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A Related Work

Influence of Normalization on Optimization Given the straightforward way to obtain
the gradient of the normalized model, a number of works focus on how normalization
affect the learning dynamics of the model during training, and explore the mechanism from
different aspects. Bjorck et al. (2018); Santurkar et al. (2018) claim normalization can
improve optimization by smoothing the loss landscape; Yang et al. (2018) interprets the
benefit of normalization by mean field theory; Kohler et al. (2019); Cai et al. (2019); Wu et al.
(2020) derive the convergence rate of gradient descent algorithm in normalized quadratic
model, which can be seen as variants of Rayleigh Quotient, but they do not take into account
weight decay and stochastic gradient; Dukler et al. (2020) gives the convergence result for
the two-layer rule network with weight normalization (Salimans & Kingma, 2016). Based
the spherical perspective of normalized weight, Hoffer et al. (2018); Wu et al. (2018b); Arora
et al. (2018) regard gradient descent algorithm with normalization as an adaptive step-size
algorithm. Some works acknowledge the joint effect of normalization and WD in SGD: Li &
Arora (2019) find with normalization, SGD with WD and constant learning rate is equivalent
to SGD with increasing learning rate algorithm but no WD. Van Laarhoven (2017); Chiley
et al. (2019); Kunin et al. (2021) discuss the concept of “equilibrium” of normalization and
WD; Li et al. (2020); Wan et al. (2021) theoretically justify the existence of equilibrium, Wan
et al. (2021) further proposes the concept of “spherical motion dynamics”, and empirically
shows its influence to learning dynamics of the model.

Evolution Dynamics of SGD Beyond the convergence of SGD, many works focus on
interpreting the possible benefit of gradient noise to improve the generalization of the model.
Zhang et al. (2019) discuss the effect of batch size and momentum on SGD in a quadratic
model; A more popular way is approximating SGD as SDE (Li et al., 2019; 2021), then
studying the evolution of SDE instead. Hu et al. (2017); Jastrzebski et al. (2017); Wu et al.
(2018a); Zhu et al. (2019); Xie et al. (2020) use diffusion model to characterize escaping the
behavior of SGD; Liu et al. (2021); Kunin et al. (2021) discuss the limiting dynamics of
quadratic model by deriving its stationary distribution.

B Preliminaries

In this paper we relate the update of SGD to the discretized simulation of stochastic
differential equations (SDEs). Finding the explicit solution of an SDE is the most direct way
to analyze its dynamics, but is notoriously intractable in general cases. We adopt in this
paper two alternative treatments which we illustrate as follows.

B.1 From martingale property to expectation bounds

Lemma B.1.1 (Itô formula). Let

dXt = A(Xt, t)dt+B(Xt, t)dBt (1)

be an n-dimensional Itô process. Let F (t,x) be a C2 map from [0,∞)×Rn to Rm. Then the
process

Y (t, ω) = F (t,Xt) (2)
is again an Itô process given by

dYi,t = ∂tFidt+ (∇xFi)
T · dXt +

1

2
tr[B(∇2

xxFi)B
T ]dt, i = 1, 2, · · · ,m (3)
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Definition B.1.2. Given a probability space (Ω,F ,P) and a filtration {Ft| t ∈ [0,∞)} on
it, let V(0, T ) be the class of functions f(t, ω) : [0,∞)× Ω → R such that
1). f is B([0,∞))×F-measurable.
2). f(t, ω) is Ft-adapted.
3). E

[∫ T

0
f(t, ω)2dt

]
< ∞.

Lemma B.1.3 (Martingale property of Itô integral). Given f ∈ V(0, T ), the Itô integral

It =

∫ t

0

f(τ, ω)dBτ , 0 ≤ t ≤ T (4)

is an Ft-martingale, which means

E
[∫ t

s

f(τ, ω)dBτ

∣∣∣∣Fs

]
= 0, ∀ 0 ≤ s ≤ t ≤ T (5)

and consequently

E
[∫ t

s

f(τ, ω)dBτ

]
= E

{
E
[∫ t

s

f(τ, ω)dBτ

∣∣∣∣Fs

]}
= 0 (6)

Similar results hold in multivariate cases.

Suppose we are given an Itô process dYt = C(Yt, t)dt+D(Yt, t)dBt on a probability space
(Ω,F ,P), which means

Yt − Y0 =

∫ t

0

C(Ys, s)ds+

∫ t

0

D(Ys, s)dBs (7)

We set Ft = σ(Yt) and take expectation on both sides of equation 7. By Lemma B.1.3 and
with sufficient regularity constraints, we can cancel off the diffusion term and exchange the
order of integral and expectation to obtain

EYt − EY0 = E
[∫ t

0

C(Ys, s)ds

]
=

∫ t

0

E [C(Ys, s)] ds (8)

When the drift term C(Yt, t) is not linear in Yt, it is generally impossible to solve EYt

explicitly from the integral equation equation 8, while upper and lower bounds for EYt may
still be given.
Following the above preliminaries, in this paper we first apply Itô formula to transform
the original dynamics of the NRQ weight Xt to the dynamics of other quantities we are
interested in, such as X̃t =

Xt

||Xt|| , Mt = ||Xt||2 and ft = (eT1 X̃t)
2, and then derive bounds

for their expected value based on twe procedures in equation 7 ∼ equation 8.
Taking advantage of the martingale property of Itô integral, We first prove Lemma 1 of the
main paper.

Lemma B.1.4. In the evolution of

dX̃t =− [
η

Mt
PtAX̃t +

η2

2M2
t

Tr(PtΣ̃Pt)X̃t]dt−
η

Mt
PtΣ̃

1
2 dBt (9)

dMt =[−2ληMt +
η2

Mt
Tr(PtΣ̃)]dt (10)

, we have

∆2
t =

Tr(PtΣ̃)η2

M2
t

. (11)

If Tr(PtΣ̃) is constant, then

lim
t→∞

∆t =
√
2λη. (12)
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Proof. Using Itô lemma, for given T > 0, and equation 9, we have

d||X̃t − X̃T ||22 =[− 2η

Mt
(X̃t − X̃T )

TPtAX̃t −
2η2

M2
t

(X̃t − X̃T )
T X̃t Tr(PtΣ̃) +

η2

M2
t

Tr(PtΣ̃Pt)]dt

+
η

Mt
(X̃t − X̃T )

TPtΣ̃
1
2 dBt

(13)
Then by Lemma B.1.3, we have

ET ||X̃t − X̃T ||22 =ET

∫ t

T

[− 2η

Mτ
(X̃τ − X̃T )

TPτAX̃τ − 2η2

M2
τ

(X̃τ − X̃T )
T X̃τ Tr(Pτ Σ̃) +

η2

M2
τ

Tr(Pτ Σ̃Pτ )]dτ

=

∫ t

T

Et[−
2η

Mτ
(X̃τ − X̃T )

TPτAX̃τ ]dτ +

∫ t

T

Et[−
2η2

M2
τ

(X̃τ − X̃T )
T X̃τ Tr(Pτ Σ̃)]dτ

+ Et

∫ t

T

Et[
η2

M2
τ

Tr(Pτ Σ̃Pτ )]dτ

(14)
Since we have the following results based on Lemma B.1.3

lim
τ→T

ET [−
2η

Mτ
(X̃τ − X̃T )

TPτAX̃τ ] = 0 (15)

lim
τ→T

ET [−
2η2

M2
τ

(X̃τ − X̃T )
T X̃τ Tr(Pτ Σ̃)] = 0 (16)

lim
τ→T

Et[
η2

M2
τ

Tr(Pτ Σ̃Pτ )] =
η2

M2
T

Tr(Σ̃Pτ ) (17)

Hence we have

lim
t→T

ET ||X̃t − X̃T ||22
t− T

=
η2

M2
T

Tr(Σ̃Pτ ) (18)

i.e.

∆2
T =

Tr(Σ̃Pτ )η
2

M2
T

. (19)

When Tr(Σ̃Pτ ) is constant, then by equation 12 in main text, we have

lim
t→∞

M2
t = η

Tr(Σ̃Pτ )

2λ
(20)

Combining equation 19 and equation 20, we have

lim
t→∞

∆t =
√
2λη (21)

B.2 Fokker-Planck equations provide further statistics

In Appendix B.1 we illustrate how to bound the expectation of an Itô process we are
interested in. Sometimes with mere expectation information it is not enough to tell anything
further. Theoretically, all of the statistics of an Itô process can be told from the evolution of
its distribution, which is depicted by the Fokker-Planck equation.
Lemma B.2.1 (Fokker-Planck equation). Consider an Itô process Xt defined as the solution
of

dXt = A(Xt, t)dt+B(Xt, t)dBt (22)
Denote the density function of Xt by ρ(x, t). Then ρ(x, t) is given by the Fokker-Planck
equation

∂tρ = −
p∑

i=1

∂xi [ρA(x, t)] +
1

2

p∑
i,j=1

∂2
xtxj

[B(x, t)ρ] (23)

≜ −∇ · J(x, t) (24)
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where Ji(x, t) = ρAi(x, t) − 1
2

∑p
j=1 ∂xj

[Bij(x, t)ρ] is the probability current generated by
the Itô process Xt.

Similar to solving an SDE, finding the explicit solution to a Fokker-Planck equation is usually
an intractable task. When dealing with Fokker-Planck equation in this paper, we consider a
simplified case under the following stronger condition.
Assumption B.2.2. Under the setting of Corollary D.1.1, we assume additionally that that
the spectrum of matrix A takes only 2 distinct real values a1 = al < ah = a2 = a3 = · · · = ap.

Intuitively, the above assumption states that when solving the Fokker-Planck equation,
we neglect the anisotropy of landscape along different geodesics on the unit sphere Sp−1

spreading out from the polar e1 .

C Proof of Theorem 1

Lemma C.0.1. ∀T > 0, Eft is continuous on [0, T ].

Proof. This is a direct corollary of lemma B.1.3.

Lemma C.0.2. Given a positive number T > 0, ∀K ∈ (0,+∞), define hK(t) as

hK(t) =
eKt∫ T

0
eKτdτ

. (25)

Then ∀f(t) ∈ C[0, T ], we have

lim
K→+∞

∫ T

0

hK(t)f(t)dt = f(T ). (26)

Proof. Since f(t) is continuous in [0, T ], then f(t) is bounded on [0, T ], assume ∃M > 0,∀t ∈
[0, 1], |f(t)| < M . Besides, since f(t) is continuous on T , ∀ε > 0, ∃δ > 0, when |t− T | < δ,
|f(t)− f(T )| < ε. Then ∀K > 1

δ log
2M
ε , we have:∫ T

0

hK(t)f(t)dt− f(T ) =

∫ T

0

hK(t)(f(t)− f(T ))dt

=

∫ (

0

T − δ)hK(t)(f(t)− f(T ))dt+

∫ T

T−δ

hK(t)(f(t)− f(T ))dt

≤2M

∫ (

0

T − δ)hK(t)dt+ ε

∫ T

T−δ

hK(t)dt

≤2M
eK(T−δ) − 1

eKT − 1
+ δ

≤2M

eKδ
+ ε

<2ε
(27)

With the strategies introduced in Appendix B.1, we are now able to provide non-asymptotic
bounds of Eft.
Theorem C.0.3 (Variants of Theorem 1 in main text). Then ∀t > 0 we have

Eft ≤ e−G1(t)[f0 +

∫ t

0

g2(τ)e
G1(τ)dτ ], (28)
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where

M(t)2 ≜
η(p− 1)σ2

2λ
+ e−4ληt(M2

0 − η(p− 1)σ2

2λ
) = M2

t ; (29)

g1(t) ≜
(ap − a1)η

M(t)
+

pη2σ2

M(t)2
; (30)

g2(t) ≜
(ap − a1)η

M(t)
+

η2σ2

M(t)2
; (31)

G1(t) ≜
∫ t

0

g1(τ)dτ. (32)

Further assume ∃ξ ∈ ( 12 , 1), ε(t) ≜ P (ft < ξ), then ∀T > 0, we have

Eft ≥ e−G̃1(t)[f0 +

∫ t

0

g̃2(τ)e
G̃1(τ)dτ ], (33)

where

g̃1(t) ≜
(a2 − a1)ηξ

M(t)
+

pη2σ2

M(t)2
; (34)

g̃2(t) ≜
(a2 − a1)ηξ

M(t)
(1− ε(t)) +

η2σ2

M(t)2
; (35)

G̃1(t) ≜
∫ t

0

g̃1(τ)dτ. (36)

Proof. When Σ̃ = σ2I, M2
t is deterministic given t:

M2
t =e−4ληtM2

0 + 2η2
∫ t

0

e−4λη(t−τ) Tr(Pτ Σ̃)dτ,

=e−4ληtM2
0 + 2η2

∫ t

0

e−4λη(t−τ)(p− 1)σ2dτ,

=
η(p− 1)σ2

2λ
+ e−4ληt(M2

0 − η(p− 1)σ2

2λ
),

(37)

therefore let M(t) denote Mt when it is deterministic. It’s obvious M(t) is positive,

monotonous, and continuous on (0,+∞), and converges to M∗ ≜
√

η(p−1)σ2

2λ . Hence,
g1(t), g2(t) are also positive, monotonous, and continuous on (0,+∞), and converges to
g∗1 ≜ ap−a1

M∗ + pη2σ2

(M∗)2 , g∗2 ≜ ap−a1

M∗ + η2σ2

(M∗)2 respectively.

(16) in main text can be rewritten as

dft = { ηδt
M(t)

(1− ft)ft +
η2

M(t)2
[σ2 − pσ2ft]}dt+

2η

M(t)

√
ft(1− ft)dBt. (38)

where

δt =
Lt − a1
1− ft

=

∑p
i=2(ai − a1)(X

(i)
t )2∑p

i=2(X
(i)
t )2

. (39)

Obviously δt ∈ [a2 − a1, ap − a1].

Given an positve real number T ∈ R+, arbitarily choose a positive continous-differential
function µ(t) ∈ C1[0, T ], set f̂t ≜ µ(t)ft, then by Itô lemma, we can derive the evolution of
f̂t based on equation 38, which is

df̂t = {µ
′(t)

µ(t)
f̂t +

ηδt
M(t)

(µ(t)− f̂t)ft +
η2

M(t)2
[σ2µ(t)− pσ2f̂t]}dt+

2η

M(t)

√
f̂t(µ(t)− f̂t)dBt.

(40)
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Now derive the integration of equation 40, ∀T ∈ [0, T ] we have

f̂T = f̂0+

∫ T

0

{µ
′(t)

µ(t)
f̂t+

ηδt
M(t)

(µ(t)−f̂t)ft+
η2

M(t)2
[σ2µ(t)−pσ2f̂t]}dt+

2η

M(t)

√
f̂t(µ(t)− f̂t)dBt,

(41)
where f̂0 = µ(0)f0. Note both the dirft part and diffusion part in equation 40 are continous
and uniformly bounded on [0, T ], hence we can get rid of the diffusion part by expectation:

Ef̂T = f̂0 + E
∫ T

0

{µ
′(t)

µ(t)
f̂t +

ηδt
M(t)

(µ(t)− f̂t)ft +
η2

M(t)2
[σ2µ(t)− pσ2f̂t]}dt. (42)

Prove upper bound equation 28 Notice in ηδt
M(t) (µ(t)−f̂t)ft =

ηδt
M(t)µ(t)(1−ft), ft ∈ [0, 1]

η, kt,M(t), µ(t) > 0, δt ≤ ap − a1, hence we have

0 ≤ ηδt
M(t)

(µ(t)− f̂t)ft ≤
η(ap − a1)

M(t)
(µ(t)− f̂t) (43)

Bring equation 43 into equation 42 to remove ft, then move the symbol E inside the
integration, we have

Ef̂T ≤f̂0 + E
∫ T

0

{µ
′(t)

µ(t)
f̂t +

η(ap − a1)

M(t)
(µ(t)− f̂t) +

η2

M(t)2
[σ2µ(t)− pσ2f̂t]}dt

=f̂0 +

∫ T

0

{µ
′(t)

µ(t)
Ef̂t +

η(ap − a1)

M(t)
(µ(t)− Ef̂t) +

η2

M(t)2
[σ2µ(t)− pσ2Ef̂t]}dt.

(44)

equation 44 can be rewritten as

Ef̂T +

∫ T

0

(
η(ap − a1)

M(t)
+

pη2σ2

M(t)2
− µ′(t)

µ(t)
)Ef̂tdt ≤ f̂0+

∫ T

0

(
η(ap − a1)

M(t)
+

η2σ2

M(t)2
)µ(t)dt, (45)

or rewritten as equation 46 using definition of g1(t), g2(t):

Ef̂T +

∫ T

0

(g1(t)−
µ′(t)

µ(t)
)Ef̂tdt ≤ f̂0 +

∫ T

0

g2(t)µ(t)dt. (46)

Notice Ef̂t = µ(t)Eft, hence (g1(t)− µ′(t)
µ(t) )Ef̂t = (g1(t)µ(t)− µ′(t))Eft, let

h(t) ≜ g1(t)µ(t)− µ′(t). (47)

Obviously h(t) is continous on [0, T ]. Then equation 46 can be rewritten as

Ef̂T +

∫ T

0

h(t)

µ(t)
Ef̂tdt ≤ f̂0 +

∫ T

0

g2(t)µ(t)dt. (48)

The integration inequation equation 48 has an explicit solution: by equation 48, ∀T ∈ [0, T ]
we have

Ef̂T +

∫ T

0

h(t)

µ(t)
Ef̂tdt ≤ f̂0 +

∫ T

0

g2(t)µ(t)dt (49)

⇐⇒ e
∫ T h(t)

µ(t)
dt h(T )

µ(T )
[Ef̂T +

∫ T

0

h(t)

µ(t)
Ef̂tdt] ≤ e

∫ T h(t)
µ(t)

dt h(T )

µ(T )
[f̂0 +

∫ T

0

g2(t)µ(t)dt] (50)

⇐⇒ d

dt
[e

∫ T h(t)
µ(t)

dT

∫ T

0

h(t)

µ(t)
Ef̂tdt] ≤ e

∫ T h(t)
µ(t)

dt h(T )

µ(T )
[f̂0 +

∫ T

0

g2(t)µ(t)dt] (51)

=⇒ e
∫ T h(t)

µ(t)
dt

∫ T

0

h(t)

µ(t)
Ef̂tdt ≤

∫ T

0

{e
∫ t h(τ)

µ(τ)
dτ h(t)

µ(t)
[f̂0 +

∫ t

0

g2(τ)µ(τ)dτ ]}dt (52)

⇐⇒
∫ T

0

h(t)Eftdt ≤ e−
∫ T h(t)

µ(t)
dt

∫ T

0

{e
∫ t h(τ)

µ(τ)
dτ h(t)

µ(t)
[f̂0 +

∫ t

0

g2(τ)µ(τ)dτ ]}dt. (53)
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Note
∫ T h(t)

µ(t)dt = C +
∫ T

0
h(t)
µ(t)dt is primitive of h(T )

µ(T ) , we will determine its base C later. Now
let’s deal with h(t) and µ(t) in equation 53. Recall h(t) = g1(t)µ(t) − µ′(t), which is an
one-dimensional ODE, and has an explicit solution given h(t) ∈ C[0, T ] and µ(0) > 0 :

µ(T ) = eG1(T )[µ(0)−
∫ T

0

h(t)e−G1(t)dt]. (54)

To ensure µ(t) > 0, we further assume ∀t ∈ [0, T ], h(t) > 0,
∫ T
0

h(t) = 1, and µ(0) > 1. Let’s
demonstrate these assumptions are sufficient to ensure µ(t) > 0: since g1(t) is always postive
regardless of t ∈ [0,∞), then G1(t) =

∫ t

0
g1(τ)dτ is strictly monotonously increasing on

[0, T ), and G1(0) = 0. Therefore ∀t ∈ [0, T ]∫ T

0

h(t)e−G1(t)dt ≤
∫ T

0

h(t)e−G1(t)dt <

∫ T

0

h(t)e−G1(0)dt = 1, (55)

=⇒ µ(t) >eG1(T )(µ(0)− 1) > 0. (56)

Using equation 54, we can dervie the form of
∫ T h(t)

µ(t)dt using h(t):∫ T h(t)

µ(t)
dt = C+

∫ T

0

h(t)

µ(t)
dt = C+

∫ T

0

h(t)e−G1(t)

µ(0)−
∫ t

0
h(τ)e−G1(τ)dτ

dt = − ln[µ(0)−
∫ t

0

h(t)e−G1(τ)dτ ]
∣∣∣T
0
+C.

(57)
Here we can set C = ln(µ(0)) to ensure∫ T h(t)

µ(t)
dt = − ln[µ(0)−

∫ T

0

h(t)e−G1(t)dt]. (58)

Take equation 54, equation 58 into equation 53, we have∫ T

0

h(t)Eftdt ≤[µ(0)−
∫ T

0

h(t)e−G1(t)dt]

∫ T

0

h(t)e−G1(t)

[µ(0)−
∫ t

0
h(τ)e−G1(τ)dτ ]2

[f̂0 +

∫ t

0

g2(τ)µ(τ)dτ ]dt

≤[µ(0)−
∫ T

0

h(t)e−G1(t)dt]

∫ T

0

h(t)e−G1(t)

[µ(0)−
∫ T
0

h(τ)e−G1(τ)dτ ]2
[f̂0 +

∫ t

0

g2(τ)µ(τ)dτ ]dt

=
µ(0)−

∫ T

0
h(t)e−G1(t)dt

[µ(0)−
∫ T
0

h(t)e−G1(t)dt]2

∫ T

0

h(t)e−G1(t)[f̂0 +

∫ t

0

g2(τ)µ(τ)dτ ]dt

(59)
Set T = T , we have∫ T

0

h(t)dtEft ≤
µ(0)−

∫ T
0

h(t)e−G1(t)dt

[µ(0)−
∫ T
0

h(T )e−G1(T )dt]2

∫ T

0

h(T )e−G1(T )[f̂0 +

∫ T

0

g2(t)µ(t)dt]dT

=
1

µ(0)− 1

∫ T

0

h(T )e−G1(T ){f̂0 +
∫ T

0

g2(t)e
G1(t)[µ(0)−

∫ t

0

h(τ)e−G1(τ)dτ ]dt}dT

=
µ(0)

µ(0)− 1

∫ T

0

h(T )e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt]dT

− 1

µ(0)− 1

∫ T

0

h(T )e−G1(T )

∫ T

0

g2(t)e
G1(t)

∫ t

0

h(τ)e−G1(τ)dτdtdT

(60)
Note we haven’t determined the specific form of h(t) and value of µ(0) yet. Now for a given
K ∈ (0,+∞), define hK(t) = eKt∫ T

0
eKτdτ

, take hK(t) into equation 60, we have

∫ T

0

hK(T )dTEfT ≤ µ(0)

µ(0)− 1

∫ T

0

hK(T )e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt]dT

− 1

µ(0)− 1

∫ T

0

hK(T )e−G1(T )

∫ T

0

g2(t)e
G1(t)

∫ t

0

hK(τ)e−G1(τ)dτdtdT

(61)

7



Under review as a conference paper at ICLR 2023

By lemma C.0.1, EfT is continous on [0, T ]; e−G1(T )[f0 +
∫ T

0
g2(t)e

G1(t)dt] is also continous
on [0, T ] because each part in it is continous. Therefore by lemma C.0.2, we have

lim
K→+∞

∫ T

0

hK(T )EfT dT = EfT , (62)

lim
K→+∞

∫ T

0

hK(T )e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt]dT = e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt].

(63)

Next we will prove

lim
K→+∞

∫ T

0

hK(T )e−G1(T )

∫ T

0

g2(t)e
G1(t)

∫ t

0

hK(τ)e−G1(τ)dτdtdT = 0 (64)

Recall g1(t), g2(t) are postive, continous and monotonous on [0,+∞), and converge to fixed
values g∗2 , then

g
1
≜ min(g1(0), g

∗
1) ≤g1(t) ≤ max(g1(0), g

∗
1) (65)

min(g2(0), g
∗
2) ≤g2(t) ≤ max(g2(0), g

∗
2) (66)

Hence by equation 66 we have

∣∣∣ ∫ T

0

hK(T )e−G1(T )

∫ T

0

g2(t)e
G1(t)

∫ t

0

h(τ)e−G1(τ)dτdtdT
∣∣∣,

=

∫ T

0

hK(T )e−G1(T )

∫ T

0

|g2(t)|eG1(t)

∫ t

0

hK(τ)e−G1(τ)dτdtdT,

≤max(g2(0), g
∗
2)

∫ T

0

hK(T )e−G1(T )

∫ T

0

eG1(t)

∫ t

0

hK(τ)e−G1(τ)dτdtdT,

≤max(g2(0), g
∗
2)

∫ T

0

hK(T )

∫ T

0

eG1(t)−G1(T )

∫ t

0

hK(τ)e−G1(τ)dτdtdT ;

(67)

By equation 65, for 0 ≤ t ≤ T we have

G1(t)−G1(T ) =

∫ t

T

g1(τ)dτ ≤
∫ t

T

g
1
dτ = g

1
(t− T ); (68)

−G1(t) = −
∫ t

0

g1(τ)dτ ≤ −
∫ t

0

g
1
dτ = −g

1
t, (69)

8
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Take equation 68, equation 69 into equation 67, assume K > g
1

we have∫ T

0

hK(T )

∫ T

0

eG1(t)−G1(T )

∫ t

0

hK(τ)e−G1(τ)dτdtdT

≤
∫ T

0

hK(T )

∫ T

0

eg1
(t−T )

∫ t

0

hK(τ)e−g
1
τdτdtdT

=
1

(
∫ T
0

eKtdt)2

∫ T

0

e(K−g
1
)T

∫ T

0

eg1
t

∫ t

0

e(K−g
1
)τdτdtdT

≤ 1

(
∫ T
0

eKtdt)2

∫ T

0

e(K−g
1
)T

∫ T

0

eg1
t 1

K − g
1

e(K−g
1
)tdtdT

=
1

(
∫ T
0

eKtdt)2(K − g
1
)

∫ T

0

e(K−g
1
)T

∫ T

0

eKtdtdT

≤ 1

(
∫ T
0

eKtdt)2(K − g
1
)

∫ T

0

e(K−g
1
)T 1

K
eKT dT

=
1

(
∫ T
0

eKtdt)2(K − g
1
)K

∫ T

0

e(2K−g
1
)T dT

≤ e(2K−g
1
)T

(
∫ T
0

eKtdt)2(K − g
1
)K(2K − g

1
)

=
e−g

1
T

(1− e−KT )2(2− g
1
/K)

· 1

(K − g
1
)
−→ 0, K −→ +∞.

(70)

Therefore, equation 64 holds. Take equation 62, equation 63, equation 64 into equation 61,
as K → +∞, we have

EfT ≤ µ(0)

µ(0)− 1
e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt]. (71)

Notice, ∀µ(0) ∈ (1,+∞), equation 71 holds, which means when µ(0) → +∞, we have

EfT ≤ e−G1(T )[f0 +

∫ T

0

g2(t)e
G1(t)dt]. (72)

Since T is arbitarily given, the upper bound equation 28 has been proven.

Prove lower bound equation 33 Let’s go back to see equation 42, notice

Ef̂T =f̂0 + E
∫ T

0

{µ
′(t)

µ(t)
f̂t +

ηδt
M(t)

(µ(t)− f̂t)ft +
η2

M(t)2
[σ2µ(t)− pσ2f̂t]}dt

=f̂0 +

∫ T

0

µ′(t)

µ(t)
Ef̂tdt+

∫ T

0

ηµ(t)

M(t)
Eδt(1− ft)ftdt+

∫ T

0

η2

M(t)2
[σ2µ(t)− pσ2Ef̂t]dt.

(73)
To handle Eδt(1− ft)ft, recall δt ∈ [a2 − a1, ap − a1] and ft ∈ [0, 1], so we have

Eδt(1− ft)ft ≥ (a2 − a1)E(1− ft)ft. (74)
Notice

E(1− ft)ft =E(1− ft)ft1{ft≥ξ} + E(1− ft)ft1{ft<ξ}

≥E(1− ft)ξ1{ft≥ξ} + E(1− ft)ξ1{ft<ξ} − E(1− ft)(ξ − ft)1{ft<ξ}

=ξE(1− ft)− E(1− ft)(ξ − ft)1{ft<ξ}

≥ξE(1− ft)− Eξ1{ft<ξ}

=ξE(1− ft)− ξP (ft < ξ)

=ξ(1− ε(t)− Eft)

(75)
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Take equation 75 into equation 73, we have

Ef̂T =f̂0 +

∫ T

0

µ′(t)

µ(t)
Ef̂tdt+

∫ T

0

ηµ(t)

M(t)
Eδt(1− ft)ftdt+

∫ T

0

η2

M(t)2
[σ2µ(t)− pσ2Ef̂t]dt

≥f̂0 +

∫ T

0

µ′(t)

µ(t)
Ef̂tdt+

∫ T

0

ηµ(t)

M(t)
(a2 − a1)ξ(1− ε(t)− Eft)dt+

∫ T

0

η2

M(t)2
[σ2µ(t)− pσ2Ef̂t]dt

=f̂0 +

∫ T

0

µ′(t)

µ(t)
Ef̂tdt+

∫ T

0

η(a2 − a1)ξ

M(t)
[(1− ε(t))µ(t)− Ef̂t]dt+

∫ T

0

η2

M(t)2
[σ2µ(t)− pσ2Ef̂t]dt,

(76)

which can be written as

Ef̂T+
∫ T

0

(
η(a2 − a1)ξ

M(t)
+
pη2σ2

M(t)2
−µ′(t)

µ(t)
)Ef̂tdt ≥ f̂0+

∫ T

0

(
η(a2 − a1)ξ

M(t)
(1−ε(t))+

η2σ2

M(t)2
)µ(t)dt,

(77)
or rewritten as equation 78 using definition of g̃1(t), g̃2(t).

Ef̂T +

∫ T

0

(g̃1(t)−
µ′(t)

µ(t)
)Ef̂tdt ≥ f̂0 +

∫ T

0

g̃2(t)µ(t)dt. (78)

Similar to the procedure from equation 48 to equation 59, we can derive an explicit solution
of equation 78 by auxiliary functions h(t), µ(t): ∀T ∈ [0, T ]

∫ T

0

h(t)Eftdt ≥ [µ(0)−
∫ T

0

h(t)e−G̃1(t)dt]

∫ T

0

h(t)e−G̃1(t)

[µ(0)−
∫ t

0
h(τ)e−G̃1(τ)dτ ]2

[f̂0 +

∫ t

0

g̃2(τ)µ(τ)dτ ]dt;

(79)

where h(t), µ(t) satisfy

• ∀t ∈ [0, T ], h(t), µ(t) > 0;

•
∫ T
0

h(t)dt = 1, µ(0) > 1;

• µ(T ) = eG̃1(T )[µ(0)−
∫ T

0
h(t)e−G̃1(t)dt].

since µ(0)−
∫ T

0
h(t)e−G̃1(t)dt ≤ µ(0), we have

∫ T

0

h(t)Eftdt ≥[µ(0)−
∫ T

0

h(t)e−G̃1(t)dt]

∫ T

0

h(t)e−G̃1(t)

[µ(0)−
∫ t

0
h(τ)e−G̃1(τ)dτ ]2

[f̂0 +

∫ t

0

g̃2(τ)µ(τ)dτ ]dt

≥[µ(0)−
∫ T

0

h(t)e−G̃1(t)dt]

∫ T

0

h(t)e−G̃1(t)

µ(0)2
[f̂0 +

∫ t

0

g̃2(τ)µ(τ)dτ ]dt

=
µ(0)−

∫ T

0
h(t)e−G̃1(t)dt

µ(0)2

∫ T

0

h(t)e−G̃1(t)[f̂0 +

∫ t

0

g̃2(τ)µ(τ)dτ ]dt.

(80)
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Set T = T , we have∫ T

0

h(t)Eftdt ≥
µ(0)−

∫ T
0

h(T )e−G̃1(T )dT

µ(0)2

∫ T

0

h(T )e−G̃1(T )[f̂0 +

∫ T

0

g̃2(t)µ(t)dt]dT

≥µ(0)− 1

µ(0)2

∫ T

0

h(T )e−G̃1(T )[f̂0 +

∫ T

0

g̃2(t)µ(t)dt]dT

=
µ(0)− 1

µ(0)2

∫ T

0

h(T )e−G̃1(T ){f̂0 +
∫ T

0

g̃2(t)e
G̃1(t)[µ(0)−

∫ t

0

h(τ)e−G̃1(τ)dτ ]dt}dT

=
µ(0)− 1

µ(0)

∫ T

0

h(T )e−G̃1(T )[f0 +

∫ T

0

g̃2(t)e
G̃1(t)dt]dT

− µ(0)− 1

µ(0)2

∫ T

0

h(T )e−G̃1(T ){
∫ T

0

g̃2(t)e
G̃1(t)[

∫ t

0

h(τ)e−G̃1(τ)dτ ]dt}dT

(81)

Similar to equation 61, set h(t) as hK(t) = eKt∫ T
0

eKτdτ
in equation 81, we have∫ T

0

hK(t)Eftdt ≥
µ(0)− 1

µ(0)

∫ T

0

hK(T )e−G̃1(T )[f0 +

∫ T

0

g̃2(t)e
G̃1(t)dt]dT

− µ(0)− 1

µ(0)2

∫ T

0

hK(T )e−G̃1(T ){
∫ T

0

g̃2(t)e
G̃1(t)[

∫ t

0

hK(τ)e−G̃1(τ)dτ ]dt}dT.

(82)

By lemma C.0.2, we have

lim
K→+∞

∫ T

0

hK(T )EfT dT = EfT , (83)

lim
K→+∞

∫ T

0

hK(T )e−G̃1(T )[f0 +

∫ T

0

g̃2(t)e
G̃1(t)dt]dT = e−G̃1(T )[f0 +

∫ T

0

g̃2(t)e
G̃1(t)dt].

(84)

Similar to equation 64, we can prove

lim
K→+∞

∫ T

0

hK(T )e−G̃1(T ){
∫ T

0

g̃2(t)e
G̃1(t)[

∫ t

0

hK(τ)e−G̃1(τ)dτ ]dt}dT = 0. (85)

The only difference in the proof is that unlike g2(t), g̃2(t) is not necessarily monotonous on
[0,+∞), but we have 0 ≤ g̃2(t) < g2(t),∀t ∈ [0,+∞), and g2(t) is uniformly bounded, so
g̃2(t) is uniformly bounded too.

Therefore in equation 82, as K →, µ(0) +∞, we have

EfT ≥ e−G̃1(T )[f0 +

∫ T

0

g̃2(t)e
G̃1(t)dt]. (86)

Since T is arbitarily given, the lower bound equation 33 has been proven.

Put rt = 1− Eft, ∆t =

√
Tr(PtΣ̃)η2

M2
t

(equation 11) into Theorem C.0.3, we can get the form

of Theorem 1 in main text.

D Proof of the results on equilibrium state dynamics

D.1 Expectation bounds

The following corollary follows directly from Theorem C.0.3.
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Corollary D.1.1 (Variant of Corollary 1 in main text). Given ∆ =
√
2ηλ, assume M(0) =

M∗ ≜
√

η(p−1)σ2

2λ , and ∃ε > 0, limt→+∞ ε(t) < ε in theorem C.0.3, then we have

f∗ − ε+ e−g̃∗
1 t(f0 − f∗ − C) ≤ Eft ≤ f̄∗ + e−g∗

1 t(f0 − f̄∗). (87)

where g∗1 = (
ap−a1√
p−1σ

+ p
p−1∆)∆, f̄∗ = 1 − ∆

ap−a1√
p−1σ

+ p
p−1∆

, g̃∗1 = (
ap−a1√
p−1σ

+ p
p−1∆)∆, f∗ =

1− ∆
ξ(ap−a1)
√

p−1σ
+ p

p−1∆
.

Proof. When M(0) =
√

η(p−1)σ2

2λ , based on the evolution of M(t) (equation 29), M(t) ≡√
η(p−1)σ2

2λ , then G1(t), g2(t), G̃1(t), g̃2(t) will be

G1(t) =

∫ t

0

[(ap − a1)

√
2λη

(p− 1)σ2
+

2pλη

(p− 1)
]dτ = (

ap − a1√
p− 1σ

∆+
p

p− 1
∆2) · t = g∗1t; (88)

g2(t) =(ap − a1)

√
2λη

(p− 1)σ2
+

2λη

(p− 1)
=

ap − a1√
p− 1σ

∆+
1

p− 1
∆2; (89)

G̃1(t) =

∫ t

0

[ξ(a2 − a1)

√
2λη

(p− 1)σ2
+

2pλη

(p− 1)
]dτ = (

ξ(a2 − a1)√
p− 1σ

∆+
p

p− 1
∆2) · t = g̃∗1t;

(90)

g̃2(t) =ξ(a2 − a1)(1− ε(t))

√
2λη

(p− 1)σ2
+

2λη

(p− 1)

=
ξ(a2 − a1)√

p− 1σ
∆+

1

p− 1
∆2 − ξ(a2 − a1)∆√

p− 1σ
ε(t).

(91)

Then the upper bound equation 28 can be written as

Eft ≤e−g∗
1 t[f0 +

∫ t

0

(
ap − a1√
p− 1σ

∆+
1

p− 1
∆2)eg

∗
1τdτ ]

=e−g∗
1 tf0 + (1− e−g∗

1 t)

ap−a1√
p−1σ

∆+ 1
p−1∆

2

ap−a1√
p−1σ

∆+ p
p−1∆

2

=e−g∗
1 tf0 + (1− e−g∗

1 t)(1− ∆
ap−a1√
p−1σ

+ p
p−1∆

)

=e−g∗
1 tf0 + (1− e−g∗

1 t)f̄∗

=f̄∗ + e−g∗
1 t(f0 − f̄∗).

(92)

The lower bound equation 33 can be written as

Eft ≥e−g̃∗
1 t[f0 +

∫ t

0

(
ξ(a2 − a1)√

p− 1σ
∆+

1

p− 1
∆2)eg̃

∗
1τdτ ]− ξ(a2 − a1)∆√

p− 1σ
e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ

=e−g̃∗
1 tf0 + (1− e−g∗

1 t)(1− ∆
ξ(a2−a1)√

p−1σ
+ p

p−1∆
)− ξ(a2 − a1)∆√

p− 1σ
e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ

=e−g̃∗
1 tf0 + (1− e−g∗

1 t)f∗ − ξ(a2 − a1)∆√
p− 1σ

e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ

(93)

Now let’s estimate the value of e−g̃∗t
∫ t

0
eg̃

∗
1τε(τ)dτ . Recall the assumptiion that

limt→∞ ε(t) < ε, which means ∃T0 > 0,∀t > T0, ε(t) < ε, then if t ≤ T0,

e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ ≤ e−g̃∗t

∫ t

0

eg̃
∗
1τdτ =

1− e−g̃∗t

g̃∗
≤ 1

g̃∗
≤ ε+ e−g̃∗t+g̃∗T0

g̃∗
; (94)
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If t > T0, then we have

e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ =e−g̃∗t[

∫ T

0

eg̃
∗
1τε(τ)dτ +

∫ t

T

eg̃
∗
1τε(τ)dτ ]

≤e−g̃∗t[

∫ T

0

eg̃
∗
1τdτ +

∫ t

T

eg̃
∗
1τεdτ ]

=
e−g̃∗t

g̃∗
[(1− ε)(eg̃

∗T − 1) + ε(eg̃
∗t − 1)]

=
ε+ e−g̃∗t[(1− ε)(eg̃

∗T − 1)− ε]

g̃∗

≤ε+ e−g̃∗t+g̃∗T0

g̃∗

(95)

Summarize the two cases above,we have ∀t ∈ [0,+∞),

e−g̃∗t

∫ t

0

eg̃
∗
1τε(τ)dτ ≤ ε+ e−g̃∗t+g̃∗T0

g̃∗
. (96)

Take equation 96 into equation 93, we have

Eft ≥e−g̃∗
1 tf0 + (1− e−g∗

1 t)f∗ − ξ(a2 − a1)∆√
p− 1σ

· ε+ e−g̃∗t+g̃∗T0

g̃∗

≥e−g̃∗
1 tf0 + (1− e−g∗

1 t)f∗ − (ε+ e−g̃∗t+g̃∗T0)

=f∗ − ε+ e−ḡ∗t(f0 − f∗ − eḡ
∗T ).

(97)

Set C = eḡ
∗T0 . Summarize equation 92, equation 97, equation 87 holds.

Put rt = 1− Eft in corollary 1 in main text, we can obtain the form of corollary 1 in main
text.

D.2 Detailed depiction based on Fokker-Planck equation

In addition to the bounds on Eft, the exact stationary distribution of ft can be solved
with Fokker-Planck equation under Assumption B.2.2. Without loss of generality, we
first set A = diag(0, 1, 1, . . . , 1) and then convert the results to the general case A =

diag(al, ah, ah, . . . , ah). Let β1 = X̃1 = eT1 X̃. In the case that A = diag(0, 1, 1, . . . , 1), the
dynamics of β1 is given by

dβ1 = − η

Mt
(β3

1 − β1)dt−
η2(p− 1)

2M2
t

β1dt

− ησ

Mt

√
1− β2

1dBt

≜ −at(β
3
1 − β1)dt− btβ1dt− qt

√
1− β2

1dBt (98)

We introduce the transform β1 = sin θ to make the diffusion term space-homogeneous. Then
the dynamics of θt reads

dθt =
a(t)

2
sin 2θtdt− [b(t)− c(t)2

2
] tan θtdt− q(t)dBt (99)

= −1

2
∇θUdt− q(t)dBt (100)

in which
U(θ, t) =

a(t)

2
cos 2θ + [2b(t)− q(t)2] ln sec θ (101)

serves as a time-dependent potential function over the interval (−π
2 ,

π
2 ). We apply the

Fokker-Planck equation in Lemma B.2.1 to the dynamics of θt and obtain the following
theorem.
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Theorem D.2.1. Define ρ(θ, t) as the density of θt at time t. Then ρ is given by the
Fokker-Planck equation

∂tρ = ∂θ

{
(
ρ

2
∂θU) + ∂θ[

q(t)2

2
ρ]

}
(102)

≜ −∂θJ(θ, t) (103)

in which

J(θ, t) = −ρ

2
∂θU − q(t)2

2
∂θρ (104)

is the probability current generated by the dynamics of θt.

D.3 Eigenfunction expansion and stationary distribution

In our analysis of equilibrium state, the weight norm is supposed to be initialized at its
limiting value

√
M∗. Consequently, the coefficients a(t), b(t) and q(t) in equation 99 also

stays at their limiting value a∗, b∗ and q∗ throughout the training process, making the
coefficients on the right-hand-side of equation 102 independent of t. We can then solve
equation 102 by separation of variables. Set

ρ(θ, t) = Θ(θ)T (t) (105)

Then equation 102 can be rewritten as

ΘT ′ =
Θ′T

2
U ′ +

ΘT

2
U ′′ +

q2∗
2
Θ′′T (106)

For convenience, we introduce V (θ, t) = U(θ, t)/q2t , and that

V (θ) = U∗(θ)/q
2
∗ (107)

= κ cos 2θ + (p− 2) ln sec θ (108)

where

κ =
a∗
2q2∗

=

√
p− 1

2
√
2ηλσ2

(109)

Dividing both sides of equation 106 by ΘT , we have

2

q2∗

T ′

T
=

Θ′′

Θ
+ V ′Θ

′

Θ
+ V ′′ (110)

Note that the left-hand-side of equation 110 involves only t, while the right-hand-side is a
function of merely θ. Thus both sides must equal to a constant, which we denote by −λ:

2

q2∗

T ′

T
=

Θ′′

Θ
+ V ′Θ

′

Θ
+ V ′′ = −λ (111)

or equivalently

− T ′ =
q2∗
2
λT (112)

LFPΘ = λΘ (113)

in which

LFP = − d2

dθ2
− V ′ d

dθ
− V ′′ (114)

= − d

dθ
(e−V d

dθ
eV ) (115)

is the Fokker Planck operator.
The basic solution to equation 112 is

T (t) = e−
q2∗
2 λt (116)
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in which λ is determined by the boundary value problem:

LFPΘ = λΘ, Θ ∈ L2
V (−

π

2
,
π

2
) (117)

lim
θ→±π

2

e−V d

dθ
(eV Θ) = 0 (118)

in which L2
V (−π

2 ,
π
2 ) is the Hilbert space defined by

L2
V (−

π

2
,
π

2
) =

{
ρ(θ)

∣∣∣∣∣
∫ π

2

−π
2

|ρ(θ)|2eV (θ)dθ < ∞

}
(119)

The reason for choosing this Hilbert space is that once the initial density function ρ(θ, 0)
is initialized in L2

V (−π
2 ,

π
2 ), the time-dependent solution ρ(θ, t) of Fokker-Planck equation

equation 102 will remain in it as we will show later on. In fact, most common initial
distributions including Gaussian initialization

ρ(θ, 0) ∝ cosp−2 θ (120)

and initializing at certain fixed point

ρ(θ, 0) = δθ0(θ) (121)

fulfill this restriction. Boundary condition equation 118 follows from the reflecting boundary
condition of probability flow

lim
θ→±π

2

J∗(θ) = 0 (122)

since the dynamics θt can not leave the interval [π2 ,
π
2 ].

Based on the above analysis, we set out proving an important fact that the eigenvalues of of
boundary value problem equation 118 and equation 122 are i). non-negative; ii). countable.
Lemma D.3.1. The eigenvalues of boundary value problem equation 118 and equation 122 are
non-negative. Moreover, λ0 = 0 is an eigenvalue. The eigenfunction of λ0 = 0 proportional
to Θ0 = e−V .

Proof. Let Φ = Φ(θ) be an eigenfunction corresponding to an eigenvalue λ of the boundary
value problem equation 118 and equation 122, that is,

LFPΦ = λΦ (123)

lim
θ→±π

2

e−V d

dθ
(eV Φ) = 0 (124)

Multiplying both sides of equation 123 by ΦeV and then integrating by part, we have

λ

∫ π
2

−π
2

|Φ|2eV dθ =

∫ π
2

−π
2

ΦeV (LFPΦ)dθ (125)

= −
∫ π

2

−π
2

ΦeV
d

dθ
[e−V d

dθ
(eV Φ)] (126)

= −ΦeV [e−V d

dθ
(eV Φ)]

∣∣∣∣π
2

−π
2

+

∫ π
2

−π
2

| d
dθ

(eV Φ)|2e−V dθ (127)

=

∫ π
2

−π
2

| d
dθ

(eV Φ)|2e−V dθ ≥ 0 (128)

which proves the self-ajointness of the operator LFP on L2
V (−π

2 ,
π
2 ), and the non-negativity

of corresponding eigenvalues. Furthermore, the equality in equation 128 holds if and only if
d
dθ (e

V Φ) = 0, that is, Φ ∝ e−V .

We then go on to prove the discreteness of the spectrum.
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Lemma D.3.2. Given a bounded interval [−A,A] ⊂ R, and a potential VS(x) such that

VS ∈ C∞(−A,A), inf
x∈(−A,A)

VS(x) > −∞ (129)

Then the spectrum of the Schrödinger operator H = − d2

dx2 + VS(x) in L2(−A,A) is purely
discrete Simon (2008); Maz’ya (2007).
Corollary D.3.3. For p ≥ 4 boundary value problem equation 118 and equation 122 has at
most countable eigenvalues which can be listed in ascending order

0 = λ0 < λ1 < λ2 < · · · < λn < · · · (130)

Proof. Define Θ = e−V/2Ψ, then equation 118 and equation 122 can be rewritten as

HΨ = λΨ, Ψ ∈ L2(−π

2
,−π

2
) (131)

lim
θ→±π

2

e−V d

dθ
(eV/2Ψ) = 0 (132)

in which H = − d2

dθ2 +VS(θ) is the Schrödinger operator, VS = V ′2

4 = V ′′

2 is the corresponding
Schrödinger potential. Specifically,

VS(θ) =
(p− 2)(p− 4)

4
tan2 θ + κ2 sin2 2θ + κp cos 2θ

− (κ+
1

2
)(p− 2), θ ∈ (−π

2
,
π

2
) (133)

For p ≥ 4, condition equation 129 in Lemma D.3.2 holds. Then the theorem follows from
Lemma D.3.2.

Combining Theorem D.3.1 with Theorem D.3.3, we can expand the density ρ(θ, t) into
Fourier series.
Theorem D.3.4. For p ≥ 4, if the initial distribution satisfies ρ(θ, 0) ∈ L2

V (−π
2 ,

π
2 ), then

the evolution of density function ρ(θ, t) over time is given by Fourier series in L2
V (−π

2 ,
π
2 )

ρ(θ, t) ∝
∑
n≥0

Tn(t)
∑
m≥0

cn,mΘn,m(θ) (134)

= c0,0e
−V (θ) +

∑
n≥1

e−
q2∗
2 λnt

∑
m≥0

cn,mΘn,m(θ) (135)

where Θn,m,m ∈ N are the eigenfunctions corresponding to λn and cn,m are the coefficients
determined by the initial condition

ρ(θ, 0) = c0,0e
−V (θ) +

∑
n≥1

∑
m≥0

cn,mΘn,m(θ) (136)

The infinite sums in equation 135 and equation 136 are interpreted as the limits in L2
V (−π

2 ,
π
2 ).

Θn1,m and Θn2,k are orthogonal in L2
V (−π

2 ,
π
2 ) whenever m ̸= k.

Corollary D.3.5 (Stationary distribution of θt). From equation 135 we define

ρ∗(θ) = c0,0e
−V (θ) (137)

= c0,0e
−κ cos 2θ · cosp−2 θ, θ ∈ [

π

2
,
π

2
] (138)

where κ follows the same definition in equation 109. Then ρ∗ is the stationary distribution
in the sense that

lim
t→+∞

ρ(θ, t) = ρ∗(θ), in L2
V (−

π

2
,
π

2
) (139)

Specifically, we have

||ρ(θ, t)− ρ∗(θ)||2L2
V
≤ e−q2∗λ1t||ρ(θ, 0)− ρ∗(θ)||2L2

V
(140)
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Proof. Squaring both sides of initial condition equation 136 and taking integrals over θ ∈
(−π

2 ,−
π
2 ). For nonnegative measurable functions, we can use Tonelli’s lemma to exchange

the order of infinite sum and integral, and obtain

+∞ > ||ρ(θ, t)||2L2
V

(141)

=

∫ π
2

−π
2

|ρ(θ, t)|2eV (θ)dθ (142)

=
∑
n,m

c2n,man,m, (143)

(orthogonality of eigenfunctions)

where

an,m = ||Θn,m||2L2
V
=

∫ π
2

−π
2

Θn,m(θ)2eV (θ)dθ < +∞ (144)

Then we have

||ρ(θ, t)− ρ∗(θ)||L2
V
=

∫ π
2

−π
2

|ρ(θ, t)− ρ∗(θ)|2eV dθ (145)

=
∑

n≥1,m

e−q(∞)2λntc2n,man,m (146)

≤ e−q2∗λ1t
∑

n≥1,m

c2n,man,m → 0 (147)

= e−q2∗λ1t||ρ(θ, t)− ρ(θ, 0)||L2
V

(148)

To further attain the stationary distribution of ft, we change the variable with respect to
the relation f = sin2 θ:

ρ(f, t) ∝ ρ(θ, t) · |dθ
df

| (149)

∝ ρ(θ, t) · |d(± arcsin
√
f)

df
| (150)

=
∑
n≥0

Tn(t)
∑
m≥0

bn,mFn,m(f), f ∈ [0, 1] (151)

and specifically

ρ∗(f) ∝ ρ∗(θ) · |
dθ

df
| (152)

∝ ρ∗(θ) · |
d(± arcsin

√
f)

df
| (153)

∝ e−κ(1−2f)(1− f)
p−2
2 · f− 1

2 (1− f)−
1
2 (154)

∝ e2κff− 1
2 (1− f)

p−3
2 , f ∈ [0, 1] (155)

As is mentioned in Section B.2, in previous analysis we first assume that the NRQ matrix
Ã = (0, 1, · · · , 1). For a more general case with A = (al, ah, · · · , ah), we define

L̃ =
XTdiag(0, 1, · · · , 1)X

2XTX
(156)

Hence
L = al + (ah − al)L̃ (157)
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and

dXt = −η(∇Ldt+ PXt
σ

||X||
dBt)− ηλXt (158)

= −(ah − al)η · (∇L̃dt+ PXt

||X||
σ

(ah − al)
dBt)− (ah − al)η · λ

ah − al
Xtdt (159)

equation 159 indicates that the dynamics of NRQ with general matrix A = (al, ah, · · · , ah)
is equivalent to training with Ã = (0, 1, · · · , 1) and rescaled learning rate, weight decay and
noise scale:

η̃ = (ah − al)η (160)

λ̃ =
λ

ah − al
(161)

σ̃2 =
σ2

(ah − al)2
(162)

Substituting the above equivalence into equation 155, we obtain the following conclusion.
Corollary D.3.6 (Stationary distribution of ft). The stationary distribution of ft is given
by

ρ∗(f) =
1

N (κA, p)
e2κA·ff− 1

2 (1− f)
p−3
2 , f ∈ [0, 1] (163)

in which

κA =

√
p− 1

2σ̃

√
2η̃λ̃

=
(ah − al)

√
p− 1

2σ
√
2ηλ

(164)

N (κA, p) is the normalizing constant that equals to

N (κA, p) =
Γ( 12 )Γ(

p−1
2 )

Γ(p2 )
M(

1

2
,
p

2
, 2κA) (165)

where Γ(z) is the gamma function, and M(a, b, z) is Kummer’s confluent hypergeometric
function.
Furthermore, the equilibrium expectation is given by

Ef∗ =
1

p

M( 32 ,
p
2 + 1, 2κA)

M( 12 ,
p
2 , 2κA)

(166)

= 1−
√
p− 1σ

ah − al

√
2ηλ+ o(

√
2ηλ) (167)

Proof. For Kummer’s confluent hypergeometric function, we have

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ezuua−1(1− u)b−a−1du (168)

whenever Re(b) > Re(a) > 0. Hence

N (κA, p) =

∫ 1

0

e2κAff− 1
2 (1− f)

p−3
2 (169)

=
Γ( 12 )Γ(

p−1
2 )

Γ(p2 )
M(

1

2
,
p

2
, 2κA) (170)

Ef∗ =

∫ 1

0

e2κAff
1
2 (1− f)

p−3
2 /N (κA, p) (171)

=
Γ( 32 )Γ(

p−1
2 )

Γ(p2 + 1)
M(

3

2
,
p

2
+ 1, 2κA)/N (κA, p) (172)

=
1

p

M( 32 ,
p
2 + 1, 2κA)

M( 12 ,
p
2 , 2κA)

(173)
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Further we have

M(a, b, z) = ez
2

za−b Γ(b)

Γ(a)
[1 +

(a− 1)(a− b)

z
+ o(

1

z
)] (174)

and therefore

Ef∗ =
1− p−1

4
1

2κA

1 + p−1
4

1
2κA

+ o(
1

2κA
) = 1−

√
p− 1σ

ah − al

√
2ηλ+ o(

√
2ηλ) (175)

D.4 Estimation of tail probability decay

From the expansion in Corollary D.3.4, we see that the convergence behaviors of the dynamics
are governed by the lowest non-vanishing eigenvalue of the Fokker Planck equation µ1 =

q2∗
2 λ1.

Corollary D.4.1 (Linear decay of tail probability). Given any ξ ∈ (0, 1), ε(t) = P(ft < ξ) is
defined as the tail probability of ft dynamics. It represents the probability that the trajectory
of X̃t stays outside certain neighbourhood of the optimal solution e1, and can be estimated
with

|ε(t)− ε∗| ≤ Ce−µ1t (176)

where C is a positive constant irrelevant of ξ.

Proof. Let δ = arcsin
√
ξ. By Cauchy-Schwartz inequality and the L2

V convergence of ρ(θ, t)
to its stationary density in Corollary D.3.5, we have

|ε(t)− ε∗| =
∣∣∣∣∫ 1

0

I(−δ,δ)[ρ(θ, t)− ρ∗(θ)]df

∣∣∣∣ (177)

≤
∫ 1

0

I(−δ,δ)|ρ(θ, t)− ρ∗(θ)|df (178)

≤
{∫ 1

0

e−V dθ

} 1
2

·
{∫ 1

0

|ρ(θ, t)− ρ∗(θ)|2eV dθ)
} 1

2

(179)

≤ C1 · ||ρ(θ, t)− ρ∗(θ)||L2
V
· e−µ1t, by equation 140 (180)

→ 0 (181)

It is generally impossible to reach an exact expression of µ1 =
q2∗
2 λ1, but certain approximation

can be made to estimate this value, as is introduced in Risken (1996).

Lemma D.4.2. If κ > p−2
4 , the normalized potential V is a symmetric double well potential,

with local minima ± arccos
√

p−2
4κ and local maxima 0.

Proof. We have
V (−θ) = κ cos(−2θ) + (p− 2) ln sec(−θ) = V (θ) (182)

which proves the symmetry. Also

d

dθ
V (θ) = tan θ(p− 2− 4κ cos2 θ) (183)

proves the conclusion on critical points.

Lemma D.4.3. Given a symmetric double well potential U(x) on finite interval [−A,A]
with local minima ±a, 0 < a < A. Further suppose reflecting within the potential is a related
diffusion process

dXt = −1

2
∇U(x)dt+

√
DdBt (184)
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Then the lowest non-vanishing eigenvalue of the corresponding Fokker Planck equation can
be approximated with

µ̂1 =
1

π

√
|U ′′(0)U ′′(a)|e−[U(0)−U(a)]/D (185)

=
D

π

√
|V ′′(0)V ′′(a)|e−[V (0)−V (a)] (186)

in which V = U/D is the normalized potential.
Remark 1. One should be cautious that the µ1 in Lemma D.4.3 refers to the lowest non-
vanishing eigenvalue of the original Fokker Planck equation, while λ1 in D.3.4 is the lowest
non-vanishing eigenvalue of the variable-separated boundary value problem. This means
µ1 = q(∞)2

2 λ1.

Theorem D.4.4 (Estimation of µ1). If κ > p−2
4 , the lowest non-vanishing eigenvalue

µ1 =
q2∗
2 λ1 of original Fokker Planck equation equation 102 can be approximated by

µ̂1 =
4
√
2q(∞)2

π
κ(1− p− 2

4κ
)e−2κ(1− p−2

4κ + p−2
4κ ln p−2

4κ ) (187)

Proof. Since

V (θ) = κ cos 2θ + (p− 2) ln sec θ (188)

V ′′(θ) = −4κ cos 2θ + (p− 2) sec2 θ (189)

a = arccos

√
p− 2

4κ
(190)

we have the following calculations

V (0) = κ (191)

V (a) = −κ− p− 2

2
ln

p− 2

4κ
(192)

V ′′(0) = −4κ+ p− 2 (193)
V ′′(a) = 8κ− 2(p− 2) (194)

Then plunging equation 191 to equation 194 into equation 186, we complete the proof.

Recall that under the equilibrium of SMD, the angular update (AU) is of fixed magnitude
∆ =

√
2ηλ. Since κ ∝ C(p, σ2)∆−1, the condition κ > p−2

4 means that the angular
update ∆ is rather small. This is generally true for commonly-adopted settings such as
η = 0.1, λ = 0.001. For this reason, we make a further assumption
Assumption D.4.5. In commonly adopted settings, ∆ ≪ 1 so that p−2

4κ ≪ 1.

We can simplify the expression equation 187 with the above assumption.
Corollary D.4.6 (Small AU approximation of µ1). Under Assumption D.4.5, the lowest
non-vanishing eigenvalue of Fokker Planck equation can be approximated by

µ̂1 ≈ C1∆ · e−
C2
∆ (195)

in which C1 and C2 are two constants depending only on dimension p and noise scale σ2.

Proof. Since q∗ ∝ ∆, κ ∝ ∆−1 and p−2
4κ = o(1), from equation 187 we have

µ̂1 = C1∆(1−B1∆) · e−
C2
∆ [1−B2∆+B3∆ ln(B3∆)] (196)

= C1∆ · e−
C2
∆ + o(∆ · e−

C2
∆ ) (197)

The above corollary is crucial in the sense that it provides estimation of the decay rate of
the density ρ(f, t) together with its tail probability ε(t).
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E Proof of the results beyond equilibrium state dynamics

E.1 Escaping behavior

From the general bounds in Theorem C.0.3 it is straightforward to derive the following
conclusion for the escaping behavior in non-equilibrium state.

Corollary E.1.1 (A sufficient condition for ”escaping” behavior). When η, λ are given, if
the following conditions hold:

1) ∃ε > 0, ∀t > 0, ε(t) < ε < 1− f̄∗;

2) f0 = f̄∗;

3) M(0) > (p−1)σ2η

(1−ε−f̄∗)(a2−a1)ξ
;

where f̄∗ is defined as in Corollary D.1.1. Then ∃T > 0, we have

EfT > f0 ≥ lim
t→∞

Eft. (198)

Proof. First of all, let’s briefly demonstrate why f0 = f̄∗ ≥ limt→∞ Eft: Acoording to the
evolution of M(t) shown in equation 29, M(t) will convrege to M∗ as t → +∞. Then by
equation 87, when equilibrium has been achieved, as t → +∞, we have Eft ≤ f̄∗, hence
limt→∞ Eft ≤ f̄∗.

Now let’s prove ∃T > 0,EfT > f̄∗. First let’s show M∗ < (p−1)σ2η

(1−ε−f̄∗)(a2−a1)ξ
:

(p− 1)σ2η

(1− ε− f̄∗)(a2 − a1)ξ
=

(p− 1)σ2η

( ∆
ap−a1√
p−1σ

+ p
p−1∆

− ε)(a2 − a1)ξ

>
(p− 1)σ2η

( ∆
ap−a1√
p−1σ

)(a2 − a1)ξ

=
ap − a1

(a2 − a1)ξ
·
√
p− 1ση

∆

=
ap − a1

(a2 − a1)ξ
M∗ > M∗

(199)

which means M(0) > (p−1)σ2η

(1−ε−f̄∗)(a2−a1)ξ
> M∗. Recall M(t) will continously and monotonously

converge to M∗ as equation 29 implies, hence M(t) will strictly decrease to M∗, and
∃T > 0,M(T ) = (p−1)σ2η

(1−ε−f̄∗)(a2−a1)ξ
. Then by equation 33, we have

EfT ≥e−G̃1(T )[f0 +

∫ T

0

g̃2(τ)e
G̃1(τ)dτ ],

=e−G̃1(T )[f0 +

∫ T

0

g̃2(τ)

g̃1(τ)
g̃1(τ)e

G̃1(τ)dτ ].

(200)
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Let’s estimate the bound of g̃2(τ)
g̃1(τ)

on [0, T ]: let ∆(t) denote
√
p−1ση
M(t) , so ∆(t) will increase

from ∆(0) to ∆(T ) on [0, T ], then we have

g̃2(τ)

g̃1(τ)
=

(a2−a1)ηξ
M(t) (1− ε(t)) + η2σ2

M(t)2

(a2−a1)ηξ
M(t) + pη2σ2

M(t)2

=

(a2−a1)ξ√
p−1σ

∆(t)(1− ε(t)) + 1
p−1∆(t)2

(a2−a1)ξ√
p−1σ

∆(t) + p
p−1∆(t)2

=1−
(a2−a1)ξ√

p−1σ
ε(t) + ∆(t)

(a2−a1)ξ√
p−1σ

+ p
p−1∆(t)

>1−
(a2−a1)ξ√

p−1σ
ε+∆(t)

(a2−a1)ξ√
p−1σ

+ p
p−1∆(t)

>1−
(a2−a1)ξ√

p−1σ
ε+∆(t)

(a2−a1)ξ√
p−1σ

=1− ε−
√
p− 1σ

(a2 − a1)ξ
∆(t)

≥1− ε−
√
p− 1σ

(a2 − a1)ξ
∆(T )

(201)

Take equation 201 into equation 200, we have

EfT =e−G̃1(T )[f0 +

∫ T

0

g̃2(τ)

g̃1(τ)
g̃1(τ)e

G̃1(τ)dτ ]

>e−G̃1(T ){f0 +
∫ T

0

[1− ε−
√
p− 1σ

(a2 − a1)ξ
∆(T )]g̃1(τ)e

G̃1(τ)dτ}

=e−G̃1(T ){f0 + [1− ε−
√
p− 1σ

(a2 − a1)ξ
∆(T )]

∫ T

0

g̃1(τ)e
G̃1(τ)dτ}

=e−G̃1(T ){f0 + [1− ε−
√
p− 1σ

(a2 − a1)ξ
∆(T )](eG̃1(T ) − 1)}.

(202)

Note M(T ) = (p−1)σ2η

(1−ε−f̄∗)(a2−a1)ξ
, so ∆(T ) =

√
p−1ση
M(T ) = (1− ε− f̄∗)/

√
p−1σ

(a2−a1)ξ
, besides f0 = f̄∗,

hence we have

EfT > e−G̃1(T ){f̄∗ + [1− ε− (1− ε− f̄∗)](eG̃1(T ) − 1)} = f̄∗. (203)

A supplementary qualitative explanation of this escaping behavior (or "pseudo-overfitting")
can be derived from the view of back-and-forth distribution shift. In the Fokker-Planck
equation equation 102 with respect to θt = arcsin(eT1 X̃t) , we have made the diffusion term
space-homogeneous. Therefore, the dynamics can be regarded as the motion of a particle
moving in a potential well U(θ, t) which changes with time. We plot below in Figure 1 the
normalized potential well V (θ, t) = U(θ, t)/q(t)2, the minima of which is indicated with a
dashed line. It is clear from Figure 1 that at the moment when the learning rate get decayed,
the double valleys of the potential soon jump away from each other towards ±π

2 respectively.
Remember that the x label of the figure is θt = arcsin(eT1 X̃t). Therefore, this sudden shift
is in favor of lower risk rt = (eT1 X̃t)

2 and hence lower loss Lt. As the training goes on,
however, the double valleys gradually moves closer to each other towards 0, which induces
higher risk and loss and leads to the so-called "pseudo-overfitting" phenomenon.
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(a) Double-well potential V (θ, t)

Figure 1: Back-and-forth shift of potential well. Each dashed line indicates the left minima
of the corresponding double-well potential.

E.2 Equivalent dynamics with adjusted hyperparameters

Corollary E.2.1. ∀k > 0, if X0 is multiplied by k, enlarge η, λ by k2, 1
k2 times respectively,

rt remains unchanged.

Proof. Denote the new dynamics by X
(2)
t . The adjustment implies

1

k2
M

(2)
0 = M0 (204)

1

k2
η(2) = η (205)

k2λ(2) = λ (206)

Then from equation 9 we have

dX̃
(2)
t =− [

η(2)

M
(2)
t

P
X̃

(2)
t

AX̃
(2)
t +

(η(2))2

2(M
(2)
t )2

Tr(P
X̃

(2)
t

Σ̃P
X̃

(2)
t

)X̃(2)]dt

− η(2)

M
(2)
t

P
X̃

(2)
t

Σ̃dBt

(207)

dM
(2)
t =[−2λ(2)η(2)M

(2)
t +

(η(2))2

M
(2)
t

Tr(P
X̃

(2)
t

Σ̃)]dt (208)

that is

dX̃
(2)
t =− [

η

M
(2)
t /k2

P
X̃

(2)
t

AX̃
(2)
t +

η2

2(M
(2)
t /k2)2

Tr(P
X̃

(2)
t

Σ̃P
X̃

(2)
t

)X̃(2)]dt

− η

M
(2)
t /k2

P
X̃

(2)
t

Σ̃dBt

(209)

dM
(2)
t /k2 =[−2ληM

(2)
t /k2 +

η2

M
(2)
t /k2

Tr(P
X̃

(2)
t

Σ̃)]dt (210)

Therefore, (X̃t,Mt) and (X̃
(2)
t ,M

(2)
t /k2) satisfies the same SDE, with identical initial

condition

X̃0 = X̃
(2)
0 (211)

M0 = M
(2)
0 /k2 (212)
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Hence their dynamics will be identical. Since the risk rt is entirely determined by the
dynamics of X̃t, we claim that the aforementioned adjustment of hyperparameters will
preserve the evolution of risk.
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