
A New Multi-Source Light Detection Benchmark and
Semi-Supervised Focal Light Detection:

Supplementary material

In this supplementary material, we have provided more information of our YouTube Driving Light
Detection (YDLD) dataset and detailed experimental results and the discussion of our method.

• In Sec. A, we have provided more details of YDLD dataset.

• In Sec. B, we have provided the detailed explanation of the process for aligning between
pseudo-labels and predictions.

• In Sec. C, we have provided more details of our SS-FLD.

• In Sec. D, we have provided more details of the overlapping classes and experimental results
between YDLD, SODA10M, KITTI, ImageNet, and MS-COCO with BDD100k.

• In Sec. E, we have provided a class-wise comparison with the state-of-the-art (SOTA) object
detectors.

• In Sec. F, we have provided expanded experimental results.

• In Sec. G, we have provided the specific effects of SS-FLD.

• In Sec. H, we have provided the qualitative comparisons of the detection results.

• In Sec. I, we have provided the analysis of failure cases through confusion matrix and
qualitative results.

• In Sec. J, we have provided the sensitivity analysis of attention prior term.

• In Sec. K, we have provided the discussion for the spatial attention prior.

• In Sec. L, we have provided the datasheet for our YDLD dataset.

• In addition, we have provided the supplementary video for our experimental result. The
qualitative detection results of our SS-FLD method in the real-driving environment are
contained.

A More details of YDLD dataset

In this section, we provide more details of our YDLD dataset. As we mentioned in our manuscript, our
dataset consists of three classes: Carlight, TrafficSignallight, and Streetlight. Especially, the Carlight
class contains headlights, rear lamps, and brake lamps. Table 1 shows the class-wise statistics. Our
YDLD dataset has light sources of various sizes to reflect real-world traffic environment. Also, we
illustrate the annotated samples of each class in Fig. 1. As shown in this figure, car lights are many
variety of light sources depending on the vehicle design. Otherwise, TrafficSignallights are usually
small. These light sources play an important role in driver’s decision-making process. However, the
most bulbs are circular with high pixel values. In the first row, Carlight and TrafficSignallight are
very similar. Additionally, Streetlights have a high pixel intensity to illuminate the road, so they tend
to produce a large glare. Because of these difficulties, Figure .12 demonstrates the failure cases of
ConsistentTeacher [1]. We can show that the objects in bounding boxes are very similar to distinguish
their classes.
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Figure 1: The samples of each class from our YDLD dataset. Boxes for each light source are
represented with different colors.
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Figure 2: The failure cases of ConsistentTeacher. Red, blue, and green boxes represent Streetlight,
Carlight, TrafficSignalLight class, respectively. We highlight the failure case using magenta boxes.

Figure 3: The comparison for the distribution of bounding box sizes between YDLD and MS-COCO.
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Table 1: The class-wise statistics of YDLD.

Carlight TrafficSignallight Streetlight
# GTs 49,059 14,373 52,596

Avg. of # GTs 13.95 4.09 14.96
Highest # GTs on an image 127 23 472

Avg. of bbox size 22.02× 14.50 14.35× 14.95 18.10× 14.65
Largest bbox size 395× 204 141× 152 362× 650

Very tiny 16,638 15,182 4,685
Tiny 19,952 17,027 5,420
Small 10,886 10,957 3,122

Medium 5,120 5,893 1,146

Table 2: The comparison of the statistics between YDLD and MS-COCO17.

YDLD MS-COCO
# images 3,156 123,287

# GTs 116,028 896,782
# Classes 3 80

Avg. of # GTs 33.00 7.27
Highest # GTs on an image 501 93

Avg. of bbox size 19.29× 14.62 103.86× 107.41
Largest bbox size 362× 650 640× 640
Smallest bbox size 1× 1 0.23× 3.64

Due to these reasons, the recent object detectors do not achieve satisfactory results on YDLD. In
addition, we show the object statistics difference from MS-COCO17 [2]. Figure 3, Table 2, and
Figure 4 demonstrate the different distribution between YDLD and MS-COCO. While MS-COCO
medium-sized objects account for most, YDLD has many small and tiny objects. 68% of the light
source objects in our YDLD fall within the very tiny ([02, 82)) and the tiny ([82, 162)) size categories,
whereas only 12% of the objects in the MS-COCO dataset belong to these size ranges. As a result,
the distribution of the object sizes is relatively even. As mentioned in our manuscript, these small
objects easily degrade detection accuracy. Figure 5 shows a bunch of tiny object samples with specific
size of bounding boxes.

Furthermore, the object density of YDLD is an additional challenge. As shown in Table 2, our dataset
contains an average of 33 objects per image, while in the case of MS-COCO, there are 7 objects
on average. This clearly shows that our YDLD is denser than a typical object detection dataset and
has difficulty predicting many objects. Especially, Figure 6 illustrates that the objects are densely
concentrated within a region in the image. Moreover, light sources tend to overlap each other due to
glare, especially when concentrated. It poses challenges in accurately predicting their boundaries.

Additionally, YDLD have fewer distinctive visual features compared to typical detection objects.
This is due to the similar appearance between light sources as shown in 1. Because of these problems,
the overall mAP score is much lower about two times (e.g. DINO mAP: 25.6 % (YDLD), 50.1%
(COCO)).

B Aligning pseudo-labels and predictions for accurate loss calculation

As we described in Sec. 4.3 and Fig. 3 in our manuscript, the teacher and the student networks
exploit weak and strong augmentations for the unlabeled data, respectively. Since the augmentation
techniques used for these networks differ, it is necessary to align the pseudo-labels from the teacher
with prediction results of the student to calculate the loss accurately. To this end, we use the
transformation matrices applied during each augmentation to correct the differences in bounding
boxes. Specifically, we calculate the overall geometrical transformation by taking the inverse of the
teacher’s matrix and multiplying it by the student’s matrix as follows:

Talign = Ts · T−1t (1)
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Figure 4: Bounding box comparison between MS-COCO and our YDLD.

where Ts and Tt are transformation matrices of the teacher and the student networks, respectively. As
a result, this transformation matrix Talign allows us to map the bounding boxes of the teacher network
to the transformed image coordinate of the student network. Once they are aligned, we compute the
loss by comparing the predictions from the student with the transformed pseudo-labels.

C More details of SS-FLD

In this section, we provide the total loss functions and the overall architectures of our SS-FLD based
on DINO and RFLA. To further explain our SS-FLD total detection loss defined in Eq. (3) of our
manuscript, we first describe each total loss used in DINO and RFLA. Here, we omit the index l (c.f.
u) denoting labeled data for simplicity unless other mentioned.

The loss of DINO LDINO is defined as LDINO(x,y) = 1
N

∑N
i=1[λcls · Lcls(f(xi),yi) + λL1 ·

LL1(f(xi),yi) + λGIoU · LGIoU (f(xi),yi)]. xi and yi are the input image and class label of i-th
sample. f(·) is the object detector network. λcls, λL1, and λGIoU are the coefficient of each loss.
LDINO exploits the focal loss [3] as the classification loss Lcls. L1 loss LL1 and GIoU (generalized
Intersection over Union loss) loss [4] LGIoU are used for the regression losses.

The detection loss of RFLA is defined as LRFLA = 1
N

∑N
i=1[Lcls(f(xi),yi) + LDIoU (f(xi),yi)].

It uses the focal loss and DIoU (Distance Intersection over Union) loss [5] LDIoU for classification
and regression, respectively.
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Figure 5: The object sizes of our YDLD dataset. Note that our light source objects have small sizes.

To apply SS-FLD for each detector, we replace Lcls with the lightness focal loss defined in Eq. (2)
of our manuscript. In addition, we utilize these losses on labeled and unlabeled data to perform
semi-supervised learning suited for light detection. The complete loss function of semi-supervision is
in Eq. (3) of our manuscript. Lreg loss for the DINO and RFLA can be replaced with LL1 + LGIoU

and LDIoU . As a result, the overall frameworks of our SS-FLDs based on DINO and RFLA are
illustrated in Fig. 7

D More details of overlapping object classes and experimental results

In this section, we provide more detailed overlapping classes between YDLD, KITTI [6], SODA10M
[7], ImageNet [8], and MS-COCO [2] with the 10 classes of BDD100k [9]. MS-COCO has 9
overlapping classes as shown in Table 3. Therefore, 9 classes of BDD100k are matched except the
rider class. On the other hand, our YDLD has one common class over the traffic light class. Moreover,
we annotate the bulb area of the traffic light precisely, but MS-COCO and BDD100k annotate the
entire area of the traffic light as described in Fig. 8. Despite of this annotation and overlapping class
number differences, our YDLD have shown the remarkable effectiveness for transfer learning in
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Figure 6: Examples of our YDLD dataset. Red, blue, and green boxes represent Streetlight, Carlight,
and TrafficSignallight classes, respectively. They show light source objects are very small and located
densely.

Table 3: The overlapped classes of YDLD, ImageNet, MS-COCO, KITTI, and SODA10M with
BDD100k.

BDD100k Pedestrian Rider Car Truck Bus Train Motorcycle Bicycle Traffic light Traffic sign

ImageNet 3 3 3 3 3 3

COCO 3 3 3 3 3 3 3 3 3

KITTI 3 3 3 3 3

SODA10M 3 3 3 3 3

YDLD 3

7



Figure 7: The overall architectures of our SS-FLDs based on RFLA (the top row) and DINO (the
bottom row). For simply describing the role of our LF loss, we omit the teacher models, denoting
labeled, and unlabeled data.

Figure 8: Comparison of the traffic light annotation areas between YDLD, MS-COCO, and BDD100k
datasets.
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Table 4 and Sec. 5.1 of our manuscript. Additionally, to show the importance of light source, we
conduct the additional comparison that performs light detection on BDD100k. To this end, we have
generated the subset of BDD100k that retains only the traffic light class from annotations since
it is only the light source in BDD100k. Table 4 shows the experimental results. The YDLD and
MS-COCO achieve the highest mAP scores since only these datasets include the traffic light class. In
contrast, KITTI and SODA10M show marginal differences compared to ImageNet as the canonical
dataset.

Table 4: Transfer learning effects of light detection on BDD100k.

Dataset mAP AP50 AP75 APs APm APl

ImageNet 27.3 73.5 13.3 24.8 42.3 37.9
COCO 28.0 74.4 14.5 25.8 43.2 49.3
KITTI 27.1 73.2 13.7 24.8 42.7 46.2

SODA10M 27.1 73.4 13.5 24.8 42.2 47.0
YDLD 28.2 74.6 14.5 25.6 44.1 45.3

E Class-wise comparison with SOTA methods

Table 5: Class-wise benchmark results with recent detectors on YDLD dataset. We highlight the best
record with red bold. † represents our implementation.

Detectors Publications Year mAP Streetlight Carlight TrafficSignallight
Two-stage object detectors

Libra R-CNN [10] CVPR 2019 8.6 7.8 8.6 9.3
Faster R-CNN [11] NeurlPS 2015 8.9 8.0 9.3 9.4

Cascade R-CNN [12] CVPR 2018 10.2 9.0 10.7 10.7
Single-stage object detectors

YOLOF [13] CVPR 2021 5.7 6.1 5.6 5.5
RetinaNet [3] ICCV 2017 8.1 7.3 5.2 11.8

ATSS [14] CVPR 2020 15.6 15.5 13.3 18.1
YOLOX [15] CVPR 2021 17.9 17.8 15.0 20.9

PAA [16] ECCV 2020 21.6 22.8 17.0 25.0
Transformer-based object detectors

Deformable DETR [17] ICLR 2021 16.7 16.0 14.1 19.8
DINO [18] ICLR 2023 22.6 23.8 18.3 25.7

Semi-supervised object detectors
SoftTeacher [19] ICCV 2021 8.4 6.9 9.3 8.8

MeanTeacher [20, 1] NeurlPS 2017 14.4 12.8 9.5 20.9
ConsistentTeacher [1] CVPR 2023 19.1 18.7 16.5 22.7

Tiny object detectors
CEASC [21] ICCV 2023 7.5 6.7 4.1 11.7
FASNet [22] IEEE TGRS 2022 10.4 10.8 7.9 12.4

RFLA w/t RetinaNet [23] ECCV 2022 10.8 11.4 4.7 16.4
NWD-RKA [24] ISPRS P&RS 2022 16.6 16.8 12.0 21.0
RFLA w/t PAA † ECCV 2022 21.6 22.9 16.2 25.8

SS-FLD w/t DINO Proposed 25.6 26.0 22.1 28.7
SS-FLD w/t RFLA Proposed 26.0 26.3 21.5 30.3

We have provided a more detailed benchmark results with SOTA object detectors. To show more
details, we compare the class-wise mAP results of each detector. The result is shown in Table 5. The
experiment settings are the same as Sec. 5.2 in the main manuscript. Our SS-FLDs achieve the best
mAP scores for all three classes. Especially, compared with DINO, our method achieves 2.2%, 3.8%,
and 3.0% higher mAP scores in each class. Compared with, PAA w/t RFLA, our method shows a
higher 3.4%, 5.3%, and 4.5% improvement for Streetlight, Carlight, and TrafficSignallight classes,
respectively.

Especially, the Carlight class shows a lower mAP rather than other classes. We visualize the miss-
classified results of the Carlight class (magenta circle) in Fig. 9. We can observe that there are many
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Table 6: YDLD benchmark evaluation with additional AP50, AP75, and APm scores. We highlight
the best record with red bold. † represents our implementation.

Detectors Publications Year mAP AP50 AP75 APvt APt APs APm

Two-stage object detectors
Libra R-CNN [10] CVPR 2019 8.6 16.6 8.2 0.2 6.1 10.2 40.3
Faster R-CNN [11] NeurIPS 2015 8.9 17.1 8.3 0.1 6.2 10.5 41.5

Cascade R-CNN [12] CVPR 2018 10.2 18.7 10.1 0.3 7.3 12.5 45.8

Single-stage object detectors
YOLOF [13] CVPR 2021 5.7 13.3 4.3 0.0 3.7 7.2 27.4
RetinaNet [3] ICCV 2017 8.1 20.2 5.2 2.2 4.8 20.6 37.2

ATSS [14] CVPR 2020 15.6 33.7 12.5 4.7 11.7 25.3 42.7
YOLOX [15] CVPR 2021 17.9 42.3 12.1 8.1 14.4 27.5 39.1

PAA [16] ECCV 2020 21.6 48.0 16.1 9.7 18.0 34.6 43.6

Transformer-based object detectors
Deformable DETR [17] ICLR 2021 16.7 41.9 9.7 7.3 14.0 26.4 34.4

DINO [18] ICLR 2023 22.6 51.6 16.3 10.5 19.0 35.2 47.2

Semi-supervised object detectors
SoftTeacher [19] ICCV 2021 8.4 15.9 7.9 0.3 6.4 9.3 39.4

MeanTeacher [20, 1] NeurIPS 2017 14.4 32.5 10.7 9.0 16.0 25.2 16.2
ConsistentTeacher [1] CVPR 2023 19.1 42.6 14.7 7.4 15.0 31.7 42.7

Tiny object detectors
CEASC [21] CVPR 2023 7.5 19.3 4.4 2.3 4.7 18.5 33.1
FSANet [22] IEEE TGRS 2022 10.4 24.9 7.1 2.3 7.7 16.1 34.1

RFLA w/t RetinaNet [23] ECCV 2022 10.8 30.4 5.1 5.9 9.8 16.9 21.4
NWD-RKA [24] ISPRS P&RS 2022 16.6 40.4 11.0 6.6 12.7 29.7 37.7
RFLA w/t PAA † ECCV 2022 21.6 50.8 14.7 11.0 19.4 33.4 40.2

SS-FLD w/t DINO Proposed 25.6 57.6 19.1 12.7 23.1 38.6 48.0
SS-FLD w/t RFLD Proposed 26.0 58.3 19.0 12.8 24.8 39.2 43.4

Table 7: Effects of our semi-supervised focal loss (SS-FLD) detection on the YDLD.

Baseline SS-FLD mAP AP50 AP75 APvt APt APs APm

RFLA w/t RetinaNet 10.8 30.4 5.1 5.9 9.8 16.9 21.4
RFLA w/t RetinaNet X 18.6 [↑ 7.8] 50.0 [↑ 19.6] 8.7 [↑ 3.6] 8.5 [↑ 2.6] 17.0 [↑ 7.2] 29.4 [↑ 12.5] 32.7 [↑ 11.3]

RFLA w/t PAA 21.6 50.8 14.7 11.0 19.4 33.4 40.2
RFLA w/t PAA X 26.0 [↑ 4.4] 58.3 [↑ 7.5] 19.0 [↑ 4.3] 12.8 [↑ 1.8] 24.8 [↑ 5.4] 39.2 [↑ 5.8] 43.4 [↑ 3.2]

ATSS 15.6 33.7 12.5 4.7 11.7 25.3 42.7
ATSS X 17.7 [↑ 2.1] 38.2 [↑ 4.5] 14.3 [↑ 1.8] 6.0 [↑ 1.3] 13.3 [↑ 1.6] 29.2 [↑ 3.9] 43.7 [↑ 1.0]
PAA 21.6 48.0 16.1 9.7 18.0 34.6 43.6
PAA X 25.6 [↑ 4.0] 55.1 [↑ 7.1] 20.4 [↑ 4.3] 11.9 [↑ 2.2] 22.4 [↑ 4.4] 40.1 [↑ 5.5] 46.9 [↑ 3.3]

Deformable DETR 16.7 41.9 9.7 7.3 14.0 26.4 34.4
Deformable DETR X 18.0 [↑ 1.3] 43.3 [↑ 1.4] 11.6 [↑ 1.9] 8.7 [↑ 1.4] 15.8 [↑ 1.8] 28.4 [↑ 2.0] 35.2 [↑ 0.8]

DINO 22.6 51.6 16.3 10.5 19.0 35.2 47.2
DINO X 25.6 [↑ 3.0] 57.6 [↑ 6.0] 19.1 [↑ 2.8] 12.7 [↑ 2.2] 23.1 [↑ 4.1] 38.6 [↑ 3.4] 48.0 [↑ 0.8]

overlapped predicted results on a single object. However, our SS-FLD achieves the highest mAP
score 22.1% in Carlight class.

F Detailed experimental results

In this section, we have provided more experimental results of Table 5 and 6 in our manuscript with
AP50, AP75, and APm metrics used for the conventional object detection. Table 6 demonstrates the
expanded benchmark evaluation. Conventional detectors show high APm scores similar to canonical
object detection datasets (e.g. MS-COCO [2] and PASCAL VOC [25]). However, the very tiny and
tiny objects occupy 68% of our YDLD dataset as shown in Fig. 3. Therefore, they show low mAP
scores. In contrast, our SS-FLDs achieve the highest scores in all metrics. Compared with DINO, our
SS-FLD improves 6.0, 2.8, and 0.8 points in AP50, AP75, and APm, respectively. Compared with
RFLA w/t PAA, the SS-FLD achieves 7.5, 4.3, and 3.2 points improvements in each metric.

Table 7 shows the expanded effects of our SS-FLD with additional AP50, AP75, and APm scores.
In Table 6 and 7, tiny object detectors show low performance on APs and APm scores. However,
our SS-FLD significantly increases APs and APm scores about 12.5 and 11.3 points for RFLA w/t
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Figure 9: Detection results of Carlight class using our SS-FLD, ConsistentTeacher, PAA, and DINO
are compared.

RetinaNet and 5.8 and 3.2 points for RFLA w/t PAA. Compared with other baselines, our SS-FLD
consistently improves performance in all metrics.

G Detailed effects of SS-FLD

To describe effects of SS-FLD more specifically, we compare attention maps of RFLA w/t and w/o
our SS-FLD. In Fig. 10, RFLA w/o SS-FLD mainly focuses on the small regions centered at light
sources similar to traditional light detections based on hand-craft features. As a result, most detectors
tend to produce excessive false positives for similar light sources. On the other hand, our SS-FLD
attends not only light sources, but also related structures such as the pole, frames of the traffic light,
and other parts of the car to encode rich contexts. These results show that our SS-FLD can handle the
intrinsic and practical challenges of light detection.
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Figure 10: We visualize attention maps of RFLA w/t and w/o SS-FLD using Grad-CAM [26] (red
indicates higher, but blue lower scores). We highlight a region with distinct attention differences with
red dotted boxes.

H More qualitative comparison

We provide a more qualitative comparison between our proposed SS-FLD, ConsistentTeacher, PAA,
and DINO in Fig. 11. In this figure, red, blue, and green boxes represent Streetlight, Carlight and
TrafficSignallight classes, respectively. We highlight false negatives and false positives with cyan
and magenta circles, respectively. Also, we emphasize the reflected lights and glare regions using
yellow and pink boxes, respectively. In this comparison, we show better detection results compared
with other detectors. Especially, our detector successfully avoids detecting reflected lights and glare
regions.

I Analysis of failure cases through confusion matrix and qualitative results

In this section, we provide more failure cases and the confusion matrices to analysis the performance
degradation on our YDLD in depth. In Fig. 12, false negatives usually happen for very tiny and
twisted lights. To remedy this, increase the generality of our YDLD to contain these hard samples. On
the other hand, false positives often occur in areas with strong glare or when the light source is tiny.

To understand false positive and negative cases in depth, we have presented a confusion matrix in
Fig. 13. To show the effects of our method, we make the comparison of confusion matrices for DINO
and DINO w/t SS-FLD. In this evaluation, we consider a true positive when the predicted and a GT
box has more than a certain IoU score. Following the standard mAP evaluation on MSCOCO, we
change the IoU threshold at [0.5 (start):0.95(end):0.05(step)] and evaluate a confusion matrix per IoU
threshold. We then present the confusion matrices in terms of precision and recall rates in Fig. 13-(a)
and (b).

For DINO, the average false discovery rate (FDR; FP
TP+TP ) and false negative rate (FNR; FN

TP+FN )
are 69.39% and 72.50%, respectively. On the other hand, for DINO with SS-FLD, the FDR and FNR
are 62.72% and 69.69%. Thus, our SS-FLD reduces the rates by 3.67% and 2.81%. Remarkably, our
method improves these rates for all the classes. We assert that these gains originated from our LF loss
and semi-supervision. Interestingly, both detectors showed few false detections between light source
classes and more confusion for the discrimination between light source and background. It might be
due to light reflection, scattering, complex scene clutters, tiny light sizes, etc.

J Sensitivity analysis of attention prior term

We perform a sensitivity analysis for η within our LF loss Eq. (2) in our manuscript. To this end,
we train different SS-FLDs w/t PAA by changing η within a range of [1, 5] and compare their mAP
scores as shown in Table 8. Albeit we obtain the best score with η = 4, the mAP difference of the
interval η = [2, 5] is so marginal. This means that our LF loss is not sensitive to η. When η = 1,
some score reduction occurs due to the loss LF = 0 when φ(dc) = 1.
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Figure 11: Qualitative comparison results between our SS-FLD, ConsistentTeacher, PAA, and DINO.

Table 8: Comparison with different η of the lightness prior.

η mAP AP50 AP75 APvt APt APs APm

η = 1 24.8 52.4 20.2 11.3 21.4 39.2 46.9
η = 2 25.4 54.5 20.5 11.7 22.3 39.5 47.7
η = 3 25.5 54.8 20.4 11.9 22.5 39.8 47.2
η = 4 25.6 55.1 20.4 11.9 22.4 40.1 46.9
η = 5 25.4 54.7 20.3 12.1 22.6 39.8 46.3
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Figure 12: The failure cases of our SS-FLD. Red, blue, and green boxes represent Streetlight, Carlight,
and TrafficSignallight classes, respectively. We highlight the false negative and false positive using
the cyan and the magenta boxes, respectively.

Figure 13: The confusion matrices between original DINO and DINO w/t SS-FLD. SL, CL, TSL,
and BG mean Streetlight, Carlight, TrafficSignallight, and background, respectively.

K Discussion

Based on the assumption in Sec. 4.2 of our manuscript, we design the spatial prior under the flat road.
However, special situations such as highly inclined roads can affect the prior. To resolve this, a simple
remedy does not use the prior in the LF loss, and we show that our SS-FLD works well without the
prior by comparing the (M2) and (M4) of Table 8 in our manuscript. To learn the more generalized
spatial prior of handling that, our future solution is to track VPs or saliency feature point motions
on an image sequence. Then, we can update the spatial prior maps by reflecting the geometrical
transformation on the prior map.

In addition, we further improve the SS-FLD using motion. To show the possibility, we conduct
the additional evaluation, which leverages motion for re-weighting lightness pc. We detect dc,t

and track d̂c,t lights by using our SS-FLD and Kalman Filtering (KF) at frame t. Then, we can
determine the optimal matching pairs between dc,t and d̂c,t. For each pair, we can update pc,t as
p̂c,t = σ(pc,t × ws,t × wm,t) with a normalization function σ , where ws,t = φ(dc,t) + 0.5 and
wm,t = 1.0 + IoU(dc,t, d̂c,t|t−1). φ(dc,t) and d̂c,t|t−1 are the spatial prior as shown in Sec. 4.1
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Figure 14: Qualitative comparison before/after re-weighting.

in our manuscript and the predicted motion. In Fig. 14, we compare detection results before/after
re-weighting using KF. Some missed detections can be successfully detected by our re-weighted p̂c,t.

L Datasheet for Datasets

L.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a description

• Our YDLD dataset is proposed to detect multi-source light sources that include a wide range
of scenarios and objects, such as traffic lights, car lights, and streetlights. As we mentioned
in Sec. 3.1 of our manuscript, accurate light source detection is essential for recognizing
objects, predicting behaviors, and understanding the environment for autonomous driving
and surveillance systems.

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

• The YDLD dataset is created by the authors of this paper at Inha University.

What support was needed to make this dataset? (e.g., who funded the creation of the dataset? If
there is an associated grant, provide the name of the grantor and the grant name and number, or if it
was supported by a company or government agency, give those details.)

• This work was supported in part by the National Research Foundation of Korea (NRF)
grants funded by the Korea government (MSIT) (No. NRF-2022R1C1C1009208) and
funded by the Ministry of Education (No.2022R1A6A1A03051705); supported in part by
Institute of Information & communications Technology Planning & Evaluation (IITP) grants
funded by the Korea government (MSIT) (No.2022-0-00448/RS-2022-II220448: Deep Total
Recall, 30%, No.RS-2022-00155915: Artificial Intelligence Convergence Innovation Human
Resources Development (Inha University)); supported in part by INHA UNIVERSITY
Research Grant

Any other comments?

• No.

L.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and
interactions between them; nodes and edges)? Please provide a description.
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• Instance of the YDLD dataset is comprised of images and their associated light source
annotation data.

How many instances are there in total (of each type, if appropriate)?

• Our YDLD dataset contains 3,516 images and 116,028 light source instances. We provide
the detailed statistics of our YDLD dataset in Table 1 of our manuscript.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this representa-
tiveness was validated/verified. If it is not representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).

• The dataset contains all instances.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description

• Instances of the dataset consist of images.

Is there a label or target associated with each instance?

• Yes, we provide the light source label json file. As we mentioned in Sec. 3.2 of our
manuscript, our label is followed MS-COCO format.

Is any information missing from individual instances? If so, please provide a description, ex-
plaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.

• No, information is not missing.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.

• No, individual instances of this dataset are treated as independent.

Are there recommended data splits (e.g., training, development/validation, testing)? If so,
please provide a description of these splits, explaining the rationale behind them.

• Yes, we split our YDLD dataset for the training and testing. The detailed information is
provided in Table 1 of our manuscript.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.

• No, there are no redundancies in this dataset.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time; b) are there official archival versions of the
complete dataset (i.e., including the external resources as they existed at the time the dataset was
created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources
that might apply to a future user? Please provide descriptions of all external resources and any
restrictions associated with them, as well as links or other access points, as appropriate.

• No.

Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? If so, please provide a description.
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• No, the YDLD dataset does not contain confidential protected data.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why.

• No, our dataset does not contain offensive, insulting, and threatening data.

Does the dataset relate to people? If not, you may skip the remaining questions in this section.

• No.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a description of their respective distributions within
the dataset.

• No, we do not identify people by subpopulation.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from the dataset? If so, please describe how.

• No. In the YDLD dataset, as mentioned in Sec. 3.2 of the main manuscript, it is not possible
to identify elements that could reveal personal information (e.g. faces and license plates).

Does the dataset contain data that might be considered sensitive in any way (e.g., data that re-
veals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of gov-
ernment identification, such as social security numbers; criminal history)? If so, please provide
a description.

• No.

Any other comments?

• No.

L.3 Collection

How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If
so, please describe how

• The YDLD dataset is collected from the YouTube videos. We mentioned our collection
process in Sec. 3.2 of our manuscript.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or
sensor, manual human curation, software program, software API)? How were these mechanisms
or procedures validated?

• We manually collected our data. The collection procedure is mentioned in Sec. 3.2 of our
manuscript.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?

• The authors of this paper and students participated in the data collection for this study. Each
author and student received appropriate payments and compensations in accordance with
internal regulations.
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Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created. Finally, list when
the dataset was first published.

• The data was collected from August 2022 to February 2023.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link or
other access point to any supporting documentation.

• No.

Does the dataset relate to people? If not, you may skip the remainder of the questions in this
section.

• No.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?

• We collected data from YouTube, not from individuals in directly.

Were the individuals in question notified about the data collection? If so, please describe (or
show with screenshots or other information) how notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact language of the notification itself.

• No, we did not notify any individuals about the data collection.

Any other comments?

• No.

L.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?

• Yes, we perform the labeling for our YDLD dataset. This process is described in Sec. 3.2 of
our manuscript.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.

• No.

Is the software that was used to preprocess/clean/label the data available? If so, please provide
a link or other access point.

• We use the coco annotation tools for labeling as described in Sec. 3.2 of our manuscript.

Any other comments?

• No.

L.5 Use

Has the dataset been used for any tasks already? If so, please provide a description.

• No.
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Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.

• No.

What (other) tasks could the dataset be used for?

• We encourage researchers to use the YDLD dataset for light source detection research,
developing technologies related to autonomous driving, and other related studies.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a future
user might need to know to avoid uses that could result in unfair treatment of individuals or groups
(e.g., stereotyping, quality of service issues) or other undesirable harms (e.g., financial harms, legal
risks) If so, please provide a description. Is there anything a future user could do to mitigate these
undesirable harms?

• No.

Are there tasks for which the dataset should not be used? If so, please provide a description.

• No.

Any other comments?

• No.

L.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.

• Yes, the YDLD dataset will be published in public.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?

• The dataset is available through https://github.com/YDLD-dataset/YDLD.

When will the dataset be distributed?

• We initially opened a portion of the YDLD dataset on June 13, 2024, and the full data will
be released on October 30, 2024.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or ToU,
as well as any fees associated with these restrictions.

• The YDLD dataset is distributed under the CC BY-NC-ND 4.0 license, meaning it can be
used by anyone for non-commercial research purposes.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.

• No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to, or
otherwise reproduce, any supporting documentation
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• No.

Any other comments?

• No.

L.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?

• The authors of this paper will support hosting and maintaining of this dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

• The user of this dataset can contact us by GitHub https://github.com/YDLD-dataset/YDLD.

Is there an erratum? If so, please provide a link or other access point.

• There are no erratum in our initial dataset release. Any future corrections will be documented
in the dataset’s GitHub repository.

If the dataset relates to people, are there applicable limits on the retention of the data associ-
ated with the instances (e.g., were individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced.

• No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to users.

• Yes, our dataset will be continued to support in our GitHub page.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? If so, please provide a description. Will these contributions be vali-
dated/verified? If so, please describe how. If not, why not? Is there a process for communicat-
ing/distributing these contributions to other users? If so, please provide a description.

• Yes, they can directly contact us via GitHub issue. We will also notify the contactable E-mail
soon.

Any other comments?

• No.
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