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A DETAILED PROOF OF THE LEMMAS AND THEOREMS

A.1 PROOF OF THE THEOREM 4.1

Proof. We just following the proof in the Ge et al. (2023). First, we reformulate the optimization
problem in equation 4 as
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the Gibbs distribution for the paired data. In fact, it just formulates the cross-modality con-
trastive learning framework by the maximum likelihood estimation (MLE). We ignore the A sub-
scripts/upscripts and the side information s for notation simplicity in the proof. By the definition of
�̂, we have
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To construct the relationship between dTV and the previous formula, we use Markov inequality and
Boole inequality (subadditivity of events). Recall that we define PX⇥S(�) = {p�(x, s)|� 2 �}
as the possible distribution family of �. For notation simplicity, we denote PXA⇥S(�A) as P
in this proof. Then we denote the ✏-bracket class as N[](P, ✏), N[](P, ✏) = |N[](P, ✏)|. For any
p� 2 N[](P, ✏), we have the following Markov inequality,

P(exp(1
2

nX

i,j=1

log
p�(xij)

p�⇤(xij)
� t)) 

E[exp( 12
Pn

i,j=1 log
p�̂(xij)

p�⇤ (xij)
)]

t
(19)

P

0

@exp

0

@1

2

nX

i,j=1

log
p�(xij)

p�⇤(xij)
�

CE[exp( 12
Pn

i,j=1 log
p�̂(xij)

p�⇤ (xij)
)]

�

1

A

1

A  �/C (20)

(21)
Define the event Dp�

as

Dp�
= {x : exp

0

@1

2

nX

i,j=1

log
p�(xij)

p�⇤(xij)

1

A �
CE[exp( 12

Pn
i,j=1 log

p�(xij)

p�⇤ (xij)
)]

�
} (22)

Then by iterating over all p� 2 N[](PA, ✏) we have,
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Take C = N[](P, ✏), we have with probability at least 1� �, for all p� 2 N[](P, ✏)
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By the definition of bracket class, p�̂ satisfies, with probability at least 1� �
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By rearranging the terms,
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set ✏ = 1
m2 we can bound the formula above by
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A.2 PROOF OF THE THEOREM 4.2

Proof. The proof is mainly from Chap. 6 in Zhang (2023).
First, we define
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and
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f(x11, . . . ,xmm) = ✏(L � �B, S2

m), by the assumption that
sup�B2�B,xij

h�B(xi),�B(xj)i  B, we can check the condition for McDiarmid’s inequality,

sup
x11,...,xmm,x0

ij

|f(x11, . . . ,x
0
ij , . . . ,xmm)� f(x11, . . . ,x

0
ij , . . . ,xmm)| (46)

 1

m2
sup

xij ,x0
ij

| sup
�B

[L(�̂A,�B,x0
ij , s

0
ij)� L(�̂A,�B,xij , sij)]|

(47)

 1

m2
sup

xij ,x0
ij

sup
�B

|L(�̂A,�B,x0
ij , s

0
ij)� L(�̂A,�B,xij , sij)|

(48)

 1

m2
2| log 1 + exp(B)

1 + exp(�B)
| (49)

=
2B

m2
(50)

(51)
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Combined with the result of equation 45, we have with probability at least 1� �, for any �B 2 �B,
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A similar discussion shows that with probability at least 1� �, �B 2 �B,
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A.3 PROOF OF THE THEOREM 4.3

We first introduce a lemma.
Lemma A.1 (Bound of ERM.). Suppose that L(·, ·) is a L-bounded loss function. Given a fixed
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Proof. This proof is almost the same as the proof in Theorem 4.2. First, we define ✏(L� � �, Sn) =
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Combined with the result of equation 45, we have with probability at least 1� �, for any  2  ,
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take 1� �/2 for each inequality and combine the results, we get with probability at least 1� �, for
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Now we prove the Theorem 4.3,

Proof. The proof starts from the standard convergence analysis with Rademacher complexity. By
the Lemma A.1, given the fixed �̂B(x), we have with probability at least 1� �,
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the first term equation 66 can be bounded by concentration inequality and we only need to bound
the second term equation 67 further. By the assumption 4.1,
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where the inequality equation 104 comes from a same argument as equation 49.

To derive the final result, define two events,
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By the Theorem 4.2 and Lemma 4.1, we have P(DA) � 1� �,P(DAB|�̂A) � 1� �, then consider
the P(DA \DAB),
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Take 1� �/2 for equation 65 and equation 87, we get with probability 1� �,
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Take 1� �/2 for equation 88 and equation 86, we get with probability 1� �,
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B DISCUSSION ABOUT CMC LOSS

In order to introduce a similar bound for the CMC loss, we introduce a likelihood bound assumption,
Assumption B.1. For any fixed �, we have
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From the proofs above, we can find that changing the CMD loss to CMC loss does not affect the
lemmas and theorems other than the final results Theorem 4.3. Thus, we just show that with the
assumption B.1 we can get the same result as the Theorem 4.3 with CMC loss.

Proof. Noticing that the main difference for CMD and CMC losses are between equation 94 and
equation 105. We only discuss the bounded process here and other derivations should be the same.
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Then we get the same convergence bound of CMC loss as the CMD loss as shown in Theorem 4.3

Further improvement. The assumption B.1 in this paper is not trivial or prior to the analysis,
further work to this research can focus on a better proof and result with CMC loss.
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C DETAILED SETTINGS OF EXPERIMENTS

In this section, we give the detailed settings of datasets and training. In our experiments, all cross-
modality distillation using a self-supervised learned ResNet on ImageNet. As mentioned in the
paper, we only used the well-trained model provided by the official SimCLR with different structures
of ResNet50, ResNet50(2x), and ResNet50(4x) but not using the ImageNet data in the distillation.
To clarify the cross-modality distillation process, we give the dataset used for transferring and the
detailed setting of the downstream task of each pair of modalities.

Training Dataset Sketchy TUBerlin Sketchy-Eval

Train/Test Split 48,290 15,000/5,000 60,335/15,146

Optimizer Adam Adam Adam
Optimizer Hyper-parameter (0.9,0.999) (0.9,0.999) (0.9,0.999)

Learning Rate Schedule None Multi-Step(60,70,80) Multi-Step(60,70,80)
Learning Rate 1e-3 1e-3 1e-3

Epoch 100 100 100
Batch Size 64 64 64

Table 4: Details of image-sketch Distillation.

Since there are multiple sketches corresponding to one image in the Sketchy dataset, we consider all
these pairs as positive pairs resulting in a total of 48290 training data. The train/split for TUBerlin
and Sketchy-Eval just follows the typical setting used in Yu et al. (2017); Lin et al. (2020). Sketches
in Sketchy-eval may have been trained without labels in distillation.

Training Dataset NYU-Depth V2 NYU-Depth V2-Eval( Disjoint )

Train/Test Split 795 795/654

Optimizer Adam Adam
Optimizer Hyper-parameter (0.9,0.999) (0.9,0.999)

Learning Rate Schedule None Multi-Step(60,70,80)
Learning Rate 1e-3 1e-2

Epoch 100 100
Batch Size 16 16

Table 5: Details of image-depth map Distillation.

For the image-depth map task, we only use the training data in NYU-Depth V2 and also use the
labeled version in downstream segmentation.

Training Dataset VGGSound VGGSound-Eval (Disjoint)

Train/Test Split 4,625 10,000/10,000

Optimizer Adam Adam
Optimizer Hyper-parameter (0.9,0.999) (0.9,0.999)

Learning Rate Schedule None Multi-Step(60,70,80)
Learning Rate 1e-3 1e-2

Epoch 100 100
Batch Size 16 16

Table 6: Details of video-audio Distillation.

In this case, we sample 4625 pairs of video and audio, translating the video into 12 frames and audio
into spectrograms. A disjoint 10000 audio-only dataset is sampled to fine-tune downstream event
classification where another 10000 are used for testing.
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