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Abstract

Decision making demands intricate interplay be-
tween perception, memory, and reasoning to dis-
cern optimal policies. Conventional approaches
to decision making face challenges related to low
sample efficiency and poor generalization. In con-
trast, foundation models in language and vision
have showcased rapid adaptation to diverse new
tasks. Therefore, we advocate for the construction
of foundation agents as a transformative shift in
the learning paradigm of agents. This proposal
is underpinned by the formulation of foundation
agents with their fundamental characteristics and
challenges motivated by the success of large lan-
guage models (LLMs). Moreover, we specify
the roadmap of foundation agents from large in-
teractive data collection or generation, to self-
supervised pretraining and adaptation, and knowl-
edge and value alignment with LLMs. Lastly, we
pinpoint critical research questions derived from
the formulation and delineate trends for founda-
tion agents supported by real-world use cases,
addressing both technical and theoretical aspects
to propel the field towards a more comprehensive
and impactful future.

1. Introduction

Human life is all about making decisions. Intelligent agents
have been developed to help humans with real-world de-
cision making, such as traffic control (Liang et al., 2019),
energy management (Nakabi & Toivanen, 2021), and drug
discovery (Zhou et al., 2019). Prevalent paradigms to train
agents include reinforcement learning (RL), imitation learn-
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ing (IL), planning and search as well as optimal control.
Recent advances in these algorithms have achieved super-
human performance in mastering the game of Go (Silver
et al., 2017), playing video games (Schwarzer et al., 2023),
and robotic locomotion and manipulation (Brohan et al.,
2022). However, traditional approaches to decision making
exhibit limited sample efficiency and poor generalization.
For instance, expert systems heavily rely on human knowl-
edge and manual crafting, and conventional RL methods
necessitate agent training from scratch for each task.

In contrast, foundation models (Bommasani et al., 2021) in
language and vision achieve rapid adaptation to a wide vari-
ety of tasks with minimal fine-tuning or prompting. These
models, pretrained on vast and diverse datasets, demonstrate
unprecedented capabilities in understanding and generating
text (Brown et al., 2020; OpenAl, 2023), image (Doso-
vitskiy et al., 2020; Bai et al., 2023) and some multi-
modalities (Reed et al., 2022; Lu et al., 2023). Therefore,
this position paper argues that foundation agents as gener-
ally capable agents across physical and virtual worlds,
will be the paradigm shift for decision making, akin to
LLM:s as general-purpose language models to solve linguis-
tic and knowledge-based tasks.

To arrive at this position, we first identify three fundamental
characteristics of foundation agents: (1) a unified repre-
sentation of variables involved in decision process, includ-
ing state-action spaces, feedback signals (e.g., rewards or
goals) and environment dynamics, (2) a unified policy in-
terface across tasks and domains from robotics and game
play to healthcare and beyond, and (3) interactive decision-
making in physical and virtual worlds by reasoning about
behaviors, handling environment stochasticity and uncer-
tainty, and potentially navigating competitive or cooperative
multi-agent scenarios. These characteristics constitute the
uniqueness and challenges for foundation agents', empow-
ering them with multi-modality perception, multi-task and
cross-domain adaptation as well as few- or zero-shot gener-
alization. Particularly, foundation agents exhibit enhanced
credit assignment and planning in scenarios requiring long-
horizon reasoning (Wei et al., 2022; Yao et al., 2022; 2023)
and involving sparse rewards or partial observability (Meng

'Distinctions from task-specific agents and recent LLM-based
agents can be found in Appendix A.
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Figure 1. Roadmap of foundation agents. Left: Large interactive data collection or generation scales up foundation agents in open-ended
physical and virtual worlds. Middle: Self-supervised pretraining leverages the flexible and robust architecture of Transformer (Vaswani
et al., 2017) based on autoregressive or masked (in gray) modeling. During adaptation, the pretrained model play various roles in decision

making, such as policy initialization (Meng et al., 2021; Yang & Nach

um, 2021) and dynamics model (Wu et al., 2023; Brandfonbrener

et al., 2023). Distinct colors denote different variables within trajectories. Right: LLMs as a part of foundation agents composed of
planning, memory and action modules and act as world models, information processors, and decision-makers, respectively.

et al., 2021; Guo et al., 2023). Such unique set of character-
istics and capabilities enable foundation agents to improve
sample efficiency and generalization, showing their versatil-
ity in navigating diverse contexts of decision making.

With the formulation of foundation agents, we specify their
roadmap in Figure 1. Firstly, large-scale interactive data
can be collected from the internet (e.g., YouTube videos,
tutorials, audios, etc) and physical environments, or gen-
erated through real-world simulators (Yang et al., 2023a;
OpenAl, 2024; Bruce et al., 2024) for supervision and scale-
up. Secondly, pretrain in an unsupervised manner from
large, unlabeled, and probably suboptimal interactive data
for decision-related knowledge representation learning and
downstream adaptation with knowledge reasoning. Thirdly,
align with LLMs to integrate world knowledge and human
values into foundation agents for reasoning, generalization,
and interpretability. This roadmap is motivated by three key
ingredients we observe for the success of LLMs: (1) lever-
aging internet-scale text data to absorb broad knowledge
described by languages, (2) self-supervised pretraining to
learn unified text representation (Devlin et al., 2018) and
task interface (Raffel et al., 2020) through generative model-
ing, and (3) safety and preference alignment (Ouyang et al.,
2022; Rafailov et al., 2024) to fulfill user commands.

For foundation agents, however, it is challenging to repro-
duce the roadmap of LLMs. Firstly, the broad information
in physical and virtual worlds are low-level details instead
of high-level abstractions expressed by languages, posing
challenges to a unified representation. Therefore, we dis-
cuss the morphology of foundation agents (e.g, a unified or

compositional foundation model) for structuring diverse en-
vironments and tasks in (§6.1). Secondly, the large domain
gap between different decision making scenarios makes it
difficult to develop a unified policy interface, while linguis-
tic tasks can be simply unified by text generation. We thus
posit that theoretical guarantees for policy optimization with
foundation agents may address this issue in (§6.2). Thirdly,
while language and vision models focus on understand-
ing and generating content, foundation agents are involved
in dynamic process of choosing optimal actions based on
complex environment information. Open-ended tasks and
environments are then another critical research question
for foundation agents as discussed in (§6.3). Finally, we
showcase some examples supported by recent work and a
case study towards building a potential foundation agent in
real-world decision making.

2. Preliminaries
2.1. Decision Making Formalism

Decision making refers to the process of making a series of
decisions to achieve a goal in continuous time, based on pre-
vious actions and observations while considering possible
future states and rewards. The process can be simplified as
a markov decision process (MDP) M =< S, A, T, R,y >,
where S is the state space, A the action space, T' the dy-
namics transition function T : S x A x S — [0,1), R
the reward function R : S x A x S — R, and v € [0,1)
is a discount factor for calculating discounted cumulative
rewards. When the underlying state is not accessible (e.g,
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a video game), the process can be modified as a partially
observable MDP M =< S, A, T, R, O, E >, where O is
the observation space, and F(o|s) denotes the observation
emission function. Solutions to MDP typically involve RL
to learn an optimal policy that maximizes the expected dis-
counted cumulative rewards ]E[ZZ;O ~tr; 1] through trial
and error within an environment, or IL to learn an expert’s
policy from expert demonstrations in a supervised learn-
ing manner. However, real-world decision making is more
complex and not limited to MDP, such as stock market dy-
namics, epidemiological modeling, and sequential games
with incomplete information (e.g, Poker and Bridge).

2.2. Self-Supervised Learning for RL

To improve sample efficiency and generalization, conven-
tional self-supervised learning for RL involves representa-
tion learning of separate RL components, such as action
representation (Gu et al., 2022), reward representation (Ma
et al., 2022), policy representation (Tang et al., 2022), and
environment or task representation (Sang et al., 2022). Re-
cently, by formulating RL as a sequence modeling problem
(Chen et al., 2021; Janner et al., 2021), the representation of
various RL components can be simultaneously learned via
trajectory optimization (Lee et al., 2022; Liu et al., 2022;
Carroll et al., 2022; Sun et al., 2023; Wu et al., 2023; Boige
et al., 2023). Such a formulation draws upon the simplicity
and scalability of Transformer (Vaswani et al., 2017), and
benefits representation learning of knowledge concerning
different aspects of decision process.

2.3. Large Language Models and Agents

Large language models (Radford et al., 2019; Brown et al.,
2020; Ouyang et al., 2022) are pretrained on internet text and
fine-tuned on human instructions and preferences. Through
this process, LLMs acquire extensive world knowledge and
are aligned with human values (OpenAl, 2023; Anthropic,
2023; Rafailov et al., 2024; Touvron et al., 2023). State-
of-the-art LLMs demonstrate convincing capabilities in not
only natural language processing (Volske et al., 2017; Sing-
hal et al., 2022; Jiao et al., 2023), but also tasks requir-
ing strong reasoning abilities like coding (Nijkamp et al.,
2022) and text-based games (Shridhar et al., 2020; Liu et al.,
2023b). As a source of world knowledge and human values,
we argue that LLMs enable foundation agents to align with
the world model and human society created by languages,
enhancing their reasoning and planning capabilities.

3. Learning from Large-Scale Interactive Data

Large-scale interactive data is an essential component for
building foundation agents, akin to the significance of inter-
net text and image data for foundation models in language
and vision. In this section, we first demonstrate how a poten-

tial foundation agent can be trained via offline IL when large,
multi-modal and multi-task demonstrations are available.
We then discuss the potential use of data generation systems
or real-world simulators for training foundation agents at
scale. Finally, we identify the constraints and alternatives to
offline RL or IL. methods in establishing foundation agents,
as well as the limitations of real-world simulators realized
by video generation models.

3.1. Offline IL from Large Demonstrations

Inspired by sequence modeling of RL problems, recent work
attempt to train a generalist agent on extensive interactive
demonstrations simply via offline IL. For example, by imi-
tating multi-modal demonstrations, Behavior Transformer
(Shafiullah et al., 2022) leverages a modified Transformer
with action discretization and a multi-task action correc-
tion to capture the modes present in large behavior data.
Gato (Reed et al., 2022) unifies multi-modal and multi-
task expert episodes into sequences through autoregressive
sequence modeling, and is capable of diverse tasks and
domains from robotic manipulation and Atari play to vi-
sual question answering. Similarly, Unified-IO 2 (Lu et al.,
2023) scales autoregressive multi-modal model across vi-
sion, language, audio, and action data, unifying different
modalities into a shared semantic space. With a single
encoder-decoder Transformer, it learns varieties of skills
through fine-tuning with prompts and augmentations. How-
ever, collecting demonstrations via humans or online RL
algorithms is costly and time-consuming, which is not ap-
plicable in real-world decision making.

3.2. Potentials of Real-World Simulators

Generative models as data generation systems (Mandlekar
et al., 2023) or real-world simulators (Yang et al., 2023a;
OpenAl, 2024; Bruce et al., 2024) open another path for
training foundation agents through learning behaviors from
generated data. For instance, RoboGen (Wang et al., 2023c)
realizes a propose-generate-learn cycle to scale up robot
learning via generative simulation, of which policy learning
algorithms are not restricted to IL but also involve motion
planning or trajectory optimization. Moreover, video genera-
tion models such as Sora (OpenAl, 2024) and Genie (Bruce
et al., 2024) can be a general-purpose simulator of inter-
active decision making scenarios in physical and virtual
worlds. These models, by unifying the representation of
visual worlds (Yang et al., 2024), generate diverse and open-
ended training environments across tasks and domains for
scaling up the foundation agent in a never-ending curricu-
lum of new and generated worlds. The foundation agent
pretrained with these generated environments learns to rea-
son about behaviors, handle environment stochasticity and
uncertainty, and navigate competitive or cooperative multi-
agent settings, thus enhancing adaptability and generaliza-
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tion in unseen scenarios. This could be particularly valuable
for domains where real-world interactive data is scarce or
expensive to obtain, such as robotics and self-driving.

3.3. Discussion

Despite the preliminary efforts, real-world interactive data
scales far beyond internet text or visual data, making it
impossible to solely rely on offline RL or IL to train founda-
tion agents. Alternative approaches, such as self-supervised
(unsupervised) pretraining, can be utilized to harness large
and unlabeled interactive data. Moreover, current generalist
agents remain small in model size compared to LLMs, but
already consume significant computational resources even
when trained on a single domain. We provide a summary of
computational requirements of recently proposed generalist
agents and a case we build in Appendix B.

In addition, although we posit that universal video gener-
ation models (e.g., Sora and Genie) hold promise for en-
hancing the training of foundation agents, they are not the
whole story. Firstly, not all real-world decision making tasks
can be adequately represented by video, such as situations
when visual and textual information is not available like
wireless communication and grid management. Secondly,
the video generation task may not be a unified policy inter-
face, since simply predicting next frame may not induce a
reasonable agent behavior. Specifically, video generation
objectives such as generating realistic video sequences given
a fixed context, cannot be directly compatible with decision
making objectives that optimize policies given feedback sig-
nals. Thirdly, as the real world is much more complicated
than simulators, the training of foundation agents should be
grounded in simplified world such as a state formed as a
result of an action. Then the agent can be trained on high-
level results rather than low-level pixels and videos, which
remains an open question for future work.

4. Self-Supervised Pretraining and Adaptation

Interactive data captures various aspects of information in
the decision process, including state transitions, state-action
causality and state or action values if rewards are provided.
These decision-related knowledge should be learned during
pretraining and transferred to downstream inference tasks
so as to improve sample efficiency and generalization of
agents. Similar to foundation models in language and vision,
we posit that the pretraining and adaptation pipeline can
be considered as knowledge representation learning and
reasoning of foundation agents. In this section, we highlight
strategies in self-supervised pretraining for decision making,
and discuss the potential of pretraining and adaptation in
building foundation agents.

4.1. Self-Supervised Pretraining

Self-supervised (unsupervised) pretraining for decision mak-
ing allows foundation agents to learn without reward signals
and encourages the agent to learn from suboptimal offline
datasets. This is particularly applicable when large, unla-
beled data can be easily collected from internet or real-world
simulators. Specifically, given a sequence of trajectories
7 = {(s1,0a1, 82,02, , ..., s7,ar)}, self-supervised pre-
training aims to learn a representation function g : T €
RY — Z € R™ (m < d) to distill valuable knowledge
from trajectory data for downstream inference. The knowl-
edge can be temporal information about the same modality
(e.g., st — S¢+i), causal information between different
modalities (e.g., 7(a|s)), as well as dynamics P(s'|s,a)
and reward R(s, a) information.

Generally, there are two steps in pretraining foundation
agents based on Transformer architecture. The first step
is to learn embeddings of trajectory data. Specifically, the
tokenization of trajectory sequences comprises three compo-
nents:(1) trajectory encoding that transforms raw trajectory
inputs into a common representation space, (2) timestep
encoding that captures absolute or relative positional infor-
mation, and (3) modality encoding to disambiguate between
different modalities in trajectories (Wu et al., 2023). Par-
ticularly, two levels of tokenization granularity have been
studied: (1) discretization at the level of modalities (Sun
et al., 2023; Wu et al., 2023), and (2) discretization at the
level of dimensions (Reed et al., 2022; Boige et al., 2023).

The second step is devising self-supervised pretraining ob-
jectives to discover the underlying structure and semantics
of trajectory data for knowledge representation learning.
Table 1 shows pretraining objectives for decision making
in domains including control (Sun et al., 2023), naviga-
tion (Carroll et al., 2022), and game play (Lee et al., 2022).
These objectives are mainly inspired by autoregressive (Rad-
ford et al., 2019; Brown et al., 2020) or masked (Devlin
et al., 2018; He et al., 2022) prediction in language and
vision model pretraining. The primary pretraining objective
for decision making involves learning control information
by predicting the next action in an autoregressive way. This
objective is further modified by conditioning on different
variables within trajectories, such as reward or value signals
(Chen et al., 2021; Lee et al., 2022), next state (observation)
information (Sun et al., 2023), or latent future sub-trajectory
information (Xie et al., 2023). As an alternative, random
masking (Liu et al., 2022) learns the context of trajectory
data by filling in missing information. Various masking
schemes conditioned on different RL. components are de-
signed. For example, reward-conditioned random mask
prediction (Carroll et al., 2022) recovers masked trajectory
segments conditioned on the first-step return, while (Sun
et al., 2023) only recovers masked actions conditioned on
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Table 1. Self-supervised pretraining objectives for decision making with Transformer. P is the prediction of the pretrained model. 79.¢—1
denotes previous trajectories before timestep ¢. s; is the state or observation at timestep ¢ and a; the action at timestep ¢. R; is the
return-to-go (target return for the rest of the input sequence) at timestep ¢, while Ry is the predicted future value and 7; the future reward.
Gt refers to a sub-goal or the ultimate goal at future timesteps, and z denotes the encoded future trajectory in the same sequence length
as the input trajectory. Note that the conditional variables in each loss function are encoded by either a causal Transformer (Brown et al.,
2020) for autoregressive modeling (top rows) or a bidirectional Transformer (Devlin et al., 2018) for masked modeling (bottom rows).

Pretraining Objective

Loss Function

Next action prediction
Reward-conditioned action prediction
Future value and reward prediction
Goal-conditioned action prediction
Future-conditioned action prediction
Forward dynamics prediction

Inverse dynamics prediction

—logPy(a¢|T0:4—1,5¢)
—logPy at|7'q:t—1,8t,Rt)
—logPy(as, Re,¢|To:6—1, 5¢)
—logPy(a¢|To:t—1,5¢, Giys)
—logPy(a¢|m0:t—1, 8¢, 2)

~

—logPy at|8t, St41

Random masking prediction
Reward-conditioned random mask prediction
Random masked hindsight prediction
Random autoregressive mask prediction

|lunmasked(r))

—logPy(masked(T)|lunmasked(t), Ro)
—logPy(masked(a)|unmasked(T), ar)
—logPy(masked(t, ar)|unmasked(r))

—logPy(masked(r

(
(
(
(
—logPy(s¢|10:t—1)
(
(
(
(
(

the final-step action to capture global temporal relations for
multi-step control. Combining masked and autoregressive
modeling, (Wu et al., 2023) constrains the last variable in
trajectories to be masked to force the pretrained model to be
causal at inference time. Moreover, contrastive prediction
objective (Stooke et al., 2021; Schwarzer et al., 2021; Yang
& Nachum, 2021; Cai et al., 2023) has been commonly used
in self-supervised pretraining to learn state representation
via a contrastive loss, which can benefit dynamics learning.

4.2. Downstream Adaptation

During adaptation, extensive decision-related knowledge ac-
quired from pretraining is transferred to downstream tasks
via fine-tuning or prompting. The knowledge transfer fa-
cilitates the optimization of learning objectives fy(z) in
downstream inference, such as the value function V' (7) or
Q(s,a), policy, dynamics and reward functions. The opti-
mized objectives empowered by knowledge reasoning can
finally improve sample efficiency and generalization com-
pared to learning from scratch in traditional RL.

Generally, there are two cases requiring fine-tuning: (1)
when the pretraining data is a mix of a small proportion of
near-expert data and a large proportion of exploratory trajec-
tories, and (2) when the pretraining objective significantly
differs from the inference objective of downstream decision
making tasks. For instance, traditional RL aims to maximize
cumulative rewards according to a specified reward func-
tion, whereas self-supervised pretraining tasks are usually
reward-free. In such cases, RL algorithms are demanded
for fine-tuning policies in online or offline settings (Yang &
Nachum, 2021; Lee et al., 2022; Sun et al., 2023; Cai et al.,
2023; Boige et al., 2023).

In addition to fine-tuning, prompting directly adapts the
pretrained model to downstream inference without altering
or introducing any parameters. It concerns: (1) aligning pre-
training objectives with downstream inference objectives,
and (2) prompting the model with interactive demonstra-
tions (Xu et al., 2022; Reed et al., 2022; Laskin et al., 2022;
Wei et al., 2023). For example, using a random masking
pretraining objective with a variable mask ratio for different
goals, (Liu et al., 2022) achieves zero-shot generalization to
goal-reaching tasks. This is attributed to the natural align-
ment of the masked pretraining objective with goal-reaching
scenarios, where the model is required to recover masked
actions based on remaining states.

4.3. Discussion

Previous attempts at self-supervised RL pretraining have
been mostly limited to a single task (Yang & Nachum, 2021),
or performing pretraining and fine-tuning within the same
task (Schwarzer et al., 2021). This is not generic and flexible
for adapting to various decision making tasks. Therefore,
we argue for multi-modal and multi-task self-supervised pre-
training in the evolution of foundation agents. Particularly,
self-supervised pretraining empowers foundation agents to
acquire a nuanced understanding of large interactive data,
laying a robust foundation for knowledge learning and rea-
soning in adaptation. However, challenges arise in optimiz-
ing foundation agents, such as determining the optimal gran-
ularity and representation of trajectory data. Furthermore,
striking a balance between versatility and task specificity
remains an ongoing challenge. Despite these problems, com-
bining self-supervised pretraining and versatile adaptation
strategies, underscores the potential of foundation agents
in capable of robust performance across a broad array of
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decision making scenarios.

5. Knowledge and Value Alignment via LLMs

The broad real-world knowledge and human values em-
bedded in LLMs pave the way for foundation agents with
improved reasoning, generalization and interpretability. In
this section, we discuss the roles of LLMs in enhancing
decision making realized by memory, planning and action
modules. We then outline some major challenges and poten-
tial solutions to align foundation agents with LLMs.

5.1. Memory and Information Processing

Foundation agents aligned with LLMs are often equipped
with a memory module. The memory module functions
as a repository, storing both task-specific information and
past interaction history that enables agents to retrieve and
refine relevant historical data for future planning. Similar as
human memory (Izquierdo et al., 1999), the agent’s memory
can be categorized into short-term and long-term compo-
nents. Short-term memory encapsulates recent information
within the context window, while long-term memory encom-
passes historical information stored in external storage.

After perceiving and processing environmental state, agents
can decide what information to remember and what is cru-
cial for current decision making that demands retrieval. For
example, mastered skills (Wang et al., 2023a) are explic-
itly stored to prevent forgetting and retrieved as needed to
enhance decision making efficiency. Further, through align-
ment with LLMs, foundation agents can refine their existing
memories, generate new insights based on current knowl-
edge, and assist future decision making (Park et al., 2023;
Shinn et al., 2023).

5.2. Planning with World Models

The abundant world knowledge and human values embed-
ded in LLMs enables LLMs to serve as world models (Hao
et al., 2023), simulating transition dynamics and reward
functions (Ma et al., 2023) for foundation agents to perform
planning. The agent then is able to reason about current ob-
servations and historical information, decomposing a com-
plicated task into a sequence of strategic plans or sub-goals.
Few-shot prompting (Zhao et al., 2021) can be one efficient
means to utilize LLMs for enhancing agent’s understanding
and planning by providing high-quality demonstrations in
short-term memory. For example, Chain-of-Thought (CoT)
(Wei et al., 2022) decomposes tasks into logically coherent
sub-goals, and Tree-of-Thought (ToT) (Yao et al., 2023) en-
ables agents to generate potential solutions, allowing them to
select the most reliable one. Furthermore, ReAct (Yao et al.,
2022) generates logically correct reasoning paths, improv-
ing the quality of generated plans by assessing correctness

and logical coherence of previously generated actions.

Moreover, feedback from the environment (Yao et al., 2022;
Huang et al., 2022; Wang et al., 2023a; Zhu et al., 2023;
Wang et al., 2023d), LLM critics (Shinn et al., 2023; Madaan
et al., 2023; Chen & Chang, 2023), or humans (Huang et al.,
2022) can also be leveraged to improve the planning of
foundation agents. These feedback enables agents to ad-
just behaviors and plans, addressing obstacles encountered
during execution and thus improving task fulfillment.

5.3. Action and Decision Making

For ultimate action execution and interaction with real or
simulated environments, an action module is required for
foundation agents to interpret plans from the planning mod-
ule, translate subgoals into executable actions, and combine
atomic actions to form more complex structured actions.

Specifically, the action module specifies action goals and
available actions. Action goals articulate intended objec-
tives, such as movement (Zhu et al., 2023), communication
(Zhang et al., 2023a), and code generation (Wang et al.,
2023a). Clear goal descriptions enable agents to compre-
hend and generate reasonable actions based on observa-
tions. Available actions, on the other hand, define the
agent’s action space, which can be expanded by adding
recently acquired skills into memory (Wang et al., 2023a;
Zhu et al., 2023). Additionally, equipped with LLMs, foun-
dation agents can possess the ability to call external APIs or
tools for problem solving. HuggingGPT (Shen et al., 2023)
exemplifies this by using LLMs as the controller to manage
existing Al models from the internet via APIs to execute
each sub-task. Further, by connecting to external databases
(Hu et al., 2023; Zhu et al., 2023), the agent can acquire
extra task-related knowledge via external tools and plugins
created by domain experts (Ge et al., 2023) for reliable and
creative decision making.

5.4. Discussion

The integration of LLMs into agent learning offers advan-
tages over conventional RL and IL methods. Firstly, LLMs
require significantly fewer training samples (Guo et al.,
2023), as they leverage pretraining on internet-scale text,
acquiring extensive real-world knowledge and demonstrat-
ing strong generalization abilities. Secondly, state-of-the-
art LLMs are inherently human-aligned, enabling them to
make decisions consistent with human preferences and val-
ues (Zhang et al., 2023a). Thirdly, by providing detailed
reasoning for actions during planning, the interpretability
of foundation agents aligned with LLMs addresses the chal-
lenge of deploying black-box AI models (Dosilovi¢ et al.,
2018) in real-world decision making.

However, a substantial challenge for aligning foundation
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agents with LLMs lies in the hallucination of LLMs . Hal-
lucination refers to the phenomenon where the language
model generates false content that is misaligned with real-
world knowledge (Zhang et al., 2023b). Since hallucination
detection still remains an open problem, aligning foundation
agents with LLMs amplifies the risk of inexplicable abnor-
mal behaviors. Given the broad range of tasks assigned to
foundation agents, particularly those that are safety-critical,
the hallucination in LLMs could result in serious conse-
quences during decision making. Therefore, it is crucial
to remain vigilant about the potential risks of foundation
agents aligned with LLMs, and propose solutions to this
issue for a safe and responsible deployment in real-world
decision making.

6. Trends for Foundation Agents

Derived from the formulation and challenges for foundation
agents, some critical research questions remain to be solved.
In this section, we propose these issues and potential so-
lutions, and discuss the trends for foundation agents with
examples in recent work as well as a case study in real-world
decision making scenarios.

6.1. A Unified or Compositional Foundation Agent

One central challenge in building foundation agents stems
from the substantial diversity among decision making tasks,
involving variations in state and action spaces, environment
dynamics, and reward functions. In contrast, the unifica-
tion of tasks in language is facilitated by the text-to-text
generation paradigm (Brown et al., 2020; OpenAl, 2023).
To structure diverse environments and tasks, some attempts
have been made along two primary directions: (1) the pur-
suit of a unified foundation model (Reed et al., 2022; Brohan
et al., 2022), and (2) the exploration of compositions involv-
ing multiple existing foundation models (Zeng et al., 2022;
Ajay et al., 2023) for decision making.

To establish a unified foundation model for decision mak-
ing, a core requirement is the unified representation of RL
components. This entails encoding states, actions, and re-
wards from diverse environments and tasks into standardized
tokens through sequence modeling (Reed et al., 2022; Jan-
ner et al., 2021; Chen et al., 2021). The subsequent step
involves transforming these tokens into a consistent data
modality, such as text descriptions (Zhu et al., 2023), gener-
ated videos (Du et al., 2023), code (Wang et al., 2023a), or
text-image pairs (Brohan et al., 2023). However, due to the
multi-modal and heterogeneous characteristics of interactive
data, uncertainties persist regarding the efficacy of tokeniza-
tion methods in compressing raw trajectories into compact
tokens. In addition, whether a single data modality can
comprehensively represent interactive data and effectively
convey its underlying information and knowledge warrants

further investigation.

While a unified foundation model might offer a comprehen-
sive solution, it could also lead to increased complexity and
challenges in interpretability. Instead, we consider whether
integrating existing foundations models (e.g., large language
or vision models) with moderate decision models is suffi-
cient to address most (if not all) of decision making tasks.
The integration of existing foundation models allows for
leveraging their domain-specific strengths but may intro-
duce issues in harmonizing different modalities and func-
tionalities. Additionally, a compositional foundation agent
could inherit both merits and demerits from other founda-
tion models. Therefore, striking a balance between these
approaches requires careful evaluation of specific require-
ments and constraints of target tasks, offering an intriguing
avenue for future research in foundation agents.

6.2. Policy Optimization with Foundation Agents

In traditional RL, theoretical guarantees underpin algorith-
mic advancements, such as the Bellman optimality update
in temporal difference learning and dynamic programming.
Recent theoretical analyses have shed light on the delusions
in sequence models for interaction and control (Ortega et al.,
2021), yet the optimization of a generalist policy with foun-
dation agents still lacks a solid theoretical foundation.

Establishing theoretical foundations for policy optimization
with foundation agents is a complex but crucial endeavor.
Firstly, policies generated by foundation agents will directly
affect changes in real-world applications, requiring rigorous
theoretical guarantees to ensure their effectiveness, opti-
mality, safety and robustness. Meanwhile, the theoretical
foundations for policy optimization can in turn help to un-
derstand the principles underlying the agent’s behavior and
performance, thereby enabling the development of algo-
rithms and methodologies for training foundation agents.
Specifically, we posit that the theoretical foundations re-
quire an interdisciplinary view (e.g., control theory, RL, and
optimization), and we outline some ideas here.

* Define Pretraining and Task-Specific Objectives: Un-
like traditional RL objectives that focus on maximizing
cumulative rewards, the optimization objectives for foun-
dation agents involve both pretraining and task-specific
objectives. Pretraining objectives address the unified rep-
resentation of variables involved in decision process and
the unified policy interface across tasks and domains.
Task-specific objectives may be employed in fine-tuning
phase, which have been established in many control, plan-
ning, and RL algorithms (Yang et al., 2023a; Wang et al.,
2023c).

* Understand the Interplay between Pretraining and
Task-Specific Optimization: Establish a mathematical
framework to investigate how the pretraining phase shapes
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the optimization landscape for task-specific policy opti-
mization, and how different adaptation algorithms interact
with the previously acquired knowledge. This could in-
volve probing convergence properties, sample efficiency,
and generalization bounds of foundation agents.

» Extend Existing Theoretical Frameworks: Adapt and
extend existing theoretical frameworks from RL, control
theory and optimization to accommodate the peculiar-
ities of foundation agents. This may involve relaxing
assumptions made in traditional RL and developing new
notions of optimality for generalist policies. For exam-
ple, (1) extend the MDP framework with generalized state
spaces to incorporate multi-modal inputs and extended
action spaces spanning different domains (e.g., physical
movements and linguistic responses), (2) leverage the
probabilistic representations and principled reasoning of-
fered by the control as inference framework (Todorov,
2008) to derive optimal control policies and analyze their
properties, and (3) ground policy optimization for foun-
dation agents in information-theoretic principles, such as
mutual information or entropy, to capture the agent’s abil-
ity to influence the environment and gather informative
experiences.

6.3. Open-Ended Tasks for Foundation Agents

In the evolution of foundation agents, a notable trend is the
shift towards learning from open-ended tasks at scale (Team
et al., 2021; Fan et al., 2022). Traditionally, RL agents
are confined to a single and individual task (Silver et al.,
2017; Schwarzer et al., 2023), limiting their applicability
to massive dynamic scenarios. Contemporary approaches
instead prioritize the scalability of generative models, es-
pecially via LLMs to effectively handle the complexities
inherent in open-ended tasks (Wang et al., 2023a; Zhu et al.,
2023). The open-ended agents, endowed with continuously
learning capabilities, interact with environments or external
tools (Shen et al., 2023; Hu et al., 2023; Ge et al., 2023),
iteratively refining their decision process. This paradigm
aligns seamlessly with RL principles, where agents acquire
optimal strategies through iterative learning.

Despite the promising advances in the development of open-
ended agents, several challenges persist particularly for
open-ended tasks. Importantly, open-ended tasks do not
have a predefined goal or endpoint, push the boundaries of
agent adaptability, generalization, and continual learning,
and require flexible adaptation, creativity, and the ability to
discover new goals or objectives. Inspired by these features,
we discuss the issues associated with foundation agent learn-
ing in open-ended tasks, along with insights into how these
issues can be addressed.

* Continual Learning and Adaptation: The dynamic na-
ture of open-ended tasks poses challenges in model adapt-

ability without catastrophic forgetting of acquired skills
and knowledge. Agents need to handle an unlimited vari-
ety of open-ended goals with training objectives and task
distributions dynamically changing. Two lines of recent
work attempt to address the issue by (1) leveraging pre-
trained language or vision model to convert world knowl-
edge into actionable insights (Ahn et al., 2022; Driess
et al., 2023), and (2) pretraining (or meta-learning) large
transformer models from scratch on multi-tasks (Team
et al., 2021; Fan et al., 2022; Bauer et al., 2023). How-
ever, these studies require mostly human-defined goals
as input. Instead, (Wang et al., 2023b) formulates goal
as energy function and learns without goal-conditioning
via diffusion models. Nevertheless, it is also limited by
human-designed functions for goals which could be re-
placed by neural networks in future work.
Unboundedness and Novelty Detection: In open-ended
tasks, the environment might be infinite or continually
evolving, making it difficult to exhaustively explore or
anticipate all possible states and outcomes. Agents need
to deal with novelty and unexpected situations throughout
their lifetime. Current research attempts to address this
issue through novelty difficulty measures (Pinto et al.,
2023), hierarchical RL (Vezhnevets et al., 2017) and
self-initiated open world learning framework (Liu et al.,
2023a), yet it still remains an open question.
Curriculum and Autotelic Learning: Agents learning
in open-ended tasks have to learn and explore without ex-
plicit external rewards. Existing studies apply procedural
environment generation to create diverse and increasingly
complex environments (Bauer et al., 2023), and intrinsic
motivation (Forestier et al., 2022) and curiosity-driven
learning to encourage exploration. Future work can con-
sider automatically generate curriculum via LLMs (Wang
et al., 2023a), universal video generation models (OpenAl,
2024; Bruce et al., 2024) or multi-modal models.
Creativity and Innovative Solutions: Generating novel
and valuable solutions is a hallmark of open-ended learn-
ing. This necessitates agents that can go beyond mere
imitation or optimization, possibly by combining known
concepts in unique ways or inventing entirely new ones.
Potential solutions include (1) Quality-Diversity algo-
rithms (Grillotti & Cully, 2022) to produce a diverse set
of high-performing solutions, (2) neuroevolution meth-
ods (Lehman & Stanley, 2011) to produce innovative so-
lutions, and (3) deep generative models to generate novel
and sometimes unexpectedly creative outputs.

6.4. Case Studies in Real-World Decision Making

Autonomous Control. The progress in robotics continually
enhances productivity and resource efficiency. Recently,
robots with general capabilities have been developed to-
wards foundation agents. For example. RT-1 (Brohan et al.,
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Figure 2. Visualized fine-tuning performance of our pretrained
agent on unseen task and game. Frames are selected from the
video recorded in the last evaluation episode. Total number of
evaluation episodes is 50. Results are from one training seed.

2022) is a generalist and language-conditioned robotic agent,
exhibiting zero-shot generalization to new tasks, environ-
ments and long-horizon scenarios by scaling on a large
set of manipulation demonstrations (Padalkar et al., 2023).
RT-2 (Brohan et al., 2023) further improves generaliza-
tion and reasoning in response to user commands by co-
fine-tuning pretrained vision-language models on demon-
strations and internet vision-language tasks. Moreover,
equipped with real-time human feedback, robots can also
improve their high-level decision making iteratively in long-
horizon tasks (Shi et al., 2024). We also conduct a case study
in robotic locomotion and game play by jointly pretraining
on 5 tasks in the DeepMind Control (DMC) suite (Tassa
et al., 2018) and 5 games in Atari video play (Bellemare
et al., 2013) through autoregressive modeling. Visualization
of the fine-tuning performance on a new locomotion task
and a new game is shown in Figure 2. Details of our case
study can be found in Appendix C.

In addition to robotics and game play, self-driving is another
critical domain where foundation agents have major impact
opportunities. As a paradigm shift from previous perception-
prediction-planning framework, LLMs are exploited to inte-
grate common-sense knowledge and human cognitive abili-
ties into autonomous driving (Wen et al., 2023; Mao et al.,
2023), and enable multiple vehicles to realize collaboration
over time (Hu et al., 2024). Despite these trends for foun-
dation agents in autonomous control, safety, robustness and
reliability of decisions made by agents requires rigorous
evaluation and assurance in real-world deployment.

Healthcare. Human-Agent collaborative decision making
in healthcare has the opportunity to enhance diagnostic accu-
racy, streamline operations, and provide personalized treat-
ment options. Current research in foundation agents for
healthcare is rare but has shown effectiveness in assessing
patient’s state in ICU (intensive care unit) rooms (Durante

et al., 2024) and designing treatment plans through discus-
sions among LLMs as different medical experts (Tang et al.,
2023). However, agents in healthcare still raise high un-
certainty and distrust from clinicians. Inspired by drawing
biomedical literature evidence via LLM (Yang et al., 2023b)
or involving human experts in the intermediate stages of
medical decision making (Zhang et al., 2024), real-world
healthcare can be realized through consistent collaboration
between humans and foundation agents in the future.

Science. Scientific discovery and research can be revolution-
ized by foundation agents with significantly accelerated data
analysis and experimentation processes, leading to faster
and more accurate insights. AlphaFold 3 (Abramson et al.,
2024) has demonstrated the feasibility of high accuracy
modelling across biomolecular space within a single uni-
fied model, consistent with the characteristics of foundation
agents that have a unified representation and policy interface
across state-action spaces. Aligned with LLMs and empow-
ered by external tools, chemistry agents (Boiko et al., 2023;
M. Bran et al., 2024) show their potential for accelerating
research and discovery. They can be applied in organic syn-
thesis, reaction optimization, drug discovery, and materials
design with capabilities of (semi-) autonomous hypothesis
generation, experimental design and execution. However,
the deployment of foundation agents in scientific research
poses potential biases in data interpretation, unintended ex-
perimental errors, and ethical concerns regarding the trans-
parency and accountability of findings, requiring rigorous
oversight, comprehensive validation and ethical guidelines.

7. Conclusion

We take the position that foundation agents hold the po-
tential to alter the landscape of agent learning for decision
making, akin to the revolutionary impact of foundation mod-
els in language and vision. We support this position by
formulating the notion of foundations agents and specify-
ing their roadmap and key challenges. Demonstrated by
recent work and a case study, we show that the enhanced
perception, adaptation, and reasoning abilities of agents not
only address limitations of conventional RL, but also hold
the key to unleash the full potential of foundation agents
in real-world decision making. However, due to the intrin-
sic complexity of decision making, existing work towards
foundation agents is still at a starting point. Future direc-
tions involve but are not limited to learning a unified rep-
resentation of diverse environments and tasks, establishing
theoretical foundations for a unified policy interface and
learning from open-ended tasks at scale. Bridging these
gaps will pave the way for more robust and versatile founda-
tion agents, contributing to the evolution of artificial general
intelligence.
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Impact Statement

The development and deployment of foundation agents
carry profound implications for society, shaping the land-
scape of Al and decision-making systems. The potential
broader impact spans ethical considerations, societal conse-
quences, and the democratization of Al. Ethically, founda-
tion agents could contribute to more transparent and account-
able decision-making processes, emphasizing the impor-
tance of fairness, interpretability, and adherence to ethical
standards. However, it also raises concerns about privacy,
bias, and unintended consequences, necessitating robust
ethical frameworks and governance. Societally, widespread
adoption of foundation agents has the potential to revolution-
ize various sectors, from autonomous control and healthcare
to scientific research and beyond, enhancing efficiency and
accessibility. Yet, it requires careful consideration of its im-
pact on employment, socioeconomic disparities, and digital
divide issues. Striking a balance between innovation and
responsible deployment is crucial to harness the full societal
potential of foundation agents while mitigating unintended
negative consequences. Future developments in this space
should be guided by a commitment to ethical principles,
social responsibility, and the promotion of positive societal
transformations.
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A. Distinctions between Foundation Agents, Task-Specific Agents and LLM-based Agents

Compared to conventional task-specific agents developed by RL or IL approaches, the foundation agent has the capabilities
of processing multi-modalities, adapting to new tasks and domains, and few- or zero-shot generalization with prompting.
Compared to LLM-based agents that mainly carry out linguistic or knowledge-based tasks, the foundation agent does
physical planning, optimizes decisions, and plays two- or multi-player games in physical and virtual worlds. An LLM may
be part of a foundation agent to enable the agent to align with the world model and human society created by languages.
However, as stated in Section 6.1, the morphology of a foundation agent is not necessarily restricted to a composition of
several existing foundation models. Instead, an LLM-based agent in current research (Wang et al., 2024) places LLMs at the
core of decision making.

B. Computational Requirements of Potentially Foundation Agents

Table 2 shows the model size and computational requirements of some generalist agents and our case study towards
foundation agents. Recent works (Lee et al., 2022; Brohan et al., 2022; 2023; Wei et al., 2023; Chebotar et al., 2023;
Durante et al., 2024) demonstrate that these agents are able to continue to scale to larger dataset sizes and model sizes with
performance improvement. Therefore, training a foundation agent may require much more computational resources than
expected, and scaling issues involving hardware acceleration, parallel processing, and model complexity and optimization
need to be considered. In future work, the scaling law concerning the data and model size for training foundation agents
needs to be addressed.

Table 2. Model size and computational requirements of current potential foundation agents and our case study. Results except for the last
row are from original papers. Note that these agents are still far from the truly foundation agent as defined in our paper, and we only
include those whose computational requirements are explicitly described in their original papers.

Model Params Computational Requirements
Gato (Reed et al., 2022) 1.18B Training 4 days on 256 TPUv3
Multi-Game Decision Transformer (Lee et al., 2022) 200M Preraining 8 days on 64 TPUv4
. . 175M (pretrainin 40h in Phase I on 40 V100
DualMind (Wei et al., 2023) 51. lM(gL from p%)ompts) 12h in Phase IT on 16 V100
Interactive Agent Foundation Model (Durante et al., 2024) | 277M Pretraining 175h on 16 V100
Our case 25M Pretraining 8h on 4 RTX4090

C. Case Study in DMC and Atari

C.1. Environments and Datasets

DeepMind Control Suite. The DeepMind Control Suite (Tassa et al., 2018) is a set of physics-based simulation environ-
ments, containing continuous control tasks with image observations spanning diverse domains and tasks. Different domains
are associated with different state-actions spaces and each task is associated with a particular MDP within each domain. We
select 5 tasks for pretraining and one unseen task for fine-tuning as shown in Table 3. For each task, we collect trajectories
using pixels from the training progress of a SAC (Haarnoja et al., 2018) agent for 1M steps to include both expert and
non-expert data for pretraining. For fine-tuning, we randomly sample 10% trajectories from the full replay buffer of the
SAC agent with diverse return distribution.

Table 3. Domains and tasks used in pretraining and fine-tuning on DMC.

Phase Domain Task
cartpole | swingup
hopper hop
Pretraining | cheetah run
walker stand
walker run
Fine-tuning | walker walk
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Atari. The Atari benchmark (Bellemare et al., 2013) is a collection of video game environments with distinctly different
dynamics, rewards, and agent embodiments. We select 5 games for pretraining and one unseen game for fine-tuning as
shown in Table 4. For each game, we collect trajectories using pixels from the training progress of a DQN (Mnih et al.,
2015) agent for 1M steps to include both expert and non-expert data for pretraining. For fine-tuning, we randomly sample
10% trajectories from the full replay buffer of the DQN agent with diverse return distribution.

Table 4. Atari games used in pretraining and fine-tuning.

Phase Game
Asterix
Breakout
Pretraining | Gopher
Qbert
Seaquest

Fine-tuning Pong

C.2. Implementation Details

Model Architecture. The implementation of our agent is based on GPT-2 (Brown et al., 2020) with configurations
summarized in Table 5. The input for pretraining consists of a sequence of image observations and actions, while during
fine-tuning returns are also added as input for RL. The observation tokenizer is a single ResNet (He et al., 2016) block to
obtain image patch token embeddings following (Reed et al., 2022). Action tokenizer and return tokenizer are single-layer
linear prediction heads. We follow the tokenization scheme and add patch position encodings and local observation position
encodings to token embeddings as introduced in (Reed et al., 2022). Similar to (Reed et al., 2022; Lee et al., 2022), we
model the data autoregressively using a sequential causal attention masking but allow observation tokens within the same
timestep to access each other.

Table 5. Transformer hyperparameters of our agent.

Hyperparameter Model
Transformer blocks 8
Attention heads 16
Layer width 512
Feedforward hidden size 2048
Shared embedding True
Layer normalization Pre-norm
Activation function GeGLU

Pretraining and Fine-tuning. We jointly pretrain our agent on 5 DMC tasks and 5 Atari games using the pretraining
objective of next action prediction —logPy(at|7o.t—1,0¢) via standard mean-squared error loss for continuous actions or
cross-entropy loss for discrete actions. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with parameters 5, = 0.9,
B2 = 0.95, and € = le — 8 for 1M steps. For pretraining, the learning rate is originally set to be 1e-5 with linear warm-up
and cosine schedule decay. We use batch size of 512 and weight decay of 0.1 for pretraining. For fine-tuning, the learning
rate keeps constant of 1e-4 with batch size 256 and dropout rate 0.1. During fine-tuning, we model and predict returns
and rewards in addition to actions using the learning objective —logPy(R;, at, 1 |70:t—1, 0t), and perform expert action
inference as introduced in (Lee et al., 2022). We use context length L = 50 for both pretraining and fine-tuning?. The size
of our pretrained model and corresponding computational requirements can be referred to Table 2. Since this is simply a
case study of potential foundation agent in applications of robotics and game play, we only provide the visualization of
fine-tuning performance in Figure 2 to demonstrate its feasibility and effectiveness in decision making scenarios. We do not
report other experimental results and compare with baselines as done in original research. In addition, the case study only
involves the first two steps in the roadmap of foundation agents as specified in Figure 1. We consider aligning the pretrained
model in this case study with LLMs in future work.

2Qur code is based on https://github.com/microsoft/smart.
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