, the prior’s standard deviation is

by default set to the He initializer standard deviation /2/fan_in [45].

A.4 Uncertainty Estimation and Related Work

The Monte Carlo estimator used to computed the total uncertainty is biased but consistent and
commonly used in practice [6, 10, 19]. A model’s aleatoric uncertainty, E[H(p(y. | f(x4;0)))] is
estimated analogously, and the epistemic uncertainty can then be computed as the difference between
the total and the aleatoric predictive uncertainty estimates.

Some other works consider uncertainty estimation in medical imaging. Wang et al. [60] uses test-
time augmentation for uncertainty estimation, but captures only aleatoric uncertainty. [44, 51]
considers uncertainty estimation with a Monte Carlo dropout model but does not isolate how their
various measures of uncertainty correspond to epistemic or aleatoric uncertainty. None of the above
works contribute and open-source tasks designed to emulate real-world distribution shifts, nor do
they implement and benchmark a significant number of baseline uncertainty quantification models
considering both aleatoric and epistemic uncertainty.

A.5 Receiver Operating Characteristic Curves

The ROC curve (e.g., see Figure 5(a) and (b)) illustrates the diagnostic ability of a binary classification
system as a function of the discrimination threshold. The curve is created by plotting the true positive
rate (that is, the sensitivity) against the false positive rate (that is, 1 — specificity). The quality of the
ROC curve can be summarized by the area under the curve, which ranges from 0.5 (chance level) to
1.0 (perfect classification).

A.6 Selective Prediction Curves

For the purposes of selective prediction, a model with optimal uncertainty estimates on a given dataset
would have uncertainty perfectly correlate rank-wise with the model error. For example, the image on
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which the model has the highest error should be assigned the highest uncertainty, the image with the
second highest error should be assigned the second highest uncertainty, and so on. On the other hand,
the worst possible uncertainty estimates are random, which would be uninformative to referral.

Finally, we explain in more detail the dip observed at the right side of selective prediction curves
using AUC as the base metric (e.g., Figure 5(c) and (d)). At relatively high threshold values 7, models
begin to refer examples on which they are both confident and correct. This results in the selective
prediction curve decreasing. At the highest 7 values (the last few examples), for many models, nearly
all remaining predictions are correct with high certainty, and the AUC increases.

A.7 Hyperparameter Tuning

We provide full tuning details so that users of RETINA will be able to reproduce our results.

All tuning scripts across all methods, tasks (Country and Severity Shift), and tuning procedures
(on in-domain validation AUC and area under the selective prediction accuracy curve using the
joint validation dataset, described in Appendix B.3) are documented in the Uncertainty Baselines
repository.°

We tuned each model with a quasi-random search on several hyperparameters including learning rate,
momentum, ¢» regularization, and method-specific variables including dropout rate and variational
posterior initializations. We used a minimum of 32 trials per model. Because of the large size of the
input data and significant expense of multiple Monte Carlo samples at training time for some of the
variational methods (in particular, MFVI, RANK-1, and RADIAL-MFVI), we were unable to achieve
a large batch size with multiple Monte Carlo samples at training time. With a single Monte Carlo
sample at training time, we were able to fit more reasonable batch sizes (> 64) and found this to
significantly improve convergence and performance on validation metrics. We attribute this to the
batch size increase and the usage of variance reduction techniques such as flipout layers [61], which
mitigate the impact of only using a single Monte Carlo sample at training time.

We considered model selection for each of the models on each of the two tasks (Country and Severity
Shift) using two different validation metrics: in-domain validation AUC, and area under the accuracy
referral curve constructed using both in-domain and distributionally shifted validation data. We
describe the reasoning behind the latter metric in Appendix B.3. We used this validation performance
to select the best hyperparameter setting and retrained a configuration for each combination of model,
task, and validation tuning metric for 6 random seeds. We evaluated single models by averaging
performance over those seeds, and evaluated ensembles by randomly sampling ensembles of size 3
without replacement from the 6 available models, and averaging over 6 such ensemble constructions.
As described in Section 6.1, for evaluation, we use five Monte Carlo samples per model to estimate
predictive means (e.g., the MC DROPOUT ENSEMBLE with K = 3 ensemble members uses a total of
S = 15 Monte Carlo samples).

Compute Resources. The majority of methods were tuned on TPU v2-8 nodes. MFVI had particu-
larly high memory requirements which required the use of TPU v3-8 nodes to achieve a reasonable
batch size and stable training. Evaluation was performed on NVIDIA A100 GPUs with 40 GB mem-
ory, though GPUs with standard sizes (e.g., >6 GB) will be sufficient to run evaluation and inference
with the models in the benchmark, e.g., using the model checkpoints. Approximately 100 TPU
days and 20 GPU days were used collectively across the initial hyperparameter tuning, fine-tuning
with selected configurations, and evaluation across the various tasks. Though a significant cost, we
hope that our open-sourcing of all code along with hyperparameter sweep details and checkpoints
will significantly decrease future consumption of researchers interested in designing deep models
for diabetic retinopathy, along with Bayesian deep learning researchers using our configurations to
inform their hyperparameter tuning, or our generally applicable evaluation utilities.

6https ://github.com/google/uncertainty-baselines/tree/main/baselines/diabetic_retinopathy_detection
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A.8 EyePACS and APTOS Input Data Examples
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(b) Processed and augmented samples from the EyePACS Diabetic Retinopathy
dataset, following the procedure of the Kaggle competition winner [13].

Figure 6: Illustrative examples of retina images in the original EyePACS dataset (top) and after preprocessing
(bottom).
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Figure 7: Illustrative examples of retina images in the APTOS dataset. The images are collected using different
measurement devices than the EyePACS dataset. Note the artifacts present in the images including blur, low
background lighting, and effects around the edges of the retina.



Appendix B Further Empirical Results

B.1 Predictive Uncertainty Histograms

In the figures below, predictive uncertainty (cf. Section 4) is displayed as a normalized density for
correct (blue) and incorrect (red) predictions. All histograms are normalized and are displayed with
the same range on the x- and y-axis. Some bars of the histograms are cut off because the plots are
zoomed-in along the y-axis to improve legibility. See Section 2.5 for a description of predictive
uncertainty histograms as a model diagnostic tool, including a discussion of the expected behavior of
reliable models. See Section 6 for a discussion of the results for single models on the shifted datasets.
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Figure 8: Clinical Label Binning — Severity Shift, Single Models. We analyze predictive uncertainty for each
underlying clinical severity label (rows, label on right) and each uncertainty quantification method (columns).
Here, we consider both the in-domain and distributionally shifted Severity Shift evaluation datasets, and single
models (K = 1). Predictive uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a
normalized density for correct (blue) and incorrect (red) predictions.
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Figure 9: Clinical Label Binning — Country Shift (Shifted), Single Models. We analyze predictive uncer-
tainty for each underlying clinical severity label (rows, label on right) and each uncertainty quantification method
(columns). Here, we consider the distributionally shifted Country Shift evaluation dataset (APTOS), and single
models (K = 1). Predictive uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a
normalized density for correct (blue) and incorrect (red) predictions.
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Figure 10: Clinical Label Binning — Country Shift (In-Domain), Single Models. We analyze predictive
uncertainty for each ground-truth clinical label (rows) and each uncertainty quantification method (columns).
Here, we consider the in-domain Country Shift evaluation dataset, and single models (X = 1). Predictive
uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a normalized density for correct
(blue) and incorrect (red) predictions.

MAP (Deterministic) MC DROPOUT FSVI RANK-1 MFVI RADIAL-MFVI

Density

Density

Density

CECEL
LELEE
EECEE

=)
=
o
@
o
=
o
138
o
o
=)
@
o
=)
=)
@
o
o
o
@
=)
=
o
=

Density

1474
LELEP
NN NS

Figure 11: Clinical Label Binning — Severity Shift, Ensembles. We analyze predictive uncertainty for each
ground-truth clinical label (rows, label on right) and each uncertainty quantification method (columns). Here,
we consider both the in-domain and distributionally shifted Severity Shift evaluation datasets, and ensembles
(K = 3). Predictive uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a normalized
density for correct (blue) and incorrect (red) predictions.
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Figure 12: Clinical Label Binning — Country Shift (Shifted), Ensembles. We analyze predictive uncertainty
for each ground-truth clinical label (rows, label on right) and each uncertainty quantification method (columns).
Here, we consider the distributionally shifted Country Shift evaluation dataset (APTOS), and ensembles (K = 3).
Predictive uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a normalized density for
correct (blue) and incorrect (red) predictions.

MAP (Deterministic) MC DROPOUT FSVI RANK-1 MFVI RADIAL-MFVI

Density

Density

EECCE
EECELC

Density

Density

LCLEL
CECCE
-l 4 VNN

o

.0 0.5 .0 0.5

o

.0 0.5

=

.0 0.5 0.0 0.5

o

.0 0.5

o

Figure 13: Clinical Label Binning — Country Shift (In-Domain), Ensembles. We analyze predictive uncer-
tainty for each ground-truth clinical label (rows, label on right) and each uncertainty quantification method
(columns). Here, we consider the in-domain Country Shift evaluation dataset (APTOS), and ensembles (K = 3).
Predictive uncertainty, as measured by total uncertainty (cf. Section 4), is displayed as a normalized density for
correct (blue) and incorrect (red) predictions.



B.2 Tuning without Distributionally Shifted Data: Country Shift Accuracy.

We provide referral curves on accuracy for Country Shift with in-domain validation tuning in Fig-
ure 14.
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(b) Selective Prediction Accuracy: Country Shift
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(c) Selective Prediction Accuracy: Joint

"""" Deep Ensemble ===« MC Dropout Ensemble === FSVI Ensemble === Radial Ensemble -+ Rank-1 Ensemble ==+ MFVI Ensemble
—— MAP —— MC Dropout —— FSVI —— Radial BNN —— Rank-1 BNN —— MFVI

Figure 14: Selective Prediction: Country Shift (Accuracy). We use the binary accuracy for in-domain
diagnosis on the EyePACS [13] test set (a), for changing medical equipment and patient populations on the
shifted APTOS [3] evaluation set (b), and on a joint dataset composed of both the in-domain and APTOS datasets
(¢). Shading denotes one standard error.
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B.3 Tuning in the Presence of Distributionally Shifted Data

In prior work in Bayesian deep learning, little emphasis has been placed on the standardization of
a training and evaluation protocol; in particular, the assumption of whether a model has access to
distributionally shifted validation data for hyperparameter tuning is often changed on an ad-hoc basis
across studies.

This is a significant assumption, and researchers in Bayesian deep learning should be expected to
outwardly declare their tuning procedure—in particular access to distributionally shifted data—as
is done in works such as Prior Networks [39, 40]. This will permit researchers and practitioners to
more fairly compare the performance of methods based on results reported in their respective papers.

We investigate what impact this assumption—access to distributionally shifted validation data—has
on downstream performance across all our tasks, and on held-out in-domain, distributionally shifted,
and joint (in-domain combined with distributionally shifted) evaluation datasets. We find that it has
a significant impact on metrics commonly used to assess robustness and uncertainty quantification,
including area under referral curves (Figure 15) and expected calibration error.

Joint Validation Metric. To consider the performance of our baseline models under this assump-
tion, we construct a metric that conveys both in-domain and distributionally shifted performance. In
particular, we construct an accuracy referral curve on a combined set of in-domain and distributionally
shifted validation examples. Because the in-domain validation dataset is significantly larger than the
distributionally shifted dataset for both of the tasks, we upsample the shifted dataset to avoid the
signal from the in-domain examples overwhelming that from the shifted examples. We construct an
upsampled shifted dataset by first duplicating the shifted validation dataset as many times as possible
without exceeding the size of the in-domain validation dataset, and then randomly sampling examples
from the shifted validation dataset without replacement until the upsampled shifted dataset contains
the same number of examples as the in-domain validation dataset. We construct the “balanced”
joint validation dataset as the union of the in-domain validation and upsampled shifted datasets. We
construct a “balanced” accuracy referral curve using this balanced joint validation dataset, sweeping
over 7 to obtain all possible partitions of the dataset into “referral” and “non-referral”. We then tune
on the area under this curve.
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Figure 15: Hyperparameter Tuning on Distributionally Shifted Data. Accuracy referral curve on the
distributionally shifted APTOS dataset in the Country Shift task. Left: Performance of various methods
when using the in-domain validation AUC for hyperparameter tuning. Right: The same methods when using
the proposed balanced referral metric evaluated over a combination of in-domain and distributionally shifted
validation data. Even without permitting a model to explicitly train on distributionally shifted data, the model
selection process results in significantly improved predictive performance and quality of uncertainty estimates,
as demonstrated by curves for respective methods shifted upwards, and steeper slopes in each curve as the first
~ 50% of cases are referred to an expert, respectively.
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B.4 Complete Tabular Results

We report additional tabular results for standard predictive performance and robustness (expected
calibration error), referral metrics, and out-of-distribution detection across the Severity and Country
Shift tasks, considering hyperparameter tuning on either in-domain validation AUC or the joint
validation metric (cf. Appendix B.3), in Tables 2-11.

Table 2: Severity Shift. Prediction and uncertainty quality of baseline methods in terms of area under the
receiver operating characteristic curve (AUC) and classification accuracy, as a function of the proportion of data
referred to a medical expert for further review.

No Referral 50% Data Referred 70% Data Referred
Method AUC (%) 1 Accuracy (%)t AUC(%)7T Accuracy (%)1 AUC(%)T Accuracy
In-Domain (No, Mild, or Moderate DR, Clinical Labels {0,1,2})
MAP (Deterministic) 82.0+1.3 87.9+0.5 83.1+2.4 95.240.4 88.4+2.5 96.0+0.3
DEEP ENSEMBLE 85.1+0.9 89.3+0.3 82.0+1.1 96.3+0.3 85.3+1.2 97.3+0.2
MC DROPOUT 89.240.3 90.5+0.1 92.8+0.7 97.240.0 95.440.5 97.8+0.0
MC DROPOUT ENSEMBLE 90.6+0.0 91.4+0.1 93.1+0.3 97.8+0.0 95.7+0.2 98.2+0.1
FSVI 83.240.4 89.5+0.2 81.2+1.1 95.6+0.1 86.4+0.9 96.4+0.2
FSVI ENSEMBLE 86.240.1 90.0+0.1 81.240.4 96.4+0.0 86.1+0.4 97.3+0.0
RADIAL-MFVI 76.9+2.0 86.7+0.5 69.0+5.2 93.540.6 70.1+6.2 94.6+0.6
RADIAL-MFVI ENSEMBLE 81.3+1.6 87.4+0.4 66.3+3.0 95.1+0.5 66.2+3.9 96.1+0.5
RANK-1 81.6+2.0 88.3+0.7 79.4+3.7 95.1+0.6 82.9+3.7 96.0+0.5
RANK-1 ENSEMBLE 85.141.4 89.3+0.5 75.6+1.3 96.1+0.4 79.1+1.7 96.9+0.3
MFVI 81.3+1.7 87.8+0.7 79.5+3.1 95.0+0.5 82.6+3.4 95.9+0.4
MFVI ENSEMBLE 85.240.8 89.4+0.4 T7.7+1.1 96.1+0.2 80.3+1.3 96.8+0.2
Severity Shift (Severe or Proliferate DR, Clinical Labels {3, 4})
MAP (Deterministic) — 74.442.5 — 93.2+3.3 - 98.6+1.4
DEEP ENSEMBLE — 74.5+1.6 - 89.8+1.3 — 97.0+0.9
MC DROPOUT — 86.4+1.6 — 99.5+0.2 — 100.0+0.0
MC DROPOUT ENSEMBLE - 87.4+0.3 — 99.4+0.1 - 100.0+o0.0
FSVI — 68.6+1.2 — 88.5+1.3 - 99.6+0.3
FSVI ENSEMBLE - 69.3+0.3 — 86.3+0.6 — 99.4+0.2
RADIAL-MFVI — 52.0+9.9 — 59.3+13.9 — 63.9414.3
RADIAL-MFVI ENSEMBLE — 54.4+6.1 — 58.0+9.8 - 60.6+10.7
RANK-1 — 67.5+4.5 — 82.645.5 — 92.7+2.9
RANK-1 ENSEMBLE — 69.7+2.4 — 81.6+2.1 - 92.0+1.7
MFVI — 71.5+3.0 - 86.7+4.0 — 94.1+2.6
MFVI ENSEMBLE - 73.5+1.6 — 87.4+0.9 - 94.2+0.8

Table 3: OOD Detection Metrics. We assess model uncertainty quantification across both shift tasks by using
predictive entropy to detect out-of-distribution data.

Country Shift Severity Shift

Method AUROC (%) 1T AUPRC (%)T AUROC (%)1T AUPRC (%)
MAP (Deterministic) 37.6+1.7 5.240.2 44.0+3.5 9.340.8
DEEP ENSEMBLE 41.7+1.2 5.6+0.2 56.8+1.2 12.4+0.4
MC DROPOUT 37.640.9 5.14+0.1 34.9+1.4 7.1+0.5
MC DROPOUT ENSEMBLE 39.540.3 5.340.0 38.3+1.2 7.7+0.3
FSVI 42.2+0.9 5.74+0.1 49.0+1.0 11.6+0.4
FSVI ENSEMBLE 43.8+0.6 5.940.1 54.5+0.5 14.5+0.3
RADIAL-MFVI 39.242.7 5.340.3 66.8+6.2 19.9+43.4
RADIAL-MFVI ENSEMBLE 36.540.8 4.940.1 79.7+3.4 28.0+2.9
RANK-1 44.3+2.4 6.0+0.3 54.5+4.4 12.8+1.5
RANK-1 ENSEMBLE 48.9+1.3 6.4+0.2 65.640.9 17.4+0.7
MFVI 51.240.8 6.7+0.1 51.3+3.6 10.4+0.9
MFVI ENSEMBLE 52.4+0.4 6.940.1 60.4+1.0 13.5+0.6
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Table 4: Standard Metrics, Country Shift. We assess model predictive performance via standard metrics, and
evaluate uncertainty quantification using expected calibration error on in-domain, shifted, and joint datasets
(composed of the in-domain and shifted dataset, with no explicit balancing).

NLL | Accuracy (%) 1 AUPRC (%) 1t
Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain Shifted Joint
MAP (Deterministic) 1.27+0.08 2.68+0.18 1.36+0.07 88.6+0.7 86.2+0.5 88.5+0.6 75.2+2.2 89.7+0.3 T7.2+1.9
DEEP ENSEMBLE 0.60=0.00 1.60+0.16 0.67+0.01 90.3+0.3 87.5+0.1 90.1+0.2 79.9+0.5 91.1+01  81.0+0.4
MC DROPOUT 0.29+0.00 1.07+0.03 0.34+0.00 90.9+0.1 86.8+0.2 90.6+0.1 82.6+0.2 88.8+0.5 82.9+0.2
MC DROPOUT ENSEMBLE 0.25-+0.00 0.92+0.02  0.29+0.00 91.6+0.0 87.6:x0.1 91.4+0.0 84.4+0.0 88.3+0.3  84.3+0.1
FSVI 0.35+0.01 0.72+0.05 0.38+0.01 89.8+0.0 87.6+0.4 89.6+0.0 T7.7+0.1 88.3+0.5 78.9+0.0
FSVI ENSEMBLE 0.28+0.01 0.58+0.01  0.30+0.01 90.6+0.0 88.9+0.1 90.5+0.0 80.7+0.1 88.9+0.2 81.3+0.0
RADIAL-MFVI 0.56+0.07 0.70+0.09 0.57+0.07 T4.2+4.5 71.8+4.2 T4.1+45 66.0+0.9 84.8+0.8 69.0+0.8
RADIAL-MFVI ENSEMBLE 0.55+0.02 0.65+0.03 0.56+0.02 T4.2+1.4 69.0+1.7 73.8+1.4 68.9+0.4 86.1+0.1 71.6+0.3
RANK-1 0.99+0.07 1.85+0.20 1.05+0.05 87.7+0.7 86.2+0.5 87.6+0.7 71.6+2.5 88.8+0.5 T4.1+2.1
RANK-1 ENSEMBLE 0.49+0.04 0.96-£0.06 0.52+0.03 89.3+0.4 88.3+0.1 89.2+0.4 78.0x1.3 89.6+03  79.3x1.1
MFVI 0.91+0.02 1.26+0.07  0.93x0.02 85.7x0.1 84.1+0.3 85.6+0.1 66.7+0.3 85.9+02  69.7x0.3
MFVI ENSEMBLE 0.53+0.00 0.72+0.03 0.54:£0.00 87.8+0.0 87.0+0.2 87.7+0.0 71.2x0.1 87.4+0.1 73.7x0.1
AUROC (%) 1 ECE |

MAP (Deterministic) 87.441.2 92.2+0.2 88.3+1.1 0.10+0.01 0.13+0.00 0.10+0.01

DEEP ENSEMBLE 90.3+0.2 94.2+0.2 90.9+0.2 0.06+0.00 0.08+0.00 0.06+0.00

MC DROPOUT 91.4+0.1 94.0+0.2 91.9+0.1 0.03+0.00 0.09+0.00 0.03+0.00

MC DROPOUT ENSEMBLE 92.5+0.0 94.1+0.1 92.9+0.0 0.02+0.00 0.0940.00  0.02+0.00

FSVI 88.5+0.1 94.1+0.1 89.4+0.0 0.05+0.01 0.08+0.00 0.06=0.01

FSVI ENSEMBLE 90.3+0.1 94.6+0.1 90.9+0.0 0.03x0.00 0.07+0.00  0.03+0.00

RADIAL-MFVI 83.2+0.5 90.7+0.6 84.3+0.4 0.09+0.03 0.14+0.04 0.09+0.03

RADIAL-MFVI ENSEMBLE 84.9+0.1 91.8+0.1 85.9+0.1 0.06=+0.01 0.10+0.02 0.05+0.01

RANK-1 85.6+1.3 92.5+0.2 86.7+1.2 0.10+0.01 0.11+0.00 0.10+0.01

RANK-1 ENSEMBLE 89.5+0.8 94.1+0.2 90.2+0.7 0.05+0.00 0.06=+0.00 0.05+0.00

MFVI 83.3+0.2 91.4+0.2 84.6+0.2 0.11+0.00 0.13+0.00 0.12+0.00

MFVI ENSEMBLE 85.4+0.0 93.2+0.1 86.6+0.0 0.06=+0.00 0.06+0.00  0.06+0.00

Table 5: Standard Metrics, Severity Shift. We assess model predictive performance and expected calibration
error on in-domain, shifted, and joint datasets (composed of the in-domain and shifted dataset, with no explicit
balancing).

NLL | Accuracy (%) T AUPRC (%) 1
Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain  Shifted Joint
MAP (Deterministic) 1.27+0.07 2.27+0.15 1.35+0.08 87.9+0.5 T4.4+2.3 86.8+0.6 60.8+2.4 - 75.2+1.7
DEEP ENSEMBLE 0.62+0.02 1.03+0.06  0.65+0.03 89.3+0.3 T4.5+1.5 88.1+0.4 65.6+1.5 - 79.2+1.1
MC DROPOUT 0.29+0.00 0.33+0.02 0.29+0.00 90.5+0.1 86.4+1.5 90.1+0.1 74.8+0.6 — 85.1+0.3
MC DROPOUT ENSEMBLE 0.25+0.00 0.28+0.00 0.25+0.00 91.4+01 87.4+03 91.1+01 77.0+0.1 - 86.7+0.1
FSVI 0.36+0.01 0.92+0.05  0.41+0.02 89.5+0.1 68.6+1.1 87.8+0.2 64.7+0.8 - 77.6%0.5
FSVI ENSEMBLE 0.31+0.00 0.76+0.01 0.34+0.00 90.0+0.1 69.3+0.3 88.4+0.1 70.0+0.2 - 81.6+0.1
RADIAL-MFVI 0.37+0.01 0.76+0.12  0.40+0.02 86.7+0.4 52.0+9.0 83.9+1.1 49.1+35 - 66.9+2.9
RADIAL-MFVI ENSEMBLE 0.3540.01 0.73x0.07  0.38+0.01 87.4+0.4 54.445.5 84.8+0.8 56.2+2.5 - 73.5+2.0
RANK-1 0.56+0.06 1.14+0.15 0.61+0.07 88.3+0.6 67.5+4.1 86.6+0.9 59.4+3.7 - T4.142.5
RANK-1 ENSEMBLE 0.29+0.01 0.60+0.04  0.32+0.01 89.3+0.4 69.7+2.2 87.7x0.5 66.5+2.5 - 80.0+1.6
MFVI 0.66+0.11 1.26+0.21 0.71+0.11 87.8+0.7 T1.5+2.7 86.5+0.8 59.0+3.2 - 73.7+2.3
MFVI ENSEMBLE 0.29+0.01 0.55+0.02  0.31+0.01 89.4+0.4 73.5+1.4 88.2+0.4 66.4+1.6 - 79.7+11
AUROC (%) 1 ECE |

MAP (Deterministic) 82.0+1.2 - 86.3+1.0 0.11+0.00 0.23+0.02 0.12+0.01

DEEP ENSEMBLE 85.1+0.8 — 88.9+0.6 0.06+0.00 0.15+0.01 0.07+0.00

MC DROPOUT 89.2+0.3 - 92.0+0.2 0.02+0.00 0.06+0.01 0.02+0.00

MC DROPOUT ENSEMBLE 90.6+0.0 — 93.1+00  0.01+0.00 0.03+0.00 0.01+0.00

FSVI 83.2+0.4 — 86.9+0.3 0.06+0.00 0.23+0.01 0.07+0.00

FSVI ENSEMBLE 86.2+0.1 - 89.4+0.0 0.04+0.00 0.19+0.00 0.06+0.00

RADIAL-MFVI 76.9+1.8 - 82.2+1.6 0.05+0.01 0.23x0.07  0.04+0.01

RADIAL-MFVI ENSEMBLE 81.3+1.4 - 86.2+1.2 0.07+0.01 0.15+0.04 0.06+0.01

RANK-1 81.6+1.8 - 85.8+1.4 0.06+0.01 0.22+0.03  0.07+0.02

RANK-1 ENSEMBLE 85.1£1.3 - 89.1+0.9 0.02+0.00 0.12+0.02 0.03+0.00

MFVI 81.3+1.6 - 85.4+1.3 0.07+0.01 0.19+0.03 0.08+0.02

MFVI ENSEMBLE 85.2+0.7 - 88.9+0.6 0.02+0.00 0.10+0.01 0.02+0.00
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Table 6: Expert Referral Metrics, Country Shift. We assess model predictive performance and uncertainty
quantification in the context of expert referral. We construct referral curves on a variety of metrics—AUC,
Accuracy, NLL and AUPRC—by sweeping over the referral thresholds 7, obtaining a point for each possible
partition of the dataset into “referred” and “non-referred”. We report the area under the referral curve for metric
X as R-X AUC. All methods are tuned according to the area under the ROC curve on the in-domain dataset.
The Balanced evaluation dataset is constructed using the procedure described in Appendix B.3.

R-AUROC AUC 1 R-Accuracy AUC 1
Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced
MAP (Deterministic) 89.2+0.9 T4.7+1.7 88.8+0.5 88.8+0.5 94.9+0.4 87.3+0.8 94.0+0.3 89.9+0.5
DEEP ENSEMBLE 91.7+0.2 80.7+1.5 91.8+0.1 91.8+0.1 96.5+0.1 91.0+0.7 95.9+0.1 92.9+0.5
MC DROPOUT 94.7+0.2 79.7+0.3 93.9+0.2 93.9+0.2 96.8+0.0 88.9+0.2 95.9+0.0 91.7+0.1
MC DROPOUT ENSEMBLE 95.4+0.1 79.4+0.1 94.4+0.1 94.4+0.1 97.3+0.0 89.0+0.2 96.4+0.0 92.0+0.1
FSVI 91.6+0.2 83.7+1.0 92.0+0.1 92.0+0.1 95.9+0.0 90.6+0.2 95.3+0.1 92.5+0.2
FSVI ENSEMBLE 92.6+0.1 83.2+0.4 92.9+0.1 92.9+0.1 96.6+0.0 90.9+0.1 95.9+0.0 93.0+0.1
RADIAL-MFVI 87.9+1.0 T7.7+1.3 88.0+1.1 88.0+1.1 82.4+5.0 81.9+2.7 82.3+4.8 81.8+3.6
RADIAL-MFVI ENSEMBLE 89.5+0.3 76.2+0.3 89.1+0.3 89.1+0.3 83.4+1.4 80.8+0.9 83.0+1.4 81.2+1.2
RANK-1 87.8+1.3 81.242.2 88.4+0.9 88.4+0.9 94.6+0.5 89.7+0.7 94.0+0.3 91.4+0.3
RANK-1 ENSEMBLE 90.3+0.9 88.3+1.0 91.5+0.7 91.5+0.7 96.2+0.3 92.8+0.2  95.9+0.3 94.1+0.2
MFVI 86.9+0.4 88.7+0.8 88.2+0.3 88.2+0.3 93.7+0.1 90.5+0.4 93.5+0.1 91.9+0.2
MFVI ENSEMBLE 88.1+0.3 92.0+0.4 89.7+0.2 89.7+0.2 94.8+0.0 92.4+0.2 94.6+0.0 93.5+0.1
R-NLL AUC | R-AUPRC AUC 1
MAP (Deterministic) 1.22+0.09 4.10+0.33 1.54+0.04 3.09+0.22 86.4+2.2 92.3+0.3 87.7+1.6 87.7+1.6
DEEP ENSEMBLE 0.54+0.01 2.61+0.30 0.79+0.04 1.87+0.21 87.6+0.8 94.0+0.3 89.1x05 89.1+0.5
MC DROPOUT 0.19-+0.01 1.87+0.08 0.36=+0.01 1.22+0.04 92.1+0.3 91.6+0.6 91.5+0.2 91.5+0.2
MC DROPOUT ENSEMBLE 0.14+0.00 1.61+0.05 0.29+0.01 1.04+0.03 92.8+0.1 91.0+0.4 91.9+0.1 91.9+0.1
FSVI 0.24+0.01 1.13+0.12 0.33+0.02 0.79+0.09 86.7+0.4 91.0+0.6 87.6+0.3 87.6+0.3
FSVI ENSEMBLE 0.17+0.01 0.90+0.06 0.24+0.01 0.60+0.03 87.8+0.2 91.4+0.3 88.6+0.2 88.6+0.2
RADIAL-MFVI 0.50+0.11 0.68+0.11 0.51+0.11 0.61+0.11 80.6+1.1 88.7+0.7 82.2+1.0 82.2+1.0
RADIAL-MFVI ENSEMBLE 0.44+0.02 0.59+0.05 0.46-+0.03 0.54+0.04 83.0+0.4 89.3+0.1 84.1+0.2 84.1+0.2
RANK-1 0.93+0.08 2.92+0.35 1.16+0.03 2.2240.22 81.3+3.1 92.7+0.3 83.8+2.4 83.8+2.4
Rank1 Ensemble 0.41+0.05 1.58+0.11 0.5440.04 1.15+0.07 82.7+1.8 93.5+0.2 85.3+1.4 85.3+1.4
MFVI 0.79-+0.02 1.92+0.13 0.89-+0.03 1.44+0.08 77.9+0.9 91.1+0.1 80.6+0.7 80.6+0.7
MFVI ENSEMBLE 0.47+0.01 1.22+0.05 0.53+0.01 0.89+0.03 79.3+0.6 91.1+0.1 82.0+0.4 82.0+0.4

Table 7: Expert Referral Metrics, Severity Shift. We assess model predictive performance and uncertainty
quantification in the context of expert referral. We construct referral curves on a variety of metrics—AUC,
Accuracy, NLL and AUPRC—by sweeping over the referral thresholds 7, obtaining a point for each possible
partition of the dataset into “referred" and “non-referred". We report the area under the referral curve for metric
X as R-X AUC. All methods are tuned according to the area under the ROC curve on the in-domain dataset.
The Balanced evaluation dataset is constructed using the procedure described in Appendix B.3.

R-AUROC AUC 1 R-Accuracy AUC 1
Method In-Domain Shifted Joint Balanced  In-Domain Shifted Joint Balanced
MAP (Deterministic) 84.9+1.6 — 88.3+0.8 88.3+0.8 94.2+0.4 90.4+1.9 94.2+0.4 93.1+1.0
DEEP ENSEMBLE 85.1+1.0 — 90.2+0.6 90.2+0.6 95.7+0.3 89.3+1.0 95.5+0.3 93.4+0.5
MC DROPOUT 93.2+0.6 - 95.2+0.3 95.2+0.3 96.5+0.0 97.1+0.6 96.7+0.0 97.0+0.3
MC DROPOUT ENSEMBLE 93.6+0.2 — 95.7+0.1 95.7+0.1 97.1+0.1 97.3+02 97.2+0.0 97.4+00
FSVI 84.4+0.8 - 89.5+0.5 89.5+0.5 95.240.1 87.2+0.9 94.8+0.2 92.04+0.4
FSVI ENSEMBLE 84.8+0.3 — 90.4+0.1 90.4+0.1 96.0+0.0 86.5+0.3 95.6+0.0 92.5+0.1
RADIAL-MFVI 72.3+4.8 — 78.2+4.8 78.2+4.8 92.9+0.6 61.7+12.7 92.0+0.9 83.8+3.9
RADIAL-MFVI ENSEMBLE 70.6+3.2 — 76.8+3.6 76.8+3.6 94.4+0.5 60.3+8.9 93.5+0.6 85.2+2.5
RANK-1 82.3+2.7 — 87.4+1.5 87.4+1.5 94.5+0.5 83.943.7 94.1+0.6 90.8+1.6
RANK-1 ENSEMBLE 80.7+1.2 — 88.1+1.0 88.1+1.0 95.6+0.4 84.5+1.7 95.3+0.4 92.0+0.8
MFVI 82.2+25 — 87.4+1.4 87.4+1.4 94.3+0.5 86.5+2.8 93.9+0.6 91.2+1.4
MFVI ENSEMBLE 81.7+1.0 — 88.9+0.7 88.9+0.7 95.6+0.2 87.6+0.9 95.2+0.2 92.6+0.4
R-NLL AUC | R-AUPRC AUC 1
MAP (Deterministic) 1.26+0.11 1.23+0.18 1.1940.09 1.10+0.11 73.2+3.5 — 85.2+2.2 85.2+2.2
DEEP ENSEMBLE 0.57+0.03 0.76+0.07 0.56-+0.03 0.60+0.05 70.2+1.8 - 84.5+1.2 84.5+1.2
MC DROPOUT 0.19+0.01 0.10+0.01 0.17+0.01 0.12+0.00 86.8+1.2 — 93.5+0.5 93.5+0.5
MC DROPOUT ENSEMBLE 0.14+0.01 0.08+0.00 0.13+0.01 0.10+0.00 87.4+04 — 94.0+02 94.0+0.2
FSVI 0.26+0.01 0.50+0.05 0.26+0.01 0.35+0.02 70.8+1.7 - 84.2+0.9 84.2+0.9
FSVI ENSEMBLE 0.19+0.00 0.44+0.01 0.20+0.00 0.28+0.00 69.6+0.9 — 84.440.4 84.4+0.4
RADIAL-MFVI 0.26+0.02 0.70+0.21 0.27+0.03 0.38+0.08 43.5+9.8 — 59.2+9.7 59.2+9.7
RADIAL-MFVI ENSEMBLE 0.24+0.01 0.72+0.13 0.25+0.01 0.37+0.04 33.7+7.0 — 50.8+8.0 50.8+8.0
RANK-1 0.49+0.09 0.77+0.20 0.48-+0.08 0.56+0.11 65.945.9 — 80.2+3.6 80.2+3.6
Rank1 Ensemble 0.18+0.01 0.39+0.04 0.18+0.01 0.24+0.02 60.9+2.5 - 79.0+1.8 79.0+1.8
MFVI 0.60+0.14 0.79+0.17 0.58+0.13 0.62+0.12 66.6+5.2 — 81.1+3.2 81.1+3.2
MFVI ENSEMBLE 0.18+0.01 0.35+0.03 0.19+0.01 0.24+0.02 63.7+1.8 — 81.1+1.1 81.1+1.1
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Table 8: Standard Metrics, Country Shift, Tuned on Joint Dataset. Here all methods are tuned according to
the joint validation metric (Appendix B.3): area under the retention—accuracy curve constructed on the balanced
joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). Ensembles
have K = 3 constituent models. We assess model predictive performance and expected calibration error on
in-domain, shifted, and joint (union of in-domain and shifted, without explicit balancing) evaluation datasets.

NLL | Accuracy (%) 1 AUPRC (%) 1
Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain  Shifted Joint
MAP (Deterministic) 1.02+0.09 2.41+0.18 1.11+0.07 89.3+0.3 87.0+0.3 89.2+0.3 T7.5+1.2 90.5402  79.2+1.0
DEEP ENSEMBLE 0.54+0.01 1.65+0.17 0.61+0.01 90.8+0.0 88.3+0.2 90.7+0.0 81.1+0.2 91.3+0.2  82.0x0.2
MC DROPOUT 0.31+0.01 0.77+0.08 0.34+0.01 90.0+0.2 87.6+0.4 89.9+0.2 81.1+0.4 87.7+0.5 82.0+0.3
MC DROPOUT ENSEMBLE ~ 0.25+0.00  0.58+0.04  0.28+0.00 91.2+0.0 88.3+0.2 91.0+0.0 83.3+0.1 87.7+04  83.7T+0.1
FSVI 0.52+0.05 0.67+0.06 0.53+0.05 88.7+0.5 88.2+0.4 88.7+0.4 75.8+0.8 88.1+1.0 77.5+0.6
FSVI ENSEMBLE 0.39+0.02 0.42+0.02  0.39+0.02 89.2+0.3 89.7+0.1 89.3+0.3 79.5+0.4 88.9+0.5  80.5+0.3
RADIAL-MFVI 0.60+0.10 0.72+0.20 0.61+0.11 85.9+0.3 85.4+0.6 85.9+0.3 66.2+0.8 87.9+0.5 69.6x0.6
RADIAL-MFVI ENSEMBLE 0.38+0.00 0.34+0.02  0.38+0.00 87.2+0.2 87.8+0.1 87.2+0.2 69.7+0.4 89.3+0.2 72.6+0.3
RANK-1 0.88+0.08 1.95+0.27  0.95+0.09 87.0+0.8 85.1+0.5 86.9+0.7 71.3+2.4 88.4+03  73.8+2.0
RANK-1 ENSEMBLE 0.40+0.02 1.02+0.11 0.44+0.02 89.1+0.4 87.1+0.3 89.0+0.4 T7.2+1.2 89.4:+0.1 78.7+1.0
MFVI 1.09+0.13 1.69+0.26  1.12+0.14 85.9+0.5 84.5+0.7 85.8+0.5 67.1+1.9 87.6+0.9  70.3+15
MFVI ENSEMBLE 0.46+0.04 0.71x0.16  0.48+0.05 88.4+0.2 86.8+0.3 88.3+0.1 73.5+0.9 89.6+0.6  75.7x0.7
AUROC (%) T ECE |

MAP (Deterministic) 88.6+0.6 93.2+0.2 89.5+0.5 0.09+0.00 0.12+0.00  0.09+0.00

DEEP ENSEMBLE 90.6+0.0 94.5+0.2 91.3+0.0 0.05:+0.00 0.09+0.00  0.05+0.00

MC DROPOUT 90.7+0.2 93.9+0.2 91.4+0.2 0.03+0.00 0.08+0.00  0.04+0.00

MC DROPOUT ENSEMBLE 91.9+0.1 94.2+0.2 92.5+0.0 0.02+0.00  0.06+0.00  0.02+0.00

FSVI 87.4+0.4 94.0+0.4 88.5+0.4 0.08+0.01 0.08-0.00 0.08+0.01

FSVI ENSEMBLE 89.6+0.2 94.6+0.2 90.4+0.2 0.06+0.01 0.05+0.00  0.06=+0.01

RADIAL-MFVI 83.0+0.4 92.7+0.4 84.3+0.3 0.09+0.01 0.07+0.02  0.09:0.01

RADIAL-MFVI ENSEMBLE 84.8+0.2 94.1+0.1 86.0+0.2 0.05+0.00  0.03+0.01  0.05+0.00

RANK-1 85.4+1.3 92.0+0.3 86.5+1.2 0.10+0.01 0.12+0.01  0.10+0.01

RANK-1 ENSEMBLE 89.0+0.8 94.0+0.2 89.8+0.7 0.05+0.00 0.07-+0.00 0.05+0.00

MFVI 83.4+0.9 91.7+0.6 84.7+0.8 0.11+0.01 0.12+0.02  0.11+0.01

MFVI ENSEMBLE 86.8+0.5 94.0+0.3 87.9+0.5 0.05:+0.00 0.06-£0.01 0.05+0.00

Table 9: Standard Metrics, Severity Shift, Tuned on Joint Dataset. Here all methods are tuned according to
the joint validation metric (Appendix B.3): area under the retention—accuracy curve constructed on the balanced
joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). Ensembles
have K = 3 constituent models. We assess model predictive performance and expected calibration error on
in-domain, shifted, and joint (union of in-domain and shifted, without explicit balancing) evaluation datasets.

NLL | Accuracy (%) 1 AUPRC (%) 1
Method In-Domain Shifted Joint In-Domain Shifted Joint In-Domain  Shifted Joint
MAP (Deterministic) 1.05+0.15 1.48+0.26 1.09+0.15 87.6+0.8 81.5+1.2 87.1+0.8 63.6+2.5 - T7.541.7
DEEP ENSEMBLE 0.39+0.05 0.49:+0.09 0.40+0.05 89.6+0.4 83.1+0.5 89.1+0.4 68.1+1.4 - 81.3+0.8
MC DROPOUT 0.32+0.02 0.31+0.03  0.32+0.02 89.0+0.8 87.541.1 88.9+0.8 72.6+2.1 - 83.541.5
MC DROPOUT ENSEMBLE 0.26+0.00 0.24+0.01 0.26+0.00 90.9+0.1 89.2+0.2 90.8+0.1 76.9+0.2 — 86.6+0.1
FSVI 0.40+0.03 0.57+0.03 0.41+0.02 87.8+0.7 79.8+1.1 87.1+0.7 63.3+2.1 - 771415
FSVI ENSEMBLE 0.29+0.00 0.41+0.01 0.30+0.00 90.0+0.2 81.5+0.5 89.4+0.2 68.7+0.7 - 81.4+0.4
RADIAL-MFVI 0.37+0.01 0.76+0.12  0.40+0.02 86.7+0.4 52.049.0 83.9+1.1 49.1+355 - 66.9+2.9
RADIAL-MFVI ENSEMBLE  0.35+0.01 0.73x0.07  0.38+0.01 87.4+0.4 544455 84.8+0.8 56.2+2.5 - 73.5+2.0
RANK-1 0.56+0.06 1.14+0.15  0.61+0.07 88.3+0.6 67.5+4.1 86.6+0.9 59.4+3.7 — T4.1+25
RANK-1 ENSEMBLE 0.29+0.01 0.60+0.04  0.32+0.01 89.3+0.4 69.7+2.2 87.7+0.5 66.5+2.5 - 80.0+1.6
MFVI 0.56+0.08 0.75+0.20  0.5740.09 83.7+0.3 79.8+2.3 83.4+0.1 55.240.6 - 71.0+0.8
MFVI ENSEMBLE 0.35+0.00 0.37+0.01 0.36+0.00 86.2+0.3 81.6+0.7 85.8+0.3 59.9+0.3 - 75.3+0.2
AUROC (%) 1 ECE |

MAP (Deterministic) 83.7+1.1 — 87.8+0.8 0.09+0.01 0.15+0.03 0.09-+0.01

DEEP ENSEMBLE 86.3+0.5 - 90.0+0.4 0.03+0.01 0.07+0.01 0.03+0.01

MC DROPOUT 88.2+1.1 - 91.1+0.9 0.02+0.00 0.06+0.01 0.02+0.01

MC DROPOUT ENSEMBLE 90.6+0.1 - 93.1+0.1 0.02:+0.00 0.02+0.00  0.0240.00

FSVI 82.8+1.0 - 86.8+0.7 0.06+0.01 0.14+0.00  0.06+0.01

FSVI ENSEMBLE 86.1+0.3 — 89.7+0.2 0.03+0.00 0.08+0.01 0.03+0.00

RADIAL-MFVI 76.9+1.8 - 82.2+1.6 0.05+0.01 0.23+0.07 0.04+0.01

RADIAL-MFVI ENSEMBLE 81.3+1.4 — 86.2+1.2 0.07+0.01 0.15+0.04  0.06+0.01

RANK-1 81.6+1.8 - 85.8+1.4 0.06+0.01 0.22+0.03 0.07+0.02

RANK-1 ENSEMBLE 85.1+1.3 - 89.1+0.9 0.02+0.00  0.12+0.02  0.03+0.00

MFVI 79.8+0.5 — 84.3+0.5 0.07+0.02 0.12+0.03  0.07+0.02

MFVI ENSEMBLE 82.3+0.1 - 86.8+0.1 0.02+0.00 0.05+0.00  0.02+0.00
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Table 10: Expert Referral Metrics, Country Shift, Tuned on Joint Dataset. We assess model predictive
performance and uncertainty quantification in the context of expert referral. Here all methods are tuned
according to the joint validation metric (Appendix B.3): area under the retention—accuracy curve constructed on
the balanced joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). We
construct referral curves on a variety of metrics—AUC, Accuracy, NLL and AUPRC—by sweeping over the
referral thresholds 7, obtaining a point for each possible partition of the dataset into “referred" and “non-referred".
The Balanced evaluation dataset is constructed using the procedure described in Appendix B.3.

R-AUROC AUC 1 R-Accuracy AUC 1
Method In-Domain Shifted Joint Balanced  In-Domain Shifted Joint Balanced
MAP (Deterministic) 90.1+0.9 76.0+1.6 89.9+0.4 89.9+0.4 95.6+0.2 88.2+0.9 94.8+0.1 90.8+0.6
DEEP ENSEMBLE 91.8+0.3 80.7+1.6 92.0+0.1 92.0+0.1 96.6+0.0 90.7+0.8 96.0+0.1 92.9+0.6
MC DROPOUT 94.4+0.5 86.1+2.1 94.5+0.3 94.5+0.3 96.6+0.1 90.8+0.8 96.0+0.1 93.0+0.5
MC DROPOUT ENSEMBLE 95.2+0.1 86.9+1.0 95.3+0.0 95.3+0.0 97.2+0.0 91.1+0.4 96.6+0.1 93.5+0.3
FSVI 88.4+1.1 90.5+1.3 90.0+0.7 90.0+0.7 95.4+0.2 92.9+0.7 95.2+0.1 93.9+0.3
FSVI ENSEMBLE 88.5+0.9 93.8+0.9 90.3+0.7 90.3+0.7 96.1+0.1 94.3+0.5 95.9+0.1 95.1+0.2
RADIAL-MFVI 82.0+2.1 91.7+1.8 84.4+1.8 84.4+1.8 93.7+0.2 92.7+0.8 93.5+0.2 92.9+0.4
RADIAL-MFVI ENSEMBLE 80.6+1.3 95.3+0.7 83.7+1.2 83.7+1.2 94.440.1 94.6+04  94.3+0.1 94.2+0.1
RANK-1 88.7+0.8 79.5+1.8 89.0+0.5 89.0+0.5 94.1+0.5 88.3+0.7 93.5+0.4 90.4+0.4
RANK-1 ENSEMBLE 91.7+0.6 84.4+0.3 92.3+0.5 92.3+0.5 96.0+0.3 90.9+0.3 95.5+0.3 93.0+0.2
MFVI 85.7+2.1 84.3+2.5 87.0+1.3 87.0+1.3 93.6+0.4 89.9+1.2 93.3+0.3 91.3+0.6
MFVI ENSEMBLE 85.0+2.4 91.5+1.8 88.0+1.4 88.0+1.4 95.2+0.3 93.7+0.9 95.0+0.2 94.2+0.5
R-NLL AUC | R-AUPRC AUC 1
MAP (Deterministic) 0.91+0.06 3.78+0.33 1.20+0.03 2.73+0.20 87.2+2.3 92.8+0.4 88.5+1.6 88.5+1.6
DEEP ENSEMBLE 0.48+0.01 2.69+0.29 0.72+0.04 1.86+0.21 87.9+1.2 93.9+04 89.4+0.7 89.4+0.7
MC DROPOUT 0.20=+0.01 1.23+0.19 0.30=+0.02 0.81+0.12 90.7+1.1 90.5+0.7 90.7+0.7 90.7+0.7
MC DROPOUT ENSEMBLE 0.14+0.00 0.87+0.09  0.21+0.01  0.57+0.06 91.7+0.4 90.1+0.6  91.5+0.2 91.5+0.2
FSVI 0.36+0.03 1.06+0.17 0.4340.04 0.77+0.10 79.2+2.7 91.0+1.4 82.2+1.7 82.2+1.7
FSVI ENSEMBLE 0.25+0.02 0.55-+0.09 0.28-+0.01 0.4240.04 77.6+2.3 91.8+0.8 81.2+1.7 81.241.7
RADIAL-MFVI 0.47+0.12 0.87+0.37 0.52+0.14 0.74+0.28 66.3+4.9 92.1+0.3 71.7+41 71.7+4.1
RADIAL-MFVI ENSEMBLE 0.26=+0.01 0.27+0.03 0.26=+0.01 0.28+0.02 61.9+3.0 92.9+0.2 68.7+2.6 68.7+2.6
RANK-1 0.88+0.11 3.14+0.47 1.10+0.13 2.29+0.35 83.8+2.1 92.1+0.2 85.5+1.6 85.5+1.6
Rank1 Ensemble 0.3240.03 1.83+0.26 0.4640.04 1.19+0.16 86.4+1.0 92.9+0.1 87.7+0.8 87.7+0.8
MFVI 1.01+0.16 2.64+0.52 1.15+0.18 1.97+0.36 76.0+5.3 92.240.6 79.9+3.6 79.9+3.6
MFVI ENSEMBLE 0.37+0.06 1.08=+0.40 0.44+0.00 0.80+0.26 71.6+5.4 93.8+0.6 78.1+3.4 78.1+3.4

Table 11: Expert Referral Metrics, Severity Shift, Tuned on Joint Dataset. We assess model predictive
performance and uncertainty quantification in the context of expert referral. Here all methods are tuned
according to the joint validation metric (Appendix B.3): area under the retention—accuracy curve constructed on
the balanced joint validation dataset (composed of the in-domain and upsampled shifted validation datasets). We
construct referral curves on a variety of metrics—AUC, Accuracy, NLL and AUPRC—by sweeping over the
referral thresholds 7, obtaining a point for each possible partition of the dataset into “referred" and “non-referred".
The Balanced evaluation dataset is constructed using the procedure described in Appendix B.3.

R-AUROC AUC 1 R-Accuracy AUC T
Method In-Domain Shifted Joint Balanced In-Domain Shifted Joint Balanced
MAP (Deterministic) 87.7+0.8 — 90.2+0.5 90.2+0.5 94.3+0.6 94.9+0.7 94.6+0.5 95.1+0.5
DEEP ENSEMBLE 88.9+0.5 — 92.6+0.2 92.6+0.2 95.7+0.2 95.6+0.2 95.9+0.2 96.1+0.2
MC DROPOUT 92.9+0.7 - 94.4+0.4 94.4+0.4 95.7+0.4 97.5+0.6 96.0+0.4 96.9+0.5
MC DROPOUT ENSEMBLE 94.2+0.2 - 95.6+0.2 95.6+0.2 96.9+0.1 98.1+0.1 97.1+00 97.7+01
FSVI 87.7+0.8 — 90.940.4 90.9+0.4 94.1+0.4 94.8+0.7 94.440.4 94.7+0.5
FSVI ENSEMBLE 89.1+0.3 - 92.6+0.2 92.6+0.2 95.9+0.1 94.8+0.3 96.0-+0.1 95.7+0.1
RADIAL-MFVI 72.3+4.8 — 78.2+4.8 78.2+4.8 92.9+0.6 61.7+12.7  92.0+0.9 83.8+3.9
RADIAL-MFVI ENSEMBLE 70.6+3.2 - 76.8+3.6 76.8+3.6 94.4+0.5 60.3+8.9 93.5+0.6 85.2+2.5
RANK-1 82.3+2.7 — 87.4+1.5 87.4+1.5 94.5+0.5 83.9+3.7 94.1+0.6 90.8+1.6
RANK-1 ENSEMBLE 80.7+1.2 - 88.1+1.0 88.1+1.0 95.6+0.4 84.5+1.7 95.3+0.4 92.0+0.8
MFVI 86.0+0.9 — 90.4+0.8 90.4+0.8 92.6+0.1 92.6+1.7 92.8+0.1 92.9+0.9
MFVI ENSEMBLE 88.2+0.1 — 92.340.1 92.3+0.1 94.1+0.1 94.9+0.3 94.340.1 94.8+0.1
R-NLL AUC | R-AUPRC AUC 1
MAP (Deterministic) 1.06+0.20 0.62+0.15 0.96+0.18 0.72+0.15 78.2+2.2 - 88.6+1.2 88.6+1.2
DEEP ENSEMBLE 0.32+0.08 0.19+0.05 0.29+0.07 0.22-+0.05 78.7+1.4 - 89.9+0.6 89.9+0.6
MC DROPOUT 0.23+0.02 0.09+0.03 0.20+0.02 0.13+0.02 86.6+1.7 — 93.3+1.0 93.3+1.0
MC DROPOUT ENSEMBLE 0.15+0.01 0.06+0.00 0.13+0.00 0.09+0.00 88.8+0.5 — 94.6+02 94.6+02
FSVI 0.34+0.03 0.20+0.03 0.3140.03 0.24+0.03 78.4+2.1 — 88.841.1 88.8+1.1
FSVI ENSEMBLE 0.19+0.00 0.15+0.01 0.18+0.00 0.15+0.00 79.2+0.9 — 89.9+0.4 89.9+0.4
RADIAL-MFVI 0.26-+0.02 0.70+0.21 0.27+0.03 0.38+0.08 43.5+9.8 - 59.2+9.7 59.2+9.7
RADIAL-MFVI ENSEMBLE 0.24+0.01 0.72+0.13 0.25+0.01 0.37+0.04 33.7+7.0 - 50.8+8.0 50.8+8.0
RANK-1 0.49-+0.09 0.77+0.20 0.48+0.08 0.56+0.11 65.9+5.9 - 80.2+3.6 80.2+3.6
Rank1 Ensemble 0.18=+0.01 0.39+0.04 0.18+0.01 0.24+0.02 60.9+2.5 - 79.0+1.8 79.0+1.8
MFVI 0.45+0.09 0.46+0.19 0.44+0.10 0.43+0.14 72.0+1.4 — 84.7+1.1 84.7+1.1
MFEVI ENSEMBLE 0.22-+0.00 0.13+0.01 0.21+0.00 0.16-0.00 76.1+0.1 - 87.8+0.1 87.8+0.1
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B.5 Effect of Class Balancing the APTOS Dataset (Figure 16 and 17).

We additionally investigated to what extent the change in class distribution—in terms of the ground-
truth clinical labels ranging from 0 (No DR) to 4 (Proliferative DR)—contributed to the higher
performance of models in AUC, and weaker performance of models in selective prediction on the
APTOS dataset (the distributionally shifted dataset in the Country Shift task) than the in-domain test
dataset.

In order to normalize for the change in class distribution, we constructed a variant of the APTOS
dataset with the same clinical class proportions as the in-domain EyePACS dataset. This was done by
randomly sampling APTOS examples from each class, weighted by the empirical class probability of
the EyePACS dataset, until reaching 10,000 samples.

In Figure 16, we see that the ROC curves of models on the rebalanced APTOS dataset is shifted
further towards the upper left as compared to the original APTOS dataset. This suggests that the class
proportions of the original APTOS dataset were not the reason why models obtained stronger ROC
performance on APTOS than the in-domain test set—on the contrary, introducing the in-domain class
proportions in the class-balanced dataset improves model performance.

In Figure 17, we observe that the selective prediction performance of models on this rebalanced
APTOS dataset is slightly better than on the original APTOS dataset, but the ordering of models does
not notably change, and performance is still significantly worse at high referral thresholds than on the
in-domain data.

This supports the claim that factors other than simply a changed class distribution, such as meaningful
shifts in equipment or patient demographics, result in both stronger predictive performance at 0% of
data referred and poor quality of uncertainty estimates in the shifted setting.
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------- Deep Ensemble === MC Dropout Ensemble ==+ FSVI Ensemble -+ Radial Ensemble -+ Rank-1 Ensemble == MFVI Ensemble
— MAP —— MC Dropout —— FSVI —— Radial BNN —— Rank-1 BNN —— MFVI

Figure 16: Class Balancing the Country Shift Dataset (ROC Curves). We consider how balancing the
proportions of the ground-truth clinical class labels—ranging from 0 (No DR) to 4 (Proliferative DR)—affects
performance on the Country Shift receiver-operating characteristic (ROC) curve. (a): ROC curve on in-domain
test data. (b): ROC curve for changing medical equipment and patient populations on the shifted APTOS [3] test
set. (¢): ROC curve on the class rebalanced APTOS dataset. Shading denotes one standard error.
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------- Deep Ensemble === MC Dropout Ensemble ==+ FSVI Ensemble -+ Radial Ensemble -+ Rank-1 Ensemble

—— MAP —— MC Dropout —— FSVI —— Radial BNN —— Rank-1 BNN

Figure 17: Class Balancing the Country Shift Dataset (Selective Prediction). We consider how balancing
the proportions of the ground-truth clinical class labels—ranging from 0 (No DR) to 4 (Proliferative DR)—
affects performance on the Country Shift selective prediction over AUC. (a): selective prediction AUC on
in-domain test data. (b): selective prediction AUC for changing medical equipment and patient populations on
the shifted APTOS [3] test set. (¢): selective prediction AUC on the class rebalanced APTOS dataset. Shading

denotes one standard error.
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B.6 Effect of Preprocessing on Downstream Tasks

Preprocessing played an important role in the EyePACS Kaggle challenge [13]. Here, we inves-
tigate how changes in preprocessing affect downstream predictive performance and uncertainty
quantification.

In the above experiments, we used the preprocessing procedure of the Kaggle competition winner
which consisted of the following steps:

1. Rescaling the images such that the retinas have a radius of 300 pixels,
2. Subtracting the local average color, computed using Gaussian blur, and finally,
3. Clipping the images to 90% size to remove “boundary effects”.

While (1) and (3) are (somewhat) standard techniques used to make the data more amenable for use
in non-convex optimization, the standard deviation hyperparameter of the Gaussian blur kernel in (2)
presupposes some amount of expert knowledge as the size of the standard deviation governs how
visible certain visual artifacts are. As such, varying it has a dramatic visual effect on the preprocessed
image, and likely required significant tuning.

In the preprocessing procedure, the standard deviation of the kernel is computed as
o = (target_radius/blur_constant), where by default, target_radius = 300 and
blur_constant = 30.

Decreasing the blur_constant results in a larger kernel standard deviation, and hence the local
average color at each pixel location is computed using a larger window. This ultimately results in
the preservation of more signal as well as more noise in the input image (because lower-frequency
patterns are subtracted). See Figure 18 for examples of unprocessed retina images along with
processed images with various blur constants.

We test the downstream performance of MAP estimation (a deterministic model), a DEEP ENSEMBLE,
MC DROPOUT, and an MC DROPOUT ENSEMBLE on the Country and Severity Shift prediction
tasks, varying the blur_constant € {5, 10, 20, 30}.

Severity Shift: Varying Blur Constant (Figure 19, Table 12). On the in-domain evaluation dataset,
higher blur_constant (corresponding to stronger smoothing) tends to perform better across MAP
and MC DROPOUT, single and ensembled models, and the various referral thresholds. However, on
the Severity Shift (distributionally shifted evaluation dataset), the MC DROPOUT variants perform
better with lower blur_constant. This highlights the importance for practitioners to test changes in
experimental settings, including preprocessing, across a variety of uncertainty quantification methods.

Country Shift: Varying Blur Constant (Figure 20, Table 13). Similarly to the Severity Shift
results, higher blur_constant tends to perform better on the in-domain evaluation data across
methods and referral rates. Notably, on the distributionally shifted APTOS data, DEEP ENSEM-
BLE outperforms MC DROPOUT ENSEMBLE, and blur_constant = 20 significantly improves
performance from the default blur_constant = 30 for DEEP ENSEMBLE between referral rates
0.4 and 0.7. For example, for DEEP ENSEMBLE at 7 = (.7, we observe 82.2 &+ 2.5 AUC with
blur_constant = 20 versus 67.4 £+ 5.6 AUC with blur_constant = 30.

34



Raw Image

10

20

30 (Default)

Figure 18: Preprocessing Examples. Input unprocessed EyePACS images (top row), and images processed
with varying blur_constant (labeled on left side of grid). Higher blur_constant corresponds to stronger
smoothing.
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Figure 19: Severity Shift, Varying Blur Constant. We consider how preprocessing affects model predictive
performance and uncertainty quantification on the in-domain test dataset composed only of cases with either
no, mild, or moderate diabetic retinopathy, and the Severity Shift evaluation set composed only of severe and
proliferate cases. Left: The receiver operating characteristic curve (ROC) for in-domain diagnosis (a) and for
a joint dataset composed of examples from both the in-domain and Severity Shift evaluation sets (b). The dot
in black denotes the NHS-recommended 85% sensitivity and 80% specificity ratios [63]. Right: Selective
prediction on accuracy in the in-domain (c) and Severity Shift (d) settings. Shading denotes standard error
computed over six random seeds. We vary the standard deviation hyperparameter of the Gaussian blur kernel
through a blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant
results in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix B.6. The
default blur_constant used in other experiments throughout this work is 30.
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Figure 20: Country Shift, Varying Blur Constant. We consider how preprocessing affects model predictive
performance and uncertainty quantification on both in-domain and distributionally shifted data. Left: The
receiver operating characteristic curve (ROC) for in-population diagnosis on the EyePACS [13] test set (a)
and for changing medical equipment and patient populations on the APTOS [3] test set (b). The dot in black
denotes the NHS-recommended 85% sensitivity and 80% specificity ratios [63]. Right: selective prediction
on AUC in the EyePACS [13] (¢) and the APTOS [3] (d) settings. Shading denotes standard error computed
over six random seeds. We vary the standard deviation hyperparameter of the Gaussian blur kernel through a
blur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results in
a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix B.6. The default
blur_constant used in other experiments throughout this work is 30.
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Table 12: Severity Shift, Varying Blur Constant. We consider how preprocessing affects downstream
prediction and uncertainty quality of baseline methods in terms of the area under the receiver operating
characteristic curve (AUC) and classification accuracy, as a function of the proportion of data referred to a
medical expert for further review. All methods are tuned on in-domain validation AUC, and ensembles have
K = 3 constituent models. We vary the standard deviation hyperparameter of the Gaussian blur kernel through
ablur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results
in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix B.6. The default
blur_constant used in other experiments is 30.

No Referral 50% Data Referred 70% Data Referred
Method AUC (%) 1 Accuracy (%)1T AUC (%)1T Accuracy (%)1T AUC(%)1T Accuracy
In-Domain (No, Mild, or Moderate DR, Clinical Labels {0,1,2})
MAP (Deterministic)-blur5 73.7+1.3 79.4+1.4 75.543.1 89.0+0.9 79.14+3.4 89.3+1.0
MAP (Deterministic)-blur10 T8.7T+1.1 84.6+0.6 80.0+2.3 93.4+0.3 84.54+2.2 94.1+0.4
MAP (Deterministic)-blur20 79.941.3 87.3+0.5 T7.243.4 94.5+0.4 80.94+4.1 95.3+0.3
MAP (Deterministic)blur30 820510 87.9s04_____ 83.0s10 05.2500 ! 884519 96.0s02
MC DROPOUT-blur5 84.8+0.4 76.1+2.3 91.4+0.3 86.0+2.4 94.1+0.4 88.6+2.2
MC DROPOUT-blur10 86.3+0.1 84.2+1.3 92.4+0.4 93.5+0.8 95.2+0.2 95.1+0.6
MC DROPOUT-blur20 88.7+0.3 90.1+0.2 92.5+0.5 97.0+0.1 95.3+0.3 97.7+0.1
MCDROPOUT-bIur30. 892502 W5z 028505 _ 072500 ! 054504 OT8:00
DEEP ENSEMBLE-blur5 78.6+0.6 84.3+0.8 75.0+2.6 93.3+0.5 75.9+3.3 94.840.3
DEEP ENSEMBLE-blur10 82.4+0.3 87.7+0.1 80.9+1.3 95.1+0.1 84.1+1.3 96.140.1
DEEP ENSEMBLE-blur20 84.2+0.8 88.6+0.3 70.9+1.1 95.8+0.2 71.441.4 96.7+0.2
DEEP ENSEMBLE-DIUI0 $.ls07 893s02 820500 _ 963:02 ! 853500 0T3s02
MC DROPOUT ENSEMBLE-blur5 86.5+0.1 79.4+1.0 93.2+0.1 90.2+1.1 95.7+0.2 92.540.9
MC DROPOUT ENSEMBLE-blurl0 87.5+0.0 86.7+0.6 93.4+0.2 95.4+0.3 96.0+0.2 96.540.3
MC DROPOUT ENSEMBLE-blur20 90.3+0.0 91.1+0.1 93.5+0.2 97.6+0.0 96.0+0.1 98.2+0.0
MC DROPOUT ENSEMBLE-blur30 90.6+0.0 91.4+0.1 93.1+0.2 97.8+0.0 95.7+0.2 98.2+0.0
Severity Shift (Severe or Proliferate DR, Clinical Labels {3, 4})
MAP (Deterministic)-blur5 — 70.8+6.2 — 81.4+7.9 — 87.7+7.9
MAP (Deterministic)-blur10 — 77.3+2.2 — 91.9+2.8 — 97.2+1.5
MAP (Deterministic)-blur20 — 69.1+4.0 — 81.8+5.3 — 88.8+4.4
MAP (Deterministic)blur30 - - Tddsio - - 03220 = 98611
MC DROPOUT-blur5 - 93.5+0.6 - 100.0+0.0 - 100.0+0.0
MC DROPOUT-blur10 - 91.0+1.3 - 99.9+0.0 - 100.0+0.0
MC DROPOUT-blur20 - 87.2+0.9 - 99.7+0.1 - 100.0+0.0
MCDROPOUT-blur30__ - - 864x1s______ - — 99.5%02_ - ____ 100.0+0.0
DEEP ENSEMBLE-blur5 - 72.0+3.9 - 85.1+3.7 - 87.543.3
DEEP ENSEMBLE-blur10 - 80.0+1.2 - 94.0+1.0 - 97.8+0.5
DEEP ENSEMBLE-blur20 - 69.8+2.1 - 82.4+1.5 - 89.1+1.5
DEEP ENSEMBLE-DIUI30 - - Tdseiz - — 808e10 = 9T0s01
MC DROPOUT ENSEMBLE-blur5 - 94.7+0.3 - 100.0+0.0 - 100.0+0.0
MC DROPOUT ENSEMBLE-blur10 - 91.9+0.7 - 100.0+0.0 - 100.0+0.0
MC DROPOUT ENSEMBLE-blur20 - 88.6:+£0.4 - 99.8+0.0 - 100.0+0.0
MC DROPOUT ENSEMBLE-blur30 - 87.4+0.3 - 99.4+0.1 - 100.0+0.0
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Table 13: Country Shift, Varying Blur Constant. We consider how preprocessing affects downstream
prediction and uncertainty quality of baseline methods in terms of the area under the receiver operating
characteristic curve (AUC) and classification accuracy, as a function of the proportion of data referred to a
medical expert for further review. All methods are tuned on in-domain validation AUC, and ensembles have
K = 3 constituent models. We vary the standard deviation hyperparameter of the Gaussian blur kernel through
ablur_constant (e.g., blur5 below corresponds to blur_constant = 5). A higher blur_constant results
in a stronger smoothing of the image as per the preprocessing procedure outlined in Appendix B.6. The default
blur_constant used in other experiments is 30.

No Referral 50% Data Referred 70% Data Referred
Method AUC (%) 1 Accuracy (%)1T AUC (%)1T Accuracy (%)1T AUC (%)1T Accuracy
EyePACS Dataset (In-Domain)
MAP (Deterministic)-blur5 82.9+0.7 80.3+0.8 89.1+0.6 91.0+0.7 91.4+0.3 91.6+0.6
MAP (Deterministic)-blur10 87.1+0.1 85.6+0.3 92.640.1 95.0+0.2 95.040.2 94.9+0.3
MAP (Deterministic)-blur20 86.7+1.0 88.0+0.5 90.5+1.4 95.6+0.3 94.440.9 96.3+0.2
MAP (Deterministic)blur30 STdsio 886500 OLleta 05.9+0 ! 049505 965502
MC DROPOUT-blur5 88.1+0.2 85.9+0.4 94.0+0.1 95.0+0.2 96.5+0.1 96.440.1
MC DROPOUT-blur10 89.0+0.2 85.5+0.5 94.7+0.2 94.9+0.3 96.9+0.1 96.340.2
MC DROPOUT-blur20 91.4+0.1 90.2+0.2 95.7+0.2 97.3+0.1 97.5+0.1 98.0+0.1
MCDROPOUT-blur30_ 9ldzor 90900 _ ___ 95302 _ 974x00__ 97.4%01 __ 98.1x00
DEEP ENSEMBLE-blur5 85.6+0.2 84.6+0.1 90.9+0.3 94.3+0.0 93.6+0.3 95.840.2
DEEP ENSEMBLE-blur10 88.8+0.0 88.0+0.1 94.2+0.1 96.2+0.0 96.4+0.1 97.340.0
DEEP ENSEMBLE-blur20 89.2+0.2 89.5+0.2 90.5+0.3 96.9+0.1 93.8+0.3 97.7+0.0
DEEP ENSEMBLE-DIUI30 W03s01_ W03s02 OL7s05 072500 ! 05.0s0.4___ 97.9:00
MC DROPOUT ENSEMBLE-blur5 89.3+0.0 87.3+0.1 94.7+0.0 95.7+0.1 97.1+0.0 96.9+0.0
MC DROPOUT ENSEMBLE-blur10 90.1+0.0 87.4+0.1 95.4+0.0 96.0+0.0 97.3+0.0 97.0+0.1
MC DROPOUT ENSEMBLE-blur20 92.4+0.0 91.2+0.0 96.2+0.1 97.7+0.0 97.9+0.0 98.340.0
MC DROPOUT ENSEMBLE-blur30 92.5+0.0 91.6+0.0 95.8+0.1 97.8+0.0 97.7+0.1 98.4+0.0
APTOS 2019 Dataset (Shifted)
MAP (Deterministic)-blur5 87.9+0.7 69.9+1.4 64.0+5.3 78.6+1.7 55.3+3.2 78.9+1.9
MAP (Deterministic)-blur10 90.2+0.2 77.0+0.7 63.1+2.0 81.1+0.6 51.1+0.0 80.0+0.6
MAP (Deterministic)-blur20 92.140.2 85.240.3 79.843.8 87.9+1.5 60.0+4.6 86.0+1.2
MAP (Deterministic)-blur30 92202 __ _ _ 86.2¢04_ _ _ _ _ 80128 87.6+11_ 55.4+33 ___ 85.4%09
MC DROPOUT-blur5 93.4+0.2 78.4+0.7 82.2+0.4 84.6+0.1 62.5+0.6 88.0+0.5
MC DROPOUT-blur10 93.3+0.2 77.3+0.9 79.7+0.3 83.3+0.3 59.6+1.0 87.240.4
MC DROPOUT-blur20 93.9+0.1 84.9+0.4 83.8+1.2 86.2+0.6 63.8+2.4 87.9+0.2
MCDROPOUT-blur30_ _ 94002 _ _ 86.8x02_ _ ___ 87dx0s_ 88.1x02 | 65.3+13 _ __ 88.2+03
DEEP ENSEMBLE-blur5 92.1+0.1 70.8+0.6 82.5+1.7 85.0+0.3 63.2+4.2 87.1+0.6
DEEP ENSEMBLE-blur10 91.8+0.0 78.8+0.3 73.5+0.3 84.5+0.1 51.1+0.0 82.0+0.1
DEEP ENSEMBLE-blur20 94.1+0.0 87.0+0.1 93.7+0.4 93.6+0.3 82.2425 91.7+0.5
DEEP ENSEMBLE-blur30_ 94202 _ 87.5%01_ _ _ _ _ 912414 924x07_ | 67456 __ 90.1x0.9
MC DROPOUT ENSEMBLE-blur5 93.7+0.1 80.1+0.3 81.9+0.2 84.7+0.1 63.2+0.4 87.240.2
MC DROPOUT ENSEMBLE-blur10 93.6+0.1 78.7+0.4 79.1+0.1 83.4+0.1 59.6+0.2 87.3+0.3
MC DROPOUT ENSEMBLE-blur20 94.0+0.0 86.4+0.3 83.3+0.7 85.7+0.3 58.3+0.9 87.6+0.1
MC DROPOUT ENSEMBLE-blur30 94.1+0.1 87.6+0.1 86.8+0.2 88.0+0.1 62.3+0.3 87.7+0.2
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