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A Exploration in the Loss Landscape1

To demonstrate the effectiveness of Lookaround during training, we set up an experiment and visualize2

the loss landscape of the models under different data augmentations in Figure 1. By observing the3

loss landscape, we can gain a clearer understanding of the role played by the weight averaging at4

different stages during the training process.5

Training Process and Parameter Settings. We first train a ResNet50 on the CIFAR100 dataset.6

The learning rate is initialized to 0.1 and decay at 60, 120, and 160 epochs using a MultiStepLR7

scheduler with a decay factor 0.2. The batch size is set to 128, we use stochastic gradient descent8

with momentum to optimize the model and use random crops and random vertical flips augmentation9

to enhance the training datasets. We use model checkpoints at epochs 50, 110, and 150 as our three10

pretrained models(V-network). The three pretrained models correspond to learning rates of 0.1, 0.0211

and 0.004, respectively. Using these pretrained models as the starting point, we finetune the model12

with 1, 10, 100, 1000, 10000 iterations under the corresponding learning rate and the setting of13

random horizontal flipping (H-network) or RandAugment (R-network).14

Visualization Method. We use the visualization method in [2] to plot the loss landscape. In15

this method, the weights of the three models are flatten respectively as one-dimensional vectors16

wv, wh, wr, and then two orthogonal vectors are calculated between the three vectors as the X-axis17

direction and the Y-axis direction: u = (wh−wv), v = (wr−wv, wh−wv)/∥wh−wv∥2 ·(wh−wv).18

Then the normalized vectors û = u/∥u∥, v̂ = v/∥v∥ foam an orthonormal basis in the plane contain19

wv, wh, wr. Then a point P with coordinates (x, y) in the plane would be given by P = wv+x·û+y·v̂.20

Discussion and Inspiring. Under different learning rates and different around steps k, Lookaround21

has the tendency to lead the model trained on different data augmentation to the near-constant loss22

manifold. In such circumstances, the "average step" can lead the model into the center of the loss23

basin to get a lower test loss. However, weight averaging does not necessarily work in all cases. For24

example, the network obtained after weight averaging gets a larger loss under a large learning rate25

with a large around step (e.g., lr = 0.1, k = 10000). In this case, the model is located on a peak26

between different basins rather than in the center of a basin. Moreover, in the case of around step27

k = 1, the weight averaging also does not achieve better performance. Nevertheless, such extreme28

cases do not prevent weight averaging from being a useful tool to speed up the training process. The29

center of the basin in loss landscape, which requires multi-step gradient descent to reach, can be30

reached by only one weight averaging step. At other learning rates and around steps k, the models31

after weight averaging all result in a lower loss than the individual model. Such phenomena encourage32

us to explore more methods to find more optimal solutions in the loss landscape in the future.33
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Figure 1: The test loss landscape of ResNet50 on CIFAR100. The diamond block (V-network)
represents the pretrained model trained with random vertical flipping. Then we can use random
horizontal flipping and RandAugment to finetune V-network to get H-network and R-network.

B Steady-state and Convergence Analysis of Lookaround34

We use quadratic functions to analyze the steady-state and convergence analysis of Lookaround. First,35

we present the proof of Proposition 1.36

Proposition 1 (Steady-state risk). Let 0 < γ < 1/L be the learning rate satisfying L = maxi ai. One37

can obtain that in the noisy quadratic setup, the variances of SGD, Lookahead [7] and Lookaround38

converge to the following fixed matrix:39

V ∗
SGD =

γ2A2Σ2

I− (I− γA)2
, (1)

V ∗
Lookahead =

α2(I− (I− γA)2k)

α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)︸ ︷︷ ︸
≼I, if α∈(0,1)

V ∗
SGD, (2)

V ∗
Lookaround =

α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)

α2(dI− (d− 1)(I− γA)2k)︸ ︷︷ ︸
≼I, if d≥3 and α∈[1/2,1)

V ∗
Lookahead. (3)

respectively, where α denotes the average weight factor of models with varying trajectory points.40

From Wu et al. [6], we have the following conclusions about the dynamics of SGD with learning rate41

γ:42

E[θ(t+1)] = (I− γA)E[θ(t)],

V[θ(t+1)] = (I− γA)2 V[θ(t)] + γ2A2Σ.

Lemma 1. The expectation and variance of lookaround have the following iterates:43
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E[ϕ(t+1)] = (I− γA)k E[ϕ(t)], (4)

V[ϕ(t+1)] =
d− 1

d
(I− γA)2k V[ϕ(t)] +

γ2A2Σ(I− (I− γA)2k)

d(I− (I− γA)2)
. (5)

ϕt yields ϕt+1 by performing an around step and an average step.44

Proof. The expected iterate follows from SGD:45

E[ϕt+1] = E[
1

d

∑
i

θt,i,k] =
∑
i

1

d
E[θt,i,k]

=
∑
i

1

d
(I− γA)k E[θt,i,0] = (I− γA)k E[ϕt].

For the variance of ϕt+1, we can break it down into two parts as follows:46

V[ϕt+1] = V[
1

d

∑
i

θt,i,k] =

d∑
i

1

d2
V[θt,i,k] +

∑
i ̸=j,1≤i,j≤d

1

d2
cov(θt,i,k, θt,j,k).

The covariance of the different models can be calculated in the following way:47

cov(θt,i,k, θt,j,k) = E[θt,i,kθt,j,k]− E[θt,i,k]E[θt,j,k]
= E[(I− γA)2k)(ϕt)2]− (I− γA)2k E[ϕt]2

= (I− γA)2k V[ϕt].

After permuting and regrouping again, we can obtain the iterate with respect to the variance.48

V[ϕt+1] =
∑

i ̸=j,1≤i,j≤d

1

d2
cov(θt,i,k, θt,j,k) +

d∑
i

1

d2
V[θt,i,k]

=
1

d2
(d2 − d)(I− γA)2k V[ϕt] +

1

d
[

k−1∑
i=0

(I− γA)2iγ2A2Σ]

=
d− 1

d
(I− γA)2k V[ϕt] +

γ2A2Σ(I− (I− γA)2k)

d(I− (I− γA)2)
.

The proof is now complete.49

Remark. From Equation 4, the expectation term for ϕ in Lookaround eventually converges to 0, as50

does Lookahead and SGD.51

From Zhang et al. [7], we have the following analysis about the variance fixed point of lookahead52

with learning rate γ and weight factor α, which represents the average weight factor of models with53

different trajectory points in the Lookahead optimizer, which is generally (0, 1):54

V ∗
Lookahead =

α2(I− (I− γA)2k)

α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)
V ∗
SGD. (6)

We now derive the fixed point of the variance, proceed with the proof of Proposition 1:55

V ∗
Lookaround =

α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)

α2(dI− (d− 1)(I− γA)2k)
V ∗
Lookahead.
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Proof.

V ∗
Lookaround =

d− 1

d
(I− γA)2kV ∗

Lookaround +
γ2A2Σ(I− (I− γA)2k)

d(I− (I− γA)2)
.

⇒ V ∗
Lookaround =

1

I− d−1
d (I− γA)2k

γ2A2Σ(I− (I− γA)2k)

d(I− (I− γA)2)

=
γ2A2Σ[I− (I− γI)2k]

[dI− (d− 1)(I− γA)2k][I− (I− γA)2]

=
I− (I− γA)2k

dI− (d− 1)(I− γA)2k
V ∗
SGD.

According to Equation 6, we can deduce that56

V ∗
Lookaround =

I− (I− γA)2k

dI− (d− 1)(I− γA)2k
V ∗
SGD

=
α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)

α2(dI− (d− 1)(I− γA)2k)
V ∗
Lookahead.

The proof is now complete.57

B.1 Comparing the dynamics of Lookahead58

We now proceed with the proof for the range of constraints variable α in Equation 3. When d ≥ 3,59

and α ∈ [0.5, 1), the Lookaround method can obtain a smaller variance than the Lookahead method:60

Proof. Let B = (I− γA)k, due to 0 < γ < 1/L,L = maxiai, so we can have B≼I. Substituting61

the matrix B into the expressions for the variance fixed point relation of Lookaround and Lookahead,62

we can obtain63

V ∗
Lookaround =

α2(I− (I− γA)2k) + 2α(1− α)(I− (I− γA)k)

α2(dI− (d− 1)(I− γA)2k)
V ∗
Lookahead

=
I−B2 + 2 1−α

α (I−B)

dI− (d− 1)B2
V ∗
Lookahead

=
2−α
α I−B2 − 2−2α

α B

dI− (d− 1)B2
V ∗
Lookahead.

Let the coefficient matrix be denoted as C, when d ≥ 3, for each diagonal element Cii of C, we can64

scale the denominator of this expression as follows:65

Cii ≤
2−α
α −B2

ii − 2−2α
α Bii

3− 2B2
ii

,

Then, we can derive the range of α by restricting the right-hand side expression to be less than or66

equal to 1.67

2−α
α −B2

ii − 2−2α
α Bii

3− 2B2
ii

≤ 1,

As 0 ≤ Bii ≤ 1, we can multiply both sides of the inequality by the denominator, then rearrange and68

combine like terms to obtain the following form:69

B2
ii −

2− 2α

α
Bii +

2− 4α

α
≤ 0.

Skipping the detailed steps, we can obtain α ≥ 0.5 by solving the quadratic equation. Therefore, in70

the case where α ∈ [0.5, 1) and d ≥ 3 (α < 1 is subject to Lookahead’s settings), the coefficient71

matrix C≼I, so the convergence speed of Lookaround is slower than Lookahead.72

73
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B.2 Deterministic quadratic convergence74

Since our method samples data under multiple data augmentations, it is approximately seen as the75

average sampling of historical trajectories in the convergence analysis of quadratic functions. In such76

a perspective, we compare the convergence rates of Lookaround and Lookahead.77

We first show the state transition equation for the classical momentum method in quadratic functions:78

vt+1 = βvt −∇θf(θt) = βvt −Aθt, (7)
θt+1 = θt + γvt+1 = γβvt + (I− γA)θt. (8)

Here, v stands for the momentum term. We can generalize this to matrix form:79 [
vt+1

θt+1

]
=

[
β −A
γβ I− γA

] [
vt

θt

]
.

Thus, given the initial θ0, we can obtain the convergence rate with respect to θ by the maximum80

eigenvalue of the matrix. Referring to Zhang et al. [7] and Lucas et al. [4], we obtain the state81

transition matrix regarding our algorithm as follows:82


θt,0

θt−1,k

...
θt−1,1

 = LB(k−1)T


θt−1,0

θt−2,k

...
θt−2,1

 ,

where L, B and T denote the average weight matrix, the single-step transfer matrix and the position83

transformation matrix respectively:84

L =



1
k+1I

1
k+1I · · · 1

k+1I
1

k+1I
I 0 · · · · · · 0

0 I
. . . . . .

...
...

. . . . . . 0
...

0 · · · 0 I 0

 ,

B =


(1 + β)I − ηA −βI 0 · · · 0

I 0 · · · · · · 0

0 I
. . . . . .

...
...

. . . . . . 0
...

0 · · · 0 I 0

 ,

T =



I − ηA βI −βI 0 · · · 0

I 0 · · · · · · 0
...

0 I
. . . · · ·

...
...

...
. . . . . . 0

...
...

... · · · 0 I 0 0
0 · · · 0 0 I 0


.

After specifying the appropriate parameters and performing matrix multiplication to obtain the state85

transition matrix, the convergence rate ρ can be obtained by calculating the largest eigenvalue of the86

matrix. Note that since this linear dynamical system corresponds to k updates, we finally have to87

compute the kth root of the eigenvalues to recover the correct convergence bounds.88
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C Experimental Detail89

C.1 Random Initialization90

C.1.1 CIFAR10 and CIFAR10091

Data augmentation details. For the CIFAR10 dataset, we use [RandomCrop + ∗] for data aug-92

mentation, and for the CIFAR100 dataset, we use [RandomCrop + ∗ + RandomRotation] for data93

augmentation. ∗ can be replaced by three different data augmentation methods of random horizontal94

flip, random vertical flip, or RandAugment [1].95

Training details. For the CIFAR10 and CIFAR100 datasets, we have applied some common96

settings. The initial learning rate is set to 0.1, and the batch size is set to 128. Additionally, a warm-up97

phase of 1 epoch is implemented. Subsequently, different learning rate schedulers are used based on98

the specific dataset. For the CIFAR100 dataset, we utilize the MultiStepLR scheduler. The learning99

rate is decayed at the 60, 120, and 160 epochs, with a decay factor of 0.2. For the CIFAR10 dataset,100

we employ the CosineAnnealingLR learning rate scheduler. In comparison with other optimizers or101

optimization methods, we use the default settings of the other methods in the corresponding papers.102

C.1.2 ImageNet.103

For the ImageNet dataset, we use [RandomResizedCrop + ∗ + RandomRotation] for data augmen-104

tation. ∗ can be replaced by three different data augmentation methods of random horizontal flip,105

random vertical flip, or RandAugment [1]. We train the model with the following settings: an initial106

learning rate of 0.1, a batch size of 256, and a warm-up phase of 1 epoch. We train the model for a107

total of 90 epochs. We utilize the MultiStepLR scheduler with decay steps at 30 and 60 epochs, and a108

decay factor of 0.1.109

C.2 Finetuning110

In this stage, all images are resized to 224*224 pixels to fit the input size of the pretrained model, all111

models use the ImageNet-1k pretrained weights from the PyTorch library, and other settings remain112

the same as in C.1.1. For the training of ViT-B/16, we utilize the Adam optimizer with an initial113

learning rate of 0.001. β1 is set to 0.9, β2 is set to 0.999, and the weight decay is set to 0.00005. To114

reduce memory consumption, we employed a batch size of 64.115

C.3 Compared with Ensemble Method116

We compare Lookaround with Logit Ensemble and Snapshot Ensemble [3]. In the setting of Logit117

Ensemble, we train multiple models separately using different data augmentation methods, and then118

average the outputs of these models for prediction. However, this approach requires more inference119

time. In the setting of Snapshot Ensemble, we use the CosineAnnealingWarmRestarts learning rate120

scheduler to collect four snapshots during the training process. Then, we average the outputs of these121

different snapshots for prediction. This approach also requires more inference time.122

C.4 Ablation Study123

In ablation experiments, we consider the effectiveness of independent components Data Augmenta-124

tion (DA) and Weight Averaging (WA) for Lookaround, respectively. In the ablation experiments125

without data augmentation, in order to improve the competitiveness of the corresponding experiments,126

we choose to train different models independently using different data augmentation methods, and127

then select the model that performs best on the test dataset.128

C.5 Additional Analysis129

In the robustness experiments with the number of Data Augmentation methods, the six data augmen-130

tation methods are given as: RandomVerticalFlip, RandomHorizontalFlip, RandAugment, AutoAug-131

ment, RandomPerspective, RandomEqualize. All the Augmentation methods are from the Pytorch132

library. When more data augmentation methods are used, the training time will be correspondingly133
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increased in our method. Therefore, in the main experiments in this paper, in order to reduce the time134

consumption, we only select three data augmentation methods for comparison.135

D Relationship with Model Soups136

Model Soups [5] is a framework for finetuning a common pretrained model using different hyperpa-137

rameters and then averaging the weights of different finetuned models to improve model performance138

and generalization. We conduct experiments under two data augmentation methods to compare the139

performance gap between Lookaround and Model Soups.140

As shown in Figure 2, Model Soups is effective with a few finetuning epochs, achieving better141

performance than individual models (θ1 or θ2). However, as the number of training epochs increases,142

its robustness significantly decreases, leading to a result that is unacceptable. We can observe that143

the accuracy after 50 epochs is almost near 0. Different models in Model Soups easily fall into144

different loss basins and cannot be connected linearly. On the contrary, Lookaround continuously145

performs weight averaging during training to maintain the locality of different models for linear mode146

connectivity, resulting in better robustness and generalization performance.147

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

T
o
p
-1

A
cc
(%

)

θ1 (Random Horizontal Flip)

θ2 (RandAugment)

Model Soups (Average of θ1 and θ2)

Lookaround (Our Method)

Figure 2: Top-1 accuracy curves of ResNet50 on CIFAR100 under Lookaround and Model Soups.
The initial weights of the ResNet50 model are obtained from the pretrained weights on the ImageNet.
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