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ABSTRACT

Federated Learning (FL) has emerged as a privacy-preserving approach for col-
laboratively training models without sharing raw data, while a key challenge is
that the data across the clients may not be identically distributed. The nom-
inal distribution that the model truly learns is commonly assumed as the Eu-
clidean barycenter. In this paper, we propose Federated Distributionally Robust
Optimization (FedDRO) that constructs the Wasserstein barycenter among all
distributions with a Wasserstein ball as an ambiguity set. We reformulate this
paradigm as a min-max optimization problem that trains a robust FL model in an
adversarial way and analyze its generalization and optimization properties.

1 PROBLEM FORMULATION

In this paper, we consider a learning scenario where N local clients are connected to a single pa-
rameter server. Each client i ∈ [1, N ] observes mi training samples {xi,j , yi,j}mi

j=1 which are in-
dependently sampled from distribution Pi. The centralized model is trained to minimize the loss
w.r.t. the uniform mixture distribution U =

∑N
i=1

mi∑N
i=1 mi

Pi as FedAvg McMahan et al. (2017).
Furthermore, Mohri et al. (2019) proposes AFL to optimize the worst-case w.r.t.the different weight
λi to construct the weighted average distribution such that the Empirical Risk Problem (ERP) is

min
hw

sup
λ

E(x,y)∼Uλ

[
ℓ(hw(x), y

]
, Uλ =

∑N

i=1
λiPi. (1)

The mixture distribution is actually the Euclidean barycenter among all N empirical distributions
Pi, i ∈ [1, N ] such that Uλ = argminP

∑N
i=1 λi||Pi − P ||22. However, for high-dimensional com-

plex data structures and heterogeneous distributions, thpe Euclidean distance is sensitive to shifted
distributions and could not potentially capture the complicated information Cuturi & Doucet (2014).

Considering the limitations of Euclidean barycenter, we choose the Wasserstein distance as a robust
measure to quantify the divergence of the distributions Zhu et al. (2023). Following this assump-
tion, the nominal distribution is replaced with the Wasserstein barycenter. Considering the potential
mismatch between the nominal distribution and the true distribution, we utilize the distribution-
ally robust optimization (DRO) by introducing an ambiguity set B(Qλ,p, ϵ). Therefore, the ERP is
formulated as

min
hw

sup
P∈B

E(x,y)∼P
[
ℓ(hw(x), y)

]
s.t. B(Qλ,p, ϵ) =

{
P ∈ P(Ξ) :Wp

p (P,Qλ,p) ≤ ϵp
}
, Qλ,p = argmin

Q

N∑
k=1

λiWp
p (Pi, Q), (2)

where Wp is the p-Wasserstein distance. To solve this optimization problem, the first step is to
approximate the Wasserstein barycenter Qλ,p among multiple distributions P1, · · · , PN within the
federated context. Recently Rakotomamonjy et al. (2023) proposes the interpolating measure to
calculate the Wasserstein distance in a Federated scenario and Li et al. (2023) extends this work
to approximate the Wasserstein barycenter with the augmentated matrix proposed in Alvarez-Melis
& Fusi (2020). However, the augmented matrix is constructed by the features x and the statistic
information of conditional feature distribution P (x|Y = y) which is assumed to follow the Gaussian
distribution N (my,Σy). In our paper, we need to construct the data clouds {xB, yB} following
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Test Accuracy
||Λ|| 0.5 2 3 5

FedAvg 87.4 55.9 48.6 8.3
Ours 90.9 75.1 66.2 18.5

Table 1: Test Accuracy on balanced test dataset.

the distributions in B(Qλ,p, ϵ). Therefore, we consider two different applications: (1) Class-wise
interpolating measures of feature space X , which is applied for the heterogeneous feature space;
(2) Data-wise interpolating measure (X ,Y) inspired by the dictionary learning with one-hot encoded
labels Fernandes Montesuma et al. (2023). Inspired by Li et al. (2023), Wasserstein distance between
Pi and the approximated Wasserstein barycenter Q̂ with uniform λi is iteratively optimized by

Wp(Pi, Q̂) ≤ Wp(Pi, η
(k)
Pi

) +Wp(η
(k)
Pi

, γ
(k−1)
i ) +Wp(γ

(k−1)
i , η

(k)
Qi

) +Wp(η
(k)
Qi

, Q̂(k−1)), (3)

where ηPi is the interpolating measure between Pi and γi computed by i-th client, ηQi is the in-
terpolating measure between γi and Q̂ computed by the server. Only ηQi

and γi are shared for
approximations. The server initializes γ

(0)
i and sends it to i-th client. At each round k, i-th client

computes Wp(Pi, γ
(k−1)
i ) and constructs η(k)Pi

. The server computes Wp(γ
(k−1)
i , Q̂(k−1)) and shares

η
(k)
Qi

with i-th client. Then γ
(k)
i is updated by i-th client via Rakotomamonjy et al. (2023)

γ
(k)
i ∈ argmin

[
Wp(η

(k)
Pi

, γ
(k−1)
i ) +Wp(γ

(k−1)
i , η

(k)
Qi

)
]
. (4)

Simultaneously, the server updates Q̂(k) utilizing all γ(k)
i based on Cuturi & Doucet (2014). Based

on the optimal transport theory, suppose Tγi is the transportation map between Q̂(K) and γi, then
we have Tγi

#Pi
dist
= T

γj

#Pj ,∀i ̸= j. For distributed training, the server could either share the trans-
portation map Tγi to i-th client or the mapped samples at the last round of Wasserstein barycenter
approximation procedure, in which the constructed samples are simply denoted as Q(K)

i := Ti(xi).
Then with Lagrange multiplier λ̄ > 0, the ERM objective in equation 2 is reformulated as follows

min
w

sup
θi

{ 1

N

N∑
i=1

[
ℓ
(
hw(Ti(xi) + θi),yi

)
− λ̄||θi||p

]}
. (5)

The reformulation details for the above objective are shown in Appendix B. We summarize our algo-
rithm in Algorithm 1, in which lines 1-7 are approximations of Qλ,p, and lines 8-15 are adversarial
training in FL.

2 TOY EXPERIMENTS

In this section, we will show our exploration of the Federated labeled Wasserstein barycenter. Then
we conduct a simple comparison to show the validation performance based on the Wasserstein
barycenter and Eucludiean barycenter. The technique to solve WDRO is our future exploration.

We simulate the affine transformation Λx+ δ on the MNIST dataset with 5 clients. For each client,
the δ noise is within the range {5, 15, 25, 35, 45}%, and the Λ is also random. We calculate the
class-wise interpolating measures of feature space X and approximate the Wasserstein barycener Q
for each class, denoted as Q = {Q(v)}9v=0. We compare the training loss on the Q with the training
loss on the original data via the CNN model in Figure 1 in Appendix. The testing accuracy on the
clean MNIST dataset is shown in Table 1.

3 CONCLUSIONS

Our paper explores the applications of Wasserstein barycenter to enhance the robustness of Feder-
ated Learning (FL) in heterogeneous scenarios. We present FedDRO, a framework that leverages
the efficient approximation of Wasserstein barycenter within a Federated context based on the ad-
vantageous properties of Geodesics in Optimal Transport theory, and adversarial training to solve
the WDRO problem during the training procedure.
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URM STATEMENT

The first two authors are non-white and outside the range of 30-50 years. All authors are not located
in North America, Western Europe and UK, or East Asia.
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A RELATED WORK

Distributionally Robust Optimization (DRO) is a powerful framework that explicitly accounts for
uncertainty in the underlying probability distributions of the problem parameters (Delage & Ye
(2010);Goh & Sim (2010)). Wasserstein distance, a metric measuring the divergence of different
distributions, is introduced into the DRO and has been utilized to seek data-driven optimal decisions
in recent works (Mohajerin Esfahani & Kuhn (2018);Kuhn et al. (2019);Gao et al. (2022)). The
Wasserstein Distributionally Robust Optimization (WDRO) has been theoretically justified by Kuhn
et al. (2019) that it has many conceptual and computational benefits, and it has been widely applied to
solve certain machine learning tasks such as Blanchet et al. (2019) and Gao & Kleywegt (2023). For
a set of probability distributions, the Wasserstein Barycenter represents a distribution that minimizes
the sum of the Wasserstein distances to the given distributions.

Federated Learning (FL) has emerged as a privacy-preserving approach for collaboratively training
models without sharing raw data, however, robust federated learning remains a challenging prob-
lem because of the nature of non-i.i.d. data from clients’ devices (Kairouz et al. (2021)). Typical
solutions for this problem include personalized federated learning, where a personalized model is
adapted to each client (Fallah et al. (2020);Deng et al. (2020a);Li et al. (2021)), and distributionally
robust models, where the global model is trained using a worst-case objective over an ambiguity
set and can deliver uniformly good performance for all clients (Mohri et al. (2019);Reisizadeh et al.
(2020);Deng et al. (2020b)). Nguyen et al. (2022) utilized the WDRO scheme in federated learning
and empirically demonstrated its robustness in distribution shift settings. In this work, we explore
the application of Wasserstein Barycenter in robust FL.

B REFORMULATION OF OUR PROBLEM

We follow the techniques to solve the Wasserstein Distributionally Robust Optimization problem
in Kuhn et al. (2019). Consider the min-max problem as follows,

min
hw

sup
P∈B

E(x,y)∼P
[
ℓ(hw(x), y)

]
s.t. B(Qλ,p, ϵ) =

{
P ∈ P(Ξ) :Wp

p (P,Qλ,p) ≤ ϵp
}
, Qλ,p = argmin

Q

N∑
k=1

λiWp
p (Pi, Q) (6)

To fit the distributed training setting, we assume i-th client holds Tηi ( transportation map between
Pi and γi ) and Tγi ( transportation map between γi and Qλ,p = Q̂(K)). Then the mapped samples
are Tγi

# (γi), follows Qλ,p, abbreviated as Ti(x). Then we could restrict the original wasserstein
ball to a subset that contains only perturbed samples of the form

B(Θ) =
1

NM

N∑
i=1

M∑
j=1

δTi(xi,j)+θi , Ti(xi,j) + θi ∈ Ξ (7)

where θi ∈ Rm is the displacement of samples from i-th client. Therefore, all distributions in
B(Qλ, ϵ, p) are encoded by a perturbation matrix Θ = (θ1, · · · , θN ) ∈ Rm×N . Based on the
Theorem 6 in Kuhn et al. (2019), the worst case risk of any fixed loss function ℓ ∈ L is bounded
with Lp,1-norm uncertainty set, that is, the wasserstein constraint Wp(P,Qλ,p) ≤ ϵ is equivalent to
the inequality ||θi||p ≤ ϵp. Therefore, with the assumption that ℓ(hw) is concave, the ERM of the
inner sup is defined as

sup
θi

1

N

N∑
i=1

M∑
j=1

ℓ
(
hw(Ti(xi,j) + θi), yi,j

)
s.t. θi ∈ Rm, ||θi||p ≤ ϵp, Ti(xi,j) + θi ∈ Ξ, ∀i ∈ [1, N ]. (8)

Then given a Lagrange multiplier λ̄ > 0, we have:

sup
θi

{ 1

N

N∑
i=1

[ M∑
j=1

ℓ
(
hw(Ti(xi,j) + θi), yi,j

)
− λ̄||θi||p

]}
(9)

Here we use a norm penalty requiring a bounded distance and find the worst-case transformation
that results in the maximum loss for the samples of i-th client.
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Figure 1: Training loss on Wasserstein barycenter and original data

Algorithm 1 FedDRO

Input: Initialisation of Q(0), γ(0)
i ,w

(0)
i ,∀i = [1, N ], η1, η2, τ, T

1: for k = 1 to K do
2: Clients compute distance Wp(Pi, γ

(k−1)
i ) and construct η(k)Pi

3: Server computes distance Wp(Q(k−1), γ
(k−1)
i ) and sends η(k)Qi

to i-th client

4: The i-th client updates γ(k)
i based on η

(k)
Pi

and η
(k)
Qi

5: Server updates Q(k) based on all γ(k)
i s

6: end for
7: Server sends Q(K)

i or Tγi to i-th client
8: for t = 0 to T − 1, i-th client computes do
9: θ

(t+1)
i = θ

(t)
i + η1∇θhi(w

(t)
i , θ

(t)
i )

10: if t does not divide τ then
11: w

(t+1)
i = w

(t)
i − η2∇whi(w

(t)
i , θ

(t)
i )

12: else i-th client sends w(t)
i − η2∇whi(w

(t)
i , θ

(t)
i ) to the server

13: Server updates w(t+1)
i = 1

N

∑N
i=1

[
w

(t)
i − η2∇whi(w

(t)
i , θ

(t)
i )

]
14: end if
15: end for
Output: w̄(T ) = 1

N

∑N
i=1 w

(T )
i
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