
Gaussian Garments: Reconstructing Simulation-Ready Clothing with
Photo-Realistic Appearance from Multi-View Video

Supplementary Material

Abstract

This document supplements the main paper with details
on i) the initial mesh reconstruction process ii) the implemen-
tation of the appearance model, iii) the registration process,
iv) the behavior optimization, and v) the procedure for the
automatic garment ordering. Additionally, we provide vi) ad-
ditional evaluation of our registration, appearance modeling,
and behavior reconstruction procedures. We compare our
registration procedure with the SOTA registration method
by Lin et al. [9] and our full method to SCARF [1]. Finally,
we demonstrate the results of our method in the attached
video, by reconstructing a diverse set of garments with var-
ious shapes, appearances, and materials. In the video, we
also provide registration results in dynamic sequences, com-
parisons of our method to AnimatableGaussians [8], and
evaluation of our behavior fine-tuning procedure.

1. Initial Mesh Reconstruction
The process of reconstructing the garment mesh from single-
frame multi-view imagery involves three key steps. First,
we select a template frame where the garments are fully
visible, from which we construct the dense oriented point
cloud of the scene by running a multi-view stereo algorithm
in COLMAP [12]. Next, we filter out background points
and reconstruct the surface of the clothed human body using
Poisson surface reconstruction [5]. Finally, we separate the
individual garments from the body using semantic segmenta-
tion maps and apply a re-meshing algorithm by [7] to obtain
well-defined triangle meshes of the desired resolution for
each garment piece. We use 8000 vertices for each garment,
which we observe works well with the pre-trained GNN
simulator.

Extracting garment templates using semantic segmenta-
tion maps can often result in poor-quality mesh boundaries,
particularly with low-resolution meshes. During training,
3D Gaussian kernels near the boundaries are pruned and den-
sified to better align with multi-view observations, enabling
successful registration. However, in cases where certain
camera views are missing or flawed segmentation maps are
provided, the expected open boundaries may be erroneously
closed with faces, preventing the garment from deforming
properly with the videos. Manual intervention may be re-
quired to remove these unwanted faces, ensuring the mesh is
correctly shaped and capable of deforming accurately with
the video content.

2. Appearance Details
To model the garment’s appearance, we use a Gaussian tex-
ture, i.e., a 2D image with multiple channels containing
parameters for 3D Gaussians. To produce a 3D Gaussian
Garment, we sample the Gaussians from the texture in a
regular grid (e.g. one Gaussian per texture pixel). Note that
each garment face may contain multiple Gaussians depend-
ing on the face’s texture location. Then, we position the
Gaussians in 3D using the sampled parameters. Here we
describe this process in detail.

Following the approach of Qian et al. [10], we define a
local coordinate system for the Gaussians, which allows us
to transform them along with the deforming mesh. The co-
ordinate system for Gaussian i is defined by rotation matrix
Rj ∈ SO(3) specific to the face j and the Gaussian surface
point τi ∈ R3 as the origin. The coordinate system is unique
for each Gaussian. Its basis comprises three unit vectors:
the normal vector of the Gaussian’s corresponding triangular
face, one of the triangle’s edges, and the cross-product of
these two.

Inside the coordinate frame, we represent a Gaussian’s
rotation as a quaternion ri ∈ H, translational offset µi ∈
R3, and scale si ∈ R3. This allows Gaussians to move
within their corresponding mesh face, and to capture high-
frequency texture details. Additionally, as the mesh deforms,
the Gaussians attached to a face j are affected by the face’s

scale, kj ∈ R+. This scale is computed as
B +H

2
, where

B and H are the base and height of the triangle.
Then, during rendering the local-frame Gaussians are

transformed into world coordinates by the following equa-
tions:

r′i = Rjri, (1)
µ′
i = kjRjµi + τi, (2)
s′i = kjsi. (3)

2.1. Appearance Initialization
We initialize the appearance using zeros for all Gaussian pa-
rameters, create Gaussians on the mesh surface, and optimize
them to match the template frame observations.

The primary optimization term here is the RGB error
LRGB. It combines mean absolute error L1 and structural
similarity error LSSIM between the renders and ground-truth
images.

LRGB = λRGBL1 + (1− λRGB)LSSIM, (4)



where λRGB is a balancing weight.
Additionally, we incorporate two regularization terms in-

troduced by Qian et al. [10]. The first term, Lpos, regularizes
the Gaussians to stay close to their surface points, defined
by their barycentric coordinates.

Lpos = ∥max(µ− ϵpos, 0)∥2, (5)

where µ are local translations and ϵpos is a tolerance thresh-
old.

The second term, Lscale, penalizes the scale s of the Gaus-
sians relative to the underlying mesh triangles.

Lscale = ∥max(s− ϵscale, 0)∥2, (6)

where ϵscale is a tolerance threshold.
We use the resulting set of Gaussians, rigidly attached to

the garment surface, to register the mesh to the multi-view
videos.

2.2. Appearance Modelling
Many recent works model garment appearance on human
avatars as a pose-dependent problem. They directly learn
a bijective projection from a specific body pose to a cer-
tain garment appearance. However, garments’ appearances
change dynamically. Wrinkle patterns may vary under the
same body pose, and different wrinkles may lead to differ-
ent occlusions and shadows. Minor 3D structures, like fur,
also introduce shifts relative to the garment surface. There-
fore, we leverage the Style U-Net [8] architecture to predict
appearance changes.

Given the deformed mesh in each frame, we first cre-
ate ambient occlusion and normal maps using the Blender
Python library. We used a texture size of 512×512 px2 in our
experiments. These two maps provide the occlusion ratios
and surface normal information, which helps to learn the
shadows and specular effects on the garment surface. Then,
we concatenate these maps along the color channel. We
generate ambient occlusion maps separately for both outer
and inner garment surfaces to better model their appearance.

The backbone of our model is Style U-Net, a conditional
StyleGAN-based [4] generator. During training, the model
takes as input the ambient occlusion and normal maps to-
gether with a view direction map and predicts offsets to the
Gaussian texture. Before the forward process, we convert the
normal map directions to the camera coordinate. We find it
makes training converge faster with better reflective effects.
The view direction map is a tensor with the same shape as
the normal map. It contains the normalized directions from
the camera position to the origin points, converted to the
origin points’ local coordinates. All invalid texture pixels,
which do not correspond to any point on the surfece, are set
to zero. The view direction map is first passed through a
small CNN with two convolutional layers and then added
element-wise to the hidden layer within the Style U-Net.

The output has 51 channels with the same resolution as the
input maps. The first 48 channels are offsets to the spherical
harmonics, modeling the lighting effects, including shad-
ows and highlights. The last 3 channels are translational
offsets, compensating for registration inaccuracies and shifts
of minor 3D structures.

3. Registration Details
Our registration pipeline uses multi-view images as visual
guidance and optimizes Gaussian-bounded mesh positions
to register the mesh to successive frames. We leverage the
RGB and SSIM loss from 3D Gaussian Splatting [6] and add
physical regularization terms to preserve realistic wrinkles
caused by highly dynamic movement.

However, in cases where large occlusions are present,
e.g., occlusions by adjacent body parts, the RGB and physi-
cal regularizations (bending and stretching) alone do not
suffice for convergence, and the mesh tends to implode
(see Fig. 1). To alleviate this problem, we include a body–
garment collision term, Lbody, as a further regularizer that
provides a displacement constraint when photometric sup-
port is lacking.

Still, in highly dynamic motions, the body–garment pen-
etration at the beginning of the optimization procedure can
hinder convergence. Therefore, for the first part of the op-
timization, we substitute Lbody by a term based on virtual
edges, LVE, described below.

3.1. Virtual Edges Regularization
The garment geometry for each frame is initialized at the last
frame’s converged position. However, in highly dynamic
sequences, the body may move greatly between the frames,
resulting in large body–garment penetrations. In these cases,
the Lbody regularizer fails to preserve the garment geometry,
which tends to implode.

Therefore, we construct “virtual edges” between opposite
faces of the garment mesh to prevent the mesh from collaps-
ing onto itself. We identify such “opposite” faces by casting
rays along the normal direction of each face and querying
for the intersection face. We filter the identified face pairs
by only keeping those whose normals are nearly parallel.
We compute the following regularization term to prevent the
face pairs from getting too close to each other:

LVE =
∑
i

max(Lei − lei , 0)
2, (7)

where Lei and lei are lengths of the edge ei in the template
and the current geometries respectively.

We use LVE in the first half of the optimization and re-
place it with Lbody in the second half of the optimization.
We observed that this scheduling allows LVE to maintain the
mesh structure while LRGB optimizes the mesh node posi-
tions. Using Lbody for the second half of the optimization



allows for more accurate physical draping of the garment on
the body, providing the best overall results (please see Table
1 of the main paper).

3.2. First Frame Matching
Our dataset consists of multiple multi-view videos of the
same scene. For all videos, we start the registration from
the same mesh geometry, reconstructed from the template
frame. However, the first-frame pose of each video can be
very different from the template frame pose in terms of mesh
shape and overall position.

Therefore, we reconstruct a sparse full-body point cloud
for the first frame of the new sequences. Then, we find
the global rotation and translation that roughly align the
template full-body geometry with each video’s first frame,
by performing an iterative closest point (ICP) algorithm [11]
between the point cloud reconstructed from the template
frame and the target sequence.

4. Behavior Optimization Details
To mimic the real behavior of garments we fine-tune a pre-
trained garment simulation GNN from ContourCraft [3].
As outlined in the main paper, the GNN autoregressively
predicts accelerations ât+1 for the mesh nodes in each sim-
ulation step given their positions xt, velocities vt, material
vectors m, and canonical edge lengths Ē:

ât+1 = gψ(xt,vt,m, Ē) (8)

The geometry for each step is computed by integrating
the predicted accelerations into the simulation:

x̂t+1 = xt + vt + ât+1 (9)

For simplicity, we assume a time difference equal to 1 be-
tween successive frames.

Our goal here is to optimize ψ, m, and Ē so that our simu-
lations better match the behavior of the registered sequences.
ψ are the parameters of the GNN and m are material vectors.
These are 4-value vectors attached to each node of the gar-
ment mesh and fed into the GNN. Ē are canonical lengths
of each edge in the mesh represented by scalar values. All
these elements are parts of the original ContourCraft model
that we optimize for our needs.

We tune these parameters using all the registered se-
quences in our training set. During fine-tuning we autore-
gressively simulate each training sequence with gψ . In each
frame, we use the simulated geometry x̂t+1 to compute a
loss value which comprises two terms:

Lbehavior(x̂t+1,xt+1) = Lccraft(x̂t+1,xt+1) (10)
+ λL2(x̂t+1,xt+1), (11)

where xt+1 is the registered geometry for the frame t + 1,
and λ is a balancing weight. Lccraft here is the original loss

function from ContourCraft, while L2 is a simple mean
squared error.

Finetuning the GNN using only registered sequences and
Lbehavior enables it to mimic the behavior of the garments.
The problem, however, is that our registered sequences only
contain individual garments without multi-layer outfits. Be-
cause of this, the ContourCraft GNN, which originally could
handle multi-layer outfits, starts forgetting how to properly
handle multi-layer structures during fine-tuning. To alleviate
this issue, we construct a set of multi-layer outfits from our
reconstructed garments and use them in every other training
iteration instead of the registered individual garments. Since
we don’t have target geometries for these outfits, we only
supervise these steps with Lccraft. This enables the model to
both match the real garment behavior and properly handle
inter-layer collisions.

5. Automatic Garment Ordering Procedure
We use the ContourCraft [3] GNN to devise a simple pro-
cedure to automatically untangle and order individual gar-
ments.

We start with all garments aligned with the canonical
SMPL-X pose and shape. We order the garments by their
position in the desired outfit—from the innermost to the
outermost. Then we untangle each subsequent garment from
the ones that should be beneath it, see Alg. 1.

To untangle a single garment we run two consecutive
simulation stages. In the first one, we treat all the inner
garments as solid bodies. This way, ContourCraft treats
them as body geometry and pushes the outer garment outside
them. Then, in the second stage, we simulate all garments,
treating them as cloth. We repeat this procedure twice. See
Alg. 2

The whole process takes around 1 minute for each gar-
ment on an NVIDIA GeForce 4090 GPU.

ALGORITHM 1: UntangleAll; we untangle a sequence
of garments one by one from the innermost to the outermost.

Input: Garment geometries G1. . GN ordered from the
innermost to the outermost

for i ∈ [2. . N ] do
Gouter ← Gi

Ginner ← [G1. . Gi−1]
Untangle (Gouter , Ginner)

return G1. . GN

6. Additional Evaluation
6.1. Registration
We present qualitative examples of our registration ablations
in Fig. 1. When using only the RGB loss (“Only-RGB”)
the garment geometry diverges within a few steps. This
is because optimizing 3D geometry using solely the RGB



Figure 1. Qualitative comparison of our full registration algorithm and the ablations. When only optimizing the RGB loss (only-RGB), the
optimization diverges completely. With physical losses (w/o body) the garment preserves its structure bur does not always conform to the
body. When using the body penetration term (w/ body), the optimization if prone to artifacts caused by the incorrect initialization. With our
full pipeline (Ours-full) we first pull the garment geometry closer to the body pose and then enable the body penetration term.

ALGORITHM 2: Untangle; to untangle a single garment,
we first simulate it over inner ones treating the latter as solid
bodies. Then we re-simulate all the garments together as
cloth. We set Nepochs to 2

Input: Outer garment Gouter; set of inner garments
Ginner

for i ∈ [1. . Nepochs] do
Gcloth ← Gouter

Gsolid ← Ginner

Simulate (Gcloth, Gsolid)
Gcloth ← Ginner + {Gouter}
Simulate (Gcloth, ∅)

return Gouter , Ginner

loss is an ill-posed problem, especially with monochromatic
objects, like many garments in our dataset. Moreover, the

renders that use the base Gaussian texture may not exactly
match GT frames, resulting in noisy signals that accumulate
over several frames and lead to diverging results. Introduc-
ing the physics losses without an underlying body geometry
(“w/o body”) has a regularizing effect preventing physically
implausible results. However, large body–garment penetra-
tions occur. Naı̈vely penalizing body–garment collisions
(“w/ body”) does not allow for robust optimization because
the collision computation cannot handle fast movements due
to bad initialization. For instance, if a hand goes through
the sleeve between time frames, the body collision term will
push the sleeve outside the body instead of pulling it back on.
Therefore, we demonstrate that our full model (“Ours-full”)
works best for all pose sequences.

We also compare to a state-of-the-art method for garment
registration by Lin et al. [9] (“Lin2023”), using 13 garments



Table 1. Comparison between our registration stage and Lin et
al. [9]. Our method only uses multi-view RGB images as super-
vision, whereas [9] directly optimizes a template mesh to fit GT
scans.

F-score, % ↑ CD, cm ↓ p2m, cm ↓ Lbody ↓
[9] 98.7 0.399 0.134 4.60e-5

Ours 90.4 1.001 0.486 1.24e-5

from the 4D-Dress dataset. While our method relies only
on multi-view observations from RGB cameras, [9] fit the
garment template to the same GT scans as used for evalua-
tion. Given this, our registration procedure performs only
slightly worse than [9] (see Table 1). Our method performs
only 0.6 cm worse in terms of Chamfer Distance (CD) and
0.2 cm worse in point-to-mesh distance. Meanwhile, the
scan data in 4D-Dress dataset usually contains outlier faces,
e.g., closed dress bottoms or duplicate layers on two sides
of an open jacket. Given the large data volume, removing
all erroneous structures from the ground-truth data is diffi-
cult. As a result, [9] overfits these artifacts leading to faulty
geometries (Fig. 7).

6.2. Appearance
In Fig. 3 we show a visual comparison of our final appear-
ance model to the set of ablations described in the main paper.
On top of this, we also compare our method to SCARF [2].
SCARF is a NeRF-based method that reconstructs an articu-
lated garment radiance field from a monocular video. While
SCARF is not a direct baseline to our method due to it using
only monocular data, it is the closest method to ours which
has publically available code. For this comparison, we use
four outfits created from individual Gaussian garments that
match the outfit of each subject (see Fig. 2). To optimize the
SCARF model we concatenate training frames from different
videos and different cameras and treat them as monocular
videos. We find that if optimized over frames from all videos
and all cameras, SCARF produces extremely blurry results
due to data stochasticity. We call the models optimized over
all frames “SCARF-all-frames”. We also optimize SCARF
models over only 500 frames from our videos, making sure
they cover the whole body surface in diverse poses. We call
such models “SCARF-500-frames”. The models optimized
over 500 frames produce much crisper results but still do
not match the ground truth as well as those of Gaussian Gar-
ments. Please see Fig. 2 for visual comparison and Table 2
for quantitative evaluation.

6.3. Behavior
Here we evaluate the efficiency of our behavior reconstruc-
tion procedure. To do that, we fine-tune the garment model-
ing GNN from [3] and optimize per-vertex material vectors
together with rest geometries over the training sequences.
We then simulate the garments for the held-out sequences
and compare them to garment registrations obtained by our

Table 2. Quantitative comparison of our method against SCARF.
Gaussian Garments’ appearance model and fine-tuned garment
simulation GNN allow it to produce high-quality visuals that align
with ground-truth observations.

LPIPS ↓ SSIM ↑ PSNR ↑
SCARF-all-frames 7.65e-2 0.884 37.3

SCARF-500-frames 6.78e-2 0.928 39.2
Ours 4.80e-2 0.951 41.5

Table 3. Quantitative evaluation of our behavior-tuning procedure.
We compare sequences simulated by the GNN to the registered
sequences using the L2 loss term. By fine-tuning the garment simu-
lation GNN, our method can match the behavior of the registered
and ground-truth meshes more closely.

L2 ↓
default 5.43e-2

tuned-leave-one-out 4.38e-2
tuned-together 4.34e-2

approach using the mean L2 distance between the simulated
and registered vertex positions.

In Table 3 we compare the “default” untuned GNN to
two tuned variants. In both variants, we optimize the GNN
parameters ψ together with the material vectors m and rest
edge lengths Ē for the garments. We call the latter two
“garment parameters”. In “tuned-together” we optimize the
network parameters and the garment parameters for all 15
garments together and then run an evaluation on the vali-
dation sequences. Then, we use the “tuned-leave-one-out”
variant to demonstrate how a fine-tuned GNN can general-
ize to garments that are not in the original fine-tuning set.
Here we finetune a separate model for each garment in two
stages. In the first stage, we optimize the model parame-
ters and garment parameters for all garments except one. In
the second stage, we freeze the model parameters and only
optimize the garment parameters for the remaining unseen
garments. This results in 15 models—one for each garment.
We evaluate each model using the validation sequence for
the remaining left-out garment. As seen from Table 3, mod-
els from “tuned-leave-one-out” perform only slightly worse
than the one from “tuned-together”. Hence, we can expect
reasonable results for novel garments without fine-tuning the
GNN parameters again.

6.4. Applications
We demonstrate results in the following applications: simu-
lating the garments in novel and dynamic poses, mixing and
matching, and dynamic resizing.

In Fig. 5 we show a qualitative comparison of our method
to AnimatableGaussians [8] for novel and dynamic pose
sequences. Our method manages to realistically capture
garment motions in dynamic scenes.



Figure 2. Visual comparison of our method to SCARF [1]. The appearance model and a fine-tuned garment simulation GNN enable
Gaussian Garments to produce visually appealing results and better model garment dynamics. The body meshes shown above are included
for visualization only and were not used in the quantitative evaluation in Table 2. SCARF also optimizes offsets to the body geometry
resulting in slightly different body models compared to the original SMPL-X used by Gaussian Garments.

Figure 3. Qualitative comparison of our full appearance model to a sequence of ablations. Note how our full model preserves more
high-frequency details and does not contain lighting artifacts.

We further demonstrate garment mix-and-match in Fig. 6,
where we combine garments from two (top) and three (bot-
tom) different subjects, and automatically resize them to fit
diverse body shapes.

Additional results and animated sequences are provided
in the supplementary video.

6.5. Reconstruction time

We reconstruct each garment separately. In our experiments,
we use 1050 multi-view frames with 44 camera views to re-
construct each garment. Our registration and appearance op-
timization procedures take roughly 36 hours on an NVIDIA
GeForce RTX 2080 Ti. Specifically, it takes 3.5 hours to reg-
ister each sequence (on average 150 frames) and 24.5 hours
for all sequences. Afterward, it takes 1.5 hours to create am-
bient occlusion and normal maps in Blender, and 10 hours to



Figure 4. Visual comparisons of the simulations produced by a default pre-trained ContourCraft [3] model and our fine-tuned version. A
brighter color denotes a higher L2 error between the simulation and the registered mesh. The fine-tuned model achieves behavior that better
matches the registered sequences. By optimizing the rest geometries of the garments we also better match the original size of the garments
(bottom left) and avoid simulation artifacts (bottom right).

train appearance models with 5 epochs on 44 camera view
data (46200 images in total). It takes an additional 20 hours
for the behavior finetuning stage.

References
[1] Yao Feng, Jinlong Yang, Marc Pollefeys, Michael J Black,

and Timo Bolkart. Capturing and animation of body and
clothing from monocular video. In SIGGRAPH Asia 2022
Conference Papers, pages 1–9, 2022. 1, 6

[2] Yutao Feng, Xiang Feng, Yintong Shang, Ying Jiang, Chang
Yu, Zeshun Zong, Tianjia Shao, Hongzhi Wu, Kun Zhou,
Chenfanfu Jiang, et al. Gaussian splashing: Dynamic
fluid synthesis with gaussian splatting. arXiv preprint
arXiv:2401.15318, 2024. 5

[3] Artur Grigorev, Giorgio Becherini, Michael Black, Otmar
Hilliges, and Bernhard Thomaszewski. Contourcraft: Learn-
ing to resolve intersections in neural multi-garment simula-
tions. In ACM SIGGRAPH 2024 Conference Papers, pages
1–10, 2024. 3, 5, 7

[4] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4396–4405, 2018. 2

[5] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. Proceedings of the fourth Euro-
graphics symposium on Geometry processing, 7:61–70, 2006.
1

[6] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
2

[7] Bruno Lévy and Nicolas Bonneel. Variational anisotropic
surface meshing with voronoi parallel linear enumeration. In
Proceedings of the 21st international meshing roundtable,
pages 349–366. Springer, 2013. 1

[8] Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Ani-
matable gaussians: Learning pose-dependent gaussian maps
for high-fidelity human avatar modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19711–19722, 2024. 1, 2, 5, 8

[9] Siyou Lin, Boyao Zhou, Zerong Zheng, Hongwen Zhang,
and Yebin Liu. Leveraging intrinsic properties for non-rigid
garment alignment. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 14485–14496,
2023. 1, 4, 5, 9

[10] Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide
Davoli, Simon Giebenhain, and Matthias Nießner. Gaussiana-
vatars: Photorealistic head avatars with rigged 3d gaussians.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 20299–20309, 2024.
1, 2

[11] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Proceedings Third International Conference on
3-D Digital Imaging and Modeling, pages 145–152, 2001. 3

[12] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 1



Figure 5. Qualitative comparison of our method to Animatable Gaussians [8] (“AG”). Combining 3DGS with a mesh-based representation,
Gaussian Garments are much more robust in simulating challenging poses. With learned cloth simulation, we can also more faithfully model
dynamic motions.

Figure 6. We can automatically resize the Gaussian Garments to fit the desired body shape. Here we randomly sample shape parameters for
the parametric body model and render the same outfit for different shapes.



Figure 7. Qualitative comparison of our method to Lin et al. [9] (“Lin2023”). Since Lin et al. register garments to ground-truth scans, it may
overfit the artifacts present in these scans. In contrast, our registration procedure only uses multiview RGB videos and produces physically
realistic geometries.


	. Initial Mesh Reconstruction
	. Appearance Details
	. Appearance Initialization
	. Appearance Modelling

	. Registration Details
	. Virtual Edges Regularization
	. First Frame Matching

	. Behavior Optimization Details
	. Automatic Garment Ordering Procedure
	. Additional Evaluation
	. Registration
	. Appearance
	. Behavior
	. Applications
	. Reconstruction time


