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ABSTRACT

Identifying the root causes of anomalies in multivariate time series is challeng-
ing due to the complex dependencies among the series. In this paper, we pro-
pose a comprehensive approach called AERCA that inherently integrates Granger
causal discovery with root cause analysis. By defining anomalies as interventions
on the exogenous variables of time series, AERCA not only learns the Granger
causality among time series but also explicitly models the distributions of exoge-
nous variables under normal conditions. AERCA then identifies the root causes
of anomalies by highlighting exogenous variables that significantly deviate from
their normal states. Experiments on multiple synthetic and real-world datasets
demonstrate that AERCA can accurately capture the causal relationships among
time series and effectively identify the root causes of anomalies.

1 INTRODUCTION

Root cause analysis on multivariate time series data, which is to identify the underlying causes of
an anomaly, has a wide spectrum of applications in various domains, such as diagnosing the fault
of online cloud-based systems or cyber-physical systems (Jayathilaka et al., 2017; Jeyakumar et al.,
2019; Soldani & Brogi, 2022; Yu et al., 2021). Traditional approaches, which manually trace the
root cause based on the topology of the systems, have become impractical due to increasing system
complexity, leading to a greater focus on data-driven methods. One promising direction is based on
a causal framework, which models system components and their dependencies via a causal graph
and then traces how the failure of one component might propagate through the system (Assaad
et al., 2023a; Li et al., 2022; Zhang et al., 2021; Ikram et al., 2022; Wang et al., 2023b; Okati et al.,
2024). For instance, for a cyber-physical system like a water treatment plant equipped with multiple
sensors—such as water level, pH level, and electrical conductivity—that generate multivariate time
series data, if an attacker overdoses sodium hydroxide, it could lead to abnormal readings in metrics
like pH level and electrical conductivity. Root cause analysis aims to identify the root cause of such
abnormal behavior, even when the time series data create ripple effects across other metrics—for
example, an increase in sodium hydroxide leading to abnormalities in additional measurements.

Despite the advantages of providing a scalable and systematic way of understanding the relation-
ships and causal chains in complex systems, existing causal inference-based root cause analysis
approaches usually suffer from various limitations. For example, Budhathoki et al. (2022) and As-
saad et al. (2023b) assume the causal relationships as prior knowledge, which may not be feasible in
real cases. On the other hand, although some approaches (Yang et al., 2022; Meng et al., 2020; Wang
et al., 2018b) try to learn the causal structures from the observational data, they usually leverage the
existing causal discovery algorithms, which do not consider the need for identifying root causes.

In this paper, we propose a comprehensive approach that inherently integrates Granger causal dis-
covery with root cause analysis. We treat the root cause of the anomaly, such as an overdose of
sodium hydroxide, as an intervention on the exogenous variables in a structural causal model (SCM).
We refer to this as the exogenous intervention, where the exogenous variables follow a stable distri-
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bution under normal conditions but undergo interventions when anomalies occur1. Under this core
idea, we identify the key to root cause identification, which is to model the normality of exoge-
nous variables for multivariate time series and then highlight abnormal exogenous variables. The
current causal discovery approaches mainly focus on identifying the causal structures among time
series/endogenous variables without explicitly modeling the impact of exogenous variables, making
them unsuitable for locating the root cause of an anomaly due to exogenous interventions. There-
fore, to achieve our goal, we propose a novel autoencoder-based framework for root cause analysis,
referred to as AERCA. This framework identifies Granger causal relationships in time series by ex-
plicitly modeling the distributions of exogenous variables, which serves as the foundation for our
root cause localization approach.

Specifically, to model the data generation process, i.e., the causal relationships as well as the dis-
tributions of exogenous variables, the encoder models the abductive reasoning process to derive
the exogenous variable for each time series. Based on our core assumption that the exogenous
variables are mutually independent, we establish effective constraints to ensure this independence.
Meanwhile, the decoder learns a deductive reasoning process to infer the observed data from the
exogenous variables. We theoretically show that to predict the input at time t, rather than using
exogenous variables of all time steps before t, the decoder only needs to take in the exogenous vari-
ables and observed time series from a window prior to t. We train AERCA on the normal data.
Then, upon deployment, if the encoder-derived values of exogenous variables significantly deviate
from the norm, the corresponding time series are highly likely to be the root cause of the anomaly.

The contributions of this paper are as follows: 1) we propose a novel encoder-decoder structure
for Granger causal discovery, which can not only learn the causal relationships between time series
but also capture the distribution of exogenous variables; 2) based on the learned structural causal
model, AERCA can not only identify the root cause time series but also highlight the root cause
time steps; 3) experimental results on multiple datasets show that AERCA can achieve state-of-the-
art performance on both Granger causal discovery and root cause identification.

2 RELATED WORK

Understanding the root cause of an anomaly has received increasing attention because of wide real-
world applications. Accurate root cause localization can help domain users understand and mitigate
abnormal behaviors.

The mainstream approaches in root cause analysis follow a two-step framework: identifying the
dependency between variables from observational data and then localizing the root cause by explor-
ing the dependency graph. Therefore, the key step is to build the dependency graph. Traditionally,
domain knowledge or a systems tool can be leveraged to build the dependency graph. For example,
in a microservice system, a directed edge between two nodes usually indicates a system call (Kim
et al., 2013; Weng et al., 2018; Wang et al., 2018a; Yu et al., 2021).

However, as the system becomes sophisticated, it becomes impractical to build the dependency
graph based on domain knowledge, and the call graph learned by system tools may not represent
the true dependency between sensors (Kim et al., 2013). Therefore, data-driven approaches are now
commonly used for learning the dependency between variables. For example, various deep neural
networks are developed to capture the temporal and spatial correlations in the multivariate time
series for root cause analysis (Zhang et al., 2019; Tuli et al., 2022; Zhao et al., 2020).

Recently, causal inference-based root cause analysis has received increasing attention, which models
the anomaly as data under intervention (Assaad et al., 2023a; Li et al., 2022). Under this assump-
tion, root cause localization is to identify the intervention on observational data (Li et al., 2022).
Several approaches leverage the PC algorithm (Spirtes et al., 2001) or its variance to build the causal
graph by using the conditional independent test (Zhang et al., 2021; Ikram et al., 2022). Some ap-
proaches also leverage the graph neural networks to learn the causal relationships between nodes by
simulating the data generation process (Wang et al., 2023b;a).

1Note that not all attacks can be treated as interventions on exogenous variables. Understanding the nature
of anomalies is crucial before applying our method to real-world applications.
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In this work, we propose a comprehensive approach that inherently integrates Granger causal dis-
covery with root cause analysis. By assuming that anomalies are caused by exogenous interventions,
we introduce a novel method for Granger causal discovery that explicitly models the distribution of
exogenous variables. Consequently, unlike existing studies that can only locate the root-cause time
series without specifying the abnormal time steps, our approach identifies the root cause as the time
series receiving exogenous interventions at specific time steps, providing much more informative
and precise localization.

3 PRELIMINARY: GRANGER CAUSALITY

Granger causality (Granger, 1969; Dahlhaus & Eichler, 2003) is commonly used for modeling
causal relationships in multivariate time series. The key assumption is that if the prediction of
the future value Y can be improved by knowing past elements of X , then X “Granger causes”
Y . Granger causality was originally defined for linear relationships, while recently, the non-linear
Granger causality has been proposed (Tank et al., 2021; Assaad et al., 2022):

Let a stationary time-series as X = (x1, . . . ,xt, . . . ,xT ), where xt ∈ Rd is a d-dimensional vector
(e.g., d-dimensional time series data from d sensors) at a specific time t. Suppose that the true data
generation mechanism is defined in the form of

x
(j)
t := f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t , for 1 ≤ j ≤ d, (1)

where x
(j)
≤t−1 = [· · · , x(j)

t−2, x
(j)
t−1] denotes the past of series j; u

(j)
t ∈ u(j) indicates exoge-

nous variable for time series j at time step t; f (j)(·) is a function for time series j that cap-
tures how the past values impact the future values of x(j). The time series i Granger causes
j, if f (j) depends on x

(i)
≤t−1, i.e., ∃x′(i)

≤t−1 ̸= x
(i)
≤t−1 : f (j)(x

(1)
≤t−1, · · · ,x′(i)

≤t−1, · · · ,x
(d)
≤t−1)

̸= f (j)(x
(1)
≤t−1, · · · ,x

(i)
≤t−1, · · · ,x

(d)
≤t−1). (Tank et al., 2021; Marcinkevičs & Vogt, 2021; Shojaie

& Fox, 2022)

Limitations of Granger Causality. While Granger causality is a valuable method for detecting
temporal causal dependencies, it is important to understand its limitations. Specifically, Granger
causality assumes no hidden confounding, i.e., all relevant variables influencing the causal relation-
ship are observed and included in the model, and no instantaneous effects between variables, i.e.,
the influence of one variable on another is not immediate but occurs with some time lag. Violating
these assumptions can lead to erroneous conclusions in Granger causality analysis, highlighting the
importance of careful assessment of assumptions and consideration of alternative models.

4 METHODOLOGY

4.1 PROBLEM FORMULATION AND FRAMEWORK

Based on the structural equation of multivariate time series defined in Eq. 1, in this work, we focus
on the anomaly x̃

(j)
t caused by exogenous interventions on a single or multiple time series, leading

to a significantly deviating value in its exogenous variable û
(j)
t , which can be defined as

x̃
(j)
t = f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + û

(j)
t = f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ d,

(2)
where û

(j)
t = u

(j)
t + ϵ

(j)
t with an anomaly term ϵ

(j)
t . Note that the abnormal time series caused by

exogenous interventions can be either a point anomaly or a sequential anomaly. The point anomaly
can be due to an exogenous intervention on a specific time series at a time step. In contrast, a
sequence anomaly can be caused by the propagation of an exogenous intervention through time by
following the causal structural model or a consistent exogenous intervention over time steps.

Therefore, an informative root cause analysis shows not just the time series but also the time steps
receiving the exogenous intervention. Based on this motivation, we define the task of root cause
identification below.
Definition 1. The root cause identification is to locate the time series/variables (j) at specific time
step(s) t with the abnormal exogenous variable û

(j)
t .
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For the anomaly caused by the exogenous interventions, to achieve the root cause analysis, we learn
the Granger causality in multivariate time series by explicitly modeling the distribution of exoge-
nous variables. To this end, we develop an encoder-decoder structure for root cause analysis, called
AERCA, which can calculate the exogenous variable for each time series at a specific time step.
AERCA explicitly computes the exogenous variables via an encoder, and a decoder predicts the
current value by simulating the data generation mechanism defined by the Granger causality. By
training the encoder-decoder structure on the normal time series, the model can capture the distri-
bution of exogenous variables in the normal status. When an exogenous intervention occurs, the
derived exogenous variables should significantly differ from the normal ones. Meanwhile, because
we explicitly derive the exogenous variables at each time step, even if the time series is still ab-
normal due to the error propagation through time, AERCA can distinguish the root cause from the
downstream impact. Figure 1 shows the framework of AERCA. In the following, we explain each
components of the framework.

Figure 1: The overview of AERCA.

4.2 GRANGER CAUSAL DISCOVERY

Motivation. To model the data generation process, i.e., the causal relationships as well as the
distributions of exogenous variables, we adopt the encoder-decoder structure to simulate both the
abductive and deductive reasoning processes. Abductive reasoning is to seek the most plausible
explanations, i.e., to infer the most likely exogenous variables (causes) that could have generated
the observed time series data. As shown in Eq. 1, based on the Granger causality, the value of the
time series at step t is a function of past time series plus an exogenous term at the current step,
i.e., xt := f(x≤t−1) + ut, with simplified notations. To simulate abductive reasoning, the encoder
derives the exogenous variables based on the observed data by rewriting Eq. 1 as

ut := xt − f(x≤t−1). (3)

On the other hand, deductive reasoning derives effects from known causes, i.e., reconstructing the
observed data from exogenous variables. By recursively resolving each previous time step—such as
expressing xt−1 in terms of its predecessor xt−2, and continuing this process backward to the first
time step—we can rewrite Eq. 1 in a different way as a function of the exogenous variables:

xt = f̃(u≤t−1) + ut, (4)

which shows that the observed data at step t is represented as a function f̃(·) of all preceding ex-
ogenous variables. Within the encoder-decoder framework, this function acts as the decoder for
reconstructing the observed data directly from the exogenous variables.

Based on the above analysis, we develop an encoder-decoder structure, where the encoder learns
Granger causal relationships f(·) by using past time series values as input to compute the exogenous
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variables, simulating Eq. 3. The decoder f̃(·) then takes these exogenous variables from the encoder
as input to reconstruct the value of the current time step xt, simulating Eq. 4.

Encoder-decorder Structure. Given normal multivariate time series X = (x1, . . . ,xt, . . . ,xT ),
we define a window with length K as Wt = (xt−K+1, ...,xt) and convert a time series X to a
sequence of sliding windows W = (WK ,WK+1, ...,WT ). We first aim to learn the Granger
causality of time series in a window, i.e., a window causal graph (Assaad et al., 2022).

Given a time series window, we first parameterize the Granger causality in time series defined in
Eq. 1 as

xt =

K∑
k=1

ωθk(xt−k)xt−k + ut, (5)

where ωθk(xt−k) indicates the k-th neural network to predict the Granger causal relationship be-
tween xt−k and xt. The output of ωθk(xt−k) can be reshaped as a d × d coefficient matrix, where
the entry element (i, j) indicates the influence of x(j)

t−k on x
(i)
t . As shown in Eq. 5, K neural net-

works are used to predict the weights of past K time legs on deriving xt. Therefore, relationships
between d time series over K time lags can be explored by inspecting K coefficient matrices. Fol-
lowing Eq. 3, we rewrite the Eq. 5 as

ut = xt −
K∑

k=1

ωθk(xt−k)xt−k. (6)

Then, given a time series window Wt, we apply the encoder K times to derive the exogenous
variables in a window, denoted as Ut = (ut−K+1, . . . ,ut).

To enforce independence between the derived exogenous variables, we ensure that the distribution
of Ut adheres to an isotropic standard Gaussian distribution Q. By assuming that the exogenous
variables follow a multivariate Gaussian distribution and applying the KL divergence to quantify the
distribution difference, we formulate the independence constraint as

DKL
t (P (Ut)∥Q) =

1

2

(
tr(Σ−1

Q Σt) + (µQ − µt)
TΣ−1

Q (µQ − µt)− d+ log
detΣQ

detΣt

)
=

1

2

(
tr{Σt}+ µT

t µt − d− log detΣt

)
,

(7)

where µQ = 0 and ΣQ = I represent the mean and covariance matrix of the isotropic standard
Gaussian distribution Q; µt and Σt are the mean and covariance matrix of Ut.

The decoder is to reconstruct the input xt based on the exogenous variables Ut. One challenge is
that theoretically, the value xt at the current time step is computed by the exogenous variables of
all the previous time steps. However, considering the potential infinite length of the time series, it
is impractical to reconstruct xt by using all the previous time steps. To tackle this challenge, we
iteratively replace the xt−k with xt−(k+1) for a subsequence with length n and derive the following
proposition.
Proposition 1. Consider a basic autoregressive model where ωk = ωθk(xt−k) as a framework for
analyzing Granger causality. The value at the current time step xt can be derived by the exogenous
variables from a previous window [ut−1, ...,ut−K ] and the observed time series from a previous
window [xt−K−1, ...,xt−2K ] with the following equation:

xt =

K∑
m=1

αK−mut−(K−m) + αKxt−K +

K+1∑
m=2

αK+1−m

K∑
k=m

ωkxt−k−(K+1−m), (8)

where ωk indicates the parameter of Granger causality, and αn =
∑n

i=1 ωnαn−i, 1 ≤ n ≤ K, is a
recursive equation with α0 = 1.

We provide proof of the proposition in the Appendix A.1. Inspired by Proposition 1, we propose a
decoder structure that combines both observed time series and exogenous variables. Specifically, we
parameterize the impact of exogenous variable ut−k on xt by a neural network ω̄θ̄k and the impact
of observed time series xt−K−k on xt by another neural network ω̄′

θ̄′
k

. Then, the decoder computes
xt based on the following equation.
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x̂t =

K∑
k=1

ω̄θ̄k(ut−k)ut−k +

K∑
k=1

ω̄′
θ̄′
k
(xt−K−k)xt−K−k + ut, (9)

where x̂t indicates the reconstructed value at time step t, and ut−k is computed by encoder defined
in Eq. 6.

The whole encoder-decoder structure can be defined as x̂t = AEθk,θ̄k,θ̄′
k
(x<t). Given a time series

with length T , the objective function to train the encoder neural netework ωθk and decoder neural
networks ω̄θ̄k , ω′

θ̄′
k

is defined as:

L =

T∑
t=K+1

{
∥x̂t − xt∥2 + βDKL

t + λenR(Ωt) + λdeR(Ω̄t) + λdeR(Ω̄′
t)
}

+

T−1∑
t=K+1

{
γenS(Ωt+1,Ωt) + γdeS(Ω̄t+1, Ω̄t) + γdeS(Ω̄

′
t+1, Ω̄

′
t)
}
,

(10)

where DKL
t indicates the independence constraint on Ut defined in Eq. 7; Ωt := [ωθK (xt−K) : · · · :

ωθ1(xt−1)] indicates the concatenation of coefficient matrices over the past K time steps; similarly,
we have Ω̄t := [ω̄θK (ut−K) : · · · : ω̄θ1(ut−1)] and Ω̄′

t := [ω̄′
θ′
K
(xt−2K) : · · · : ω̄′

θ′
1
(xt−K−1)]; R(·)

indicates the L1 and L2 norm penalty for sparsity of the coefficient matrices from the encoder and
decoder; the S(·, ·) is a smoothness penalty, defined as S(Ωt+1,Ωt) = ∥Ωt+1 − Ωt∥2; λ and γ are
hyperparameters.

Granger Causal Discovery. As the encoder-decoder is proposed to simulate the data generation
process governed by Granger causality, we expect the function ωθk can capture the causal relation-
ships in time series. To further summarize the Granger causal relationships between variables as a
summary causal graph, similar to (Marcinkevičs & Vogt, 2021), we aggregate the output from ωθk
into a summarized coefficient matrix as

Si,j = max
1≤k≤K

{medianK+1≤t≤T (|(ωθk(xt−k))i,j |)}, for 1 ≤ i, j ≤ d,

where Si,j indicates the strength of the Granger causal effect from x(i) on x(j). To further derive
the adjacency matrix A, we set a threshold τ , if the value Si,j > τ , then Ai,j = 1. In experiments,
the threshold is set based on the quantile of the coefficient matrix S.

4.3 ROOT CAUSE LOCALIZATION

After training on the normal time series, we expect that the exogenous variables can be approximated
by the encoder. When deploying the model for root cause localization, we assume the time series
is arrived in a streaming manner. When a new time step t∗ is arrived, we first adopt the encoder to
derive the exogenous variables ut∗ based on Eq. 6. Then, for each time series, u(j)

t∗ , we compute the

z-score as the root cause score z(j)t∗ =
u
(j)

t∗ −µ(j)

σ(j) , where µ(j) and σ(j) indicate the mean and standard
deviation of the exogenous variable for the j-th time series in normal data. We then adopt streaming
peaks-over-threshold (SPOT) (Siffer et al., 2017) to dynamically determine the threshold of labeling
the potential root cause.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on four synthetic and two real-world datasets. By using the
synthetic datasets, we have the ground truth about the structural causal models as well as the root
cause of anomalies. For the real-world datasets, we only have information about root cause variables.
Therefore, we use the real-world dataset only to evaluate the root cause identification.

Synthetic Datasets: Linear Dataset (Marcinkevičs & Vogt, 2021) is dataset with linear interaction
dynamics. Nonlinear Dataset (Absar et al., 2023) is a nonlinear time series dataset. Lotka-Volterra
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(Marcinkevičs & Vogt, 2021) is a nonlinear model that simulates a prairie ecosystem with multiple
species. Lorenz 96 (Marcinkevičs & Vogt, 2021) a non-linear time series data. We describe the data
generation equation and abnormal behavior injection in Appendix A.2.1.

Real-world Datasets: SWaT (Mathur & Tippenhauer, 2016) is a dataset collected from a testbed
that simulates a real-world water treatment plant. The dataset consists of both normal operations
and attack scenarios within the water treatment process. MSDS (Multi-Source Distributed System)
(Nedelkoski et al., 2020) is developed on an OpenStack testbed. Instances of fault injections are
identified as anomalies.

Table 1 shows the statistics of datasets for training and evaluation. The number in the parenthe-
sis indicates the dimensions of multivariate time series. The training set only has the normal time
series. In the test set, for each sequence in the synthetic datasets, we conduct one or multiple exoge-
nous interventions randomly to generate the anomalies. The last column shows the average number
of variables receiving the exogenous interventions. Note that because Lorenz 96 Marcinkevičs &
Vogt (2021) has the most complicated interdependencies between time series, we use more training
samples to train AERCA for causal discovery.

Table 1: Statistics of Datasets

Dataset Training Test
# of Time Step # of Sequences (|X |) Avg. Len. (T) Avg. # of Root Variables

Linear (4) 5,000 100 500 3.75
Nonlinear (6) 5,000 100 500 5.25

Lotka-Volterra (40) 40,000 100 2,000 30.75
Lorenz 96 (20) 200,000 100 2,000 15.75

SWaT (51) 49,500 20 51 13.35
MSDS (10) 29,268 4,255 21 3.05

Evaluation Metrics. Because root cause identification is achieved based on the learned causal
models, we evaluate AERCA in both causal discovery and root cause identification.

Causal Discovery. We adopt the commonly used metrics to evaluate the performance of causal
discovery (Moraffah et al., 2021; Hasan et al., 2023; Assaad et al., 2022; Sun et al., 2021; Nauta et al.,
2019; Pamfil et al., 2020), including F1, AUC-ROC, AUC-PR, and Hamming distance (HD). In the
context of causal discovery, F1, AUC-ROC, and AUC-PR quantify the correctness of edge discovery,
while Hamming distance calculates the proportion of disagreeing edges between the learned causal
graph and the ground truth causal graph.

Root Cause Identification. Following the existing work (Ikram et al., 2022; Li et al., 2022; Yu et al.,
2021; Ma et al., 2020), we adopt the “recall at top-k” to evaluate the performance of root cause
identification, denoted as AC@K. This metric quantifies the probability of identifying the correct
root cause in the list of variables with the top-k highest root cause scores. Given a set of time series
X , the definition of AC@K is shown below.

AC@K =
1

|X |
∑
X∈X

|V (RC)
X ∩ {RX[k]|k = 1, 2, ...K}|

min(K, |V (RC)
X |)

,

where RX[k] indicates the time series at the k-th rank for the sequence X, and V
(RC)
X indicates a set

of root cause variables over the whole time series X. Note that if a time series receives multiple ex-
ogenous interventions, it only counts as one root cause time series in V

(RC)
X . We further compute the

overall performance by computing the average AC@K, denoted as Avg@K = 1
K

∑K
k=1 AC@k.

AC@K quantifies the performance of root cause analysis as long as the approach finds the root cause
time series. However, in some cases, a time series can receive exogenous interventions for multiple
time steps. We also evaluate the effectiveness of approaches for locating the root cause time series
at specific time steps. The experimental results are shown in Appendix A.2.3.

The experimental results are reported as the average of five independent runs. Our code is publicly
available at https://github.com/hanxiao0607/AERCA.

Baselines. We choose two sets of baselines to compare the performance of causal discovery and
root cause identification.
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Causal Discovery. We compare AERCA for the causal discovery with the following baselines.
1) VAR (Vector AutoRegressive) (Lütkepohl, 2005) is a linear model to analyze and predict the
temporal interdependencies between multiple time series datasets; 2) cMLP (Tank et al., 2021) in-
dicates structured multilayer perceptrons (MLPs) combined with sparsity penalties on the weights
for Granger causal discovery; 3) cLSTM (Tank et al., 2021) leverages recurrent neural networks
(RNNs) for Granger causal discovery; 4) TCDF (Temporal Causal Discovery Framework) (Nauta
et al., 2019) uses attention-based convolutional neural networks for causal discovery from time
series data; 5) eSRU (economy-Statistical Recurrent Units) (Khanna & Tan, 2019) leverages a spe-
cial type of RNN called the statistical recurrent unit (SRU) for inferring the Granger causality;
6) PCMCI (Runge et al., 2019) combines linear or nonlinear conditional independence tests with a
causal discovery algorithm to estimate causal networks; 7) PCMCI+ (Runge, 2020) extends PCMCI
to include discovery of contemporaneous links. 8) GVAR (Marcinkevičs & Vogt, 2021) is a vector
autoregression with generalized coefficient matrices predicted by neural networks; 9) CUTS (Cheng
et al., 2023) is a neural Granger causal discovery algorithm building a causal adjacency matrix with
imputed data under sparse penalty.

Root Cause Identification. We compare AERCA for root cause identification with the following
baselines. 1) ϵ-Diagnosis (Shan et al., 2019) assumes that the root cause nodes have significantly
changed between the abnormal and normal periods and conducts pair-wise significant tests to locate
the root cause; 2) RCD (Root Cause Discovery) (Ikram et al., 2022) learns the partial causal graph
related to the root cause and locate the root cause as the interventional targets; 3) CIRCA (Causal
Inference-based Root Cause Analysis) (Li et al., 2022) builds structural causal graph via domain
knowledge and locates the root cause in anomalies as the nodes with significant distribution changes
given its parents. All baselines are implemented by PyRCD (Liu et al., 2023).

5.2 EXPERIMENTAL RESULTS

Table 2: Overall performance (mean±std.) of causal discovery.

Model Linear Nonlinear

F1 AUC-PR AUC-ROC HD F1 AUC-PR AUC-ROC HD
VAR 0.969±0.019 0.998±0.003 0.999±0.001 0.011±0.009 0.473±0.164 0.529±0.181 0.676±0.140 0.258±0.130

cMLP 0.745±0.029 0.595±0.038 0.829±0.0.25 0.229±0.033 0.419±0.134 0.327±0.079 0.609±0.089 0.340±0.217

cLSTM 0.684±0.042 0.522±0.048 0.766±0.047 0.312±0.062 0.378±0.000 0.233±0.000 0.500±0.000 0.767±0.000

TCDF 0.943±0.070 0.933±0.081 0.950±0.061 0.033±0.040 0.473±0.107 0.343±0.072 0.655±0.087 0.307±0.065

eSRU 0.964±0.070 0.958±0.082 0.969±0.061 0.021±0.041 0.408±0.152 0.332±0.071 0.617±0.092 0.267±0.069

PCMCI 0.969±0.031 0.981±0.040 0.986±0.042 0.025±0.038 0.607±0.094 0.456±0.172 0.742±0.147 0.273±0.175

PCMCI+ 1.000±0.000 1.000±0.000 1.000±0.000 0.000±0.000 0.505±0.141 0.410±0.133 0.669±0.134 0.233±0.109

GVAR 0.862±0.052 0.981±0.040 0.986±0.042 0.131±0.066 0.421±0.094 0.562±0.145 0.683±0.097 0.487±0.103

CUTS 0.810±0.076 0.792±0.066 0.844±0.050 0.104±0.034 0.357±0.040 0.249±0.014 0.536±0.032 0.513±0.124

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 0.000±0.000 0.826±0.057 0.996±0.013 0.998±0.006 0.027±0.014

Model Lotka-Volterra Lorenz 96

F1 AUC-PR AUC-ROC HD F1 AUC-PR AUC-ROC HD
VAR 0.533±0.013 1.000±0.000 1.000±0.000 0.044±0.003 0.404±0.162 0.562±0.376 0.764±0.204 0.360±0.121

cMLP 0.511±0.011 0.065±0.014 0.508±0.007 0.049±0.001 0.472±0.058 0.202±0.027 0.569±0.038 0.193±0.031

cLSTM 0.356±0.176 0.052±0.001 0.500±0.000 0.400±0.428 0.453±0.048 0.194±0.021 0.572±0.031 0.232±0.035

TCDF 0.853±0.032 0.749±0.050 0.890±0.021 0.019±0.002 0.429±0.007 0.290±0.006 0.645±0.004 0.260±0.011

eSRU 0.422±0.039 0.323±0.030 0.634±0.016 0.055±0.002 0.195±0.024 0.225±0.009 0.539±0.009 0.215±0.006

PCMCI 0.465±0.025 0.291±0.019 0.906±0.017 0.109±0.008 0.368±0.004 0.227±0.007 0.680±0.013 0.540±0.021

PCMCI+ 0.709±0.027 0.651±0.121 0.851±0.082 0.024±0.005 0.502±0.020 0.329±0.022 0.709±0.017 0.163±0.009

GVAR 0.787±0.011 0.988±0.015 0.999±0.002 0.027±0.002 0.568±0.330 0.582±0.361 0.776±0.194 0.142±0.109

CUTS 0.8770.031 0.791±0.047 0.892±0.024 0.011±0.002 0.341±0.003 0.206±0.002 0.621±0.004 0.404±0.012

AERCA 0.857±0.000 1.000±0.000 1.000±0.000 0.026±0.000 0.800±0.000 0.998±0.002 0.999±0.001 0.105±0.000

Performance of Causal Discovery. Table 2 shows the results of AERCA and baselines for causal
discovery. For baselines, different approaches can achieve good performance on different datasets.
For example, VAR can achieve high F1, AUC-PR, AUC-ROC, and low HD on the Linear dataset, but
the performance of VAR on other nonlinear datasets is poor, which is expected as VAR is a linear
model. Some other advanced approaches, such as TCDF, GVAR, and CUTS, can achieve good
performance on the Lotka-Volterra dataset. However, none of the baseline approaches can achieve
satisfactory performance on both Nonlinear and Lorenz96 datasets. In contrast, AERCA achieves
the perfect performance on the Linear dataset with 1 F1, AUC-PR, AUC-ROC scores, and 0 HD,
indicating AERCA can learn the causal graph without any error. For the three more challenging
nonlinear datasets, AERCA can achieve high F1, AUC-PR, and AUC-ROC scores, as well as very
low HD, showing the capability of AERCA to discover nonlinear causal relationships.
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Table 3: Overall performance (mean±std.) of root cause analysis.

Dataset Model AC@1 AC@3 AC@5 AC@10 Avg@10

Linear

ϵ-Diagnosis 0.900±0.300 0.850±0.189 1.000±0.000 1.000±0.000 0.950±0.043

RCD 0.500±0.500 0.817±0.189 1.000±0.000 1.000±0.000 0.907±0.076

CIRCA 0.600±0.490 0.800±0.306 1.000±0.000 1.000±0.000 0.910±0.106

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Nonlinear

ϵ-Diagnosis 0.400±0.490 0.667±0.325 0.880±0.165 1.000±0.000 0.837±0.139

RCD 0.600±0.490 0.750±0.344 0.880±0.165 1.000±0.000 0.878±0.118

CIRCA 0.700±0.458 0.717±0.395 0.835±0.295 1.000±0.000 0.863±0.160

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Lotka-
Volterra

ϵ-Diagnosis 0.100±0.300 0.133±0.163 0.138±0.149 0.247±0.188 0.158±0.131

RCD 0.100±0.300 0.133±0.163 0.138±0.149 0.247±0.188 0.158±0.131

CIRCA 0.120±0.325 0.107±0.169 0.120±0.150 0.225±0.230 0.146±0.163

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Lorenz96

ϵ-Diagnosis 0.100±0.300 0.200±0.221 0.280±0.312 0.450±0.330 0.314±0.225

RCD 0.200±0.400 0.333±0.333 0.400±0.358 0.556±0.337 0.421±0.278

CIRCA 0.360±0.480 0.330±0.244 0.346±0.249 0.539±0.263 0.408±0.220

AERCA 0.996±0.009 0.996±0.009 0.997±0.008 0.996±0.008 0.990±0.011

SWaT

ϵ-Diagnosis 0.075±0.179 0.125±0.217 0.125±0.217 0.375±0.383 0.180±0.194

RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161

CIRCA 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161

AERCA 0.220±0.111 0.290±0.088 0.330±0.048 0.455±0.044 0.342±0.052

MSDS

ϵ-Diagnosis 0.004±0.004 0.266±0.002 0.452±0.009 1.000±0.000 0.492±0.001

RCD 0.412±0.048 0.573±0.010 0.984±0.001 1.000±0.000 0.821±0.012

CIRCA 0.454±0.238 0.860±0.140 0.917±0.084 1.000±0.000 0.809±0.035

AERCA 0.381±0.408 0.908±0.062 0.974±0.027 1.000±0.000 0.896±0.037

Performance of Root Cause Identification. Table 3 presents the results of AERCA and baseline
models for root cause identification across synthetic and real-world datasets. Although baselines
show promising results in terms of AC@5 and AC@10 on both Linear and Nonlinear datasets, it’s
important to note that these datasets only have a few time series (low dimensionality). In contrast,
AERCA shows exceptional performance across all datasets, excluding the SWaT dataset, even at the
AC@1 metric, indicating its capability to accurately identify the time series with the highest root
cause score. For the SWaT dataset, we observe that the performance of all methods declines, likely
due to violations of assumptions such as independence and the presence of complex causal rela-
tionships, including hidden confounders and instantaneous effects. However, our AERCA method
consistently identifies root cause time series with significantly higher accuracy compared to the
baseline methods.

(a) AUC-PR (b) AUC-ROC

Figure 2: Impact of the independent constraint on exogenous variables (Eq. 7) for causal discovery.

Ablation Study. To properly learn the exogenous variables, it is critical to ensure the exogenous
variables of different time series are independent of each other. Therefore, we have an independent
constraint on exogenous variables defined in Eq. 7. To show the importance of the independent
constraint for causal discovery, we conduct the ablation study to compare the performance of causal
discovery when AERCA is trained with and without the independent constraint in the objective
function. As shown in Figure 2, on Linear, Nonlinear, and Lotka-Volterra datasets, without the
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independent constraint on exogenous variables, the performance of AERCA for causal discovery
is much worse. On Lorenz96, the impact is minor, but without the independent constraint, the
performance of AERCA is still lower. The experimental results demonstrate the importance of the
independent constraint on exogenous variables for causal discovery.

We show more experimental results in Appendix A.2, including root cause identification at specific
time steps, sensitivity analysis on the continuous erogenous interventions, and a case study.

6 CONCLUSIONS

In this paper, we have developed AERCA for the root cause analysis of anomalies in multivariate
time series through Granger causal discovery. AERCA assumes that the anomalies are caused by
external interventions on exogenous variables. To achieve root cause analysis, AERCA explicitly
considers the exogenous variables when simulating the data generation process. After training on
the normal time series data, AERCA can learn the causal relationships among time series as well as
derive the exogenous variables. During deployment, exogenous variables that deviate from normal
values will be assigned high root cause scores. Experimental results on multiple datasets demon-
strate that AERCA achieves state-of-the-art performance in both causal discovery and root cause
identification.
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Ričards Marcinkevičs and Julia E Vogt. Interpretable models for granger causality using self-
explaining neural networks. arXiv preprint arXiv:2101.07600, 2021.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart
water networks (CySWater), pp. 31–36. IEEE, 2016.

Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang
Jia, Zhaogang Wang, and Dan Pei. Localizing Failure Root Causes in a Microservice through
Causality Inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service
(IWQoS), pp. 1–10, 2020.

Raha Moraffah, Paras Sheth, Mansooreh Karami, Anchit Bhattacharya, Qianru Wang, Anique Tahir,
Adrienne Raglin, and Huan Liu. Causal inference for time series analysis: Problems, methods
and evaluation. Knowledge and Information Systems, 63:3041–3085, 2021.

Meike Nauta, Doina Bucur, and Christin Seifert. Causal discovery with attention-based convolu-
tional neural networks. Machine Learning and Knowledge Extraction, 1(1):19, 2019.

Sasho Nedelkoski, Jasmin Bogatinovski, Ajay Kumar Mandapati, Soeren Becker, Jorge Cardoso,
and Odej Kao. Multi-source distributed system data for ai-powered analytics. In Service-Oriented
and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete,
Greece, September 28–30, 2020, Proceedings 8, pp. 161–176. Springer, 2020.

Mark EJ Newman. Estimating network structure from unreliable measurements. Physical Review
E, 98(6):062321, 2018.

Nastaran Okati, Sergio Hernan Garrido Mejia, William Roy Orchard, Patrick Blöbaum, and Do-
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A APPENDIX

A.1 APPROACH

Proposition 2. Consider a basic autoregressive model where ωk = ωθk(xt−k) as a framework for
analyzing Granger causality. The value at the current time step xt can be derived by the exogenous
variables from a previous window [ut−1, ...,ut−K ] and the observed time series from the immediate
previous window [xt−K−1, ...,xt−2K ] with the following equation:

xt =

K∑
m=1

αK−mut−(K−m) + αKxt−K +

K+1∑
m=2

αK+1−m

K∑
k=m

ωkxt−k−(K+1−m), (11)

where ωk indicates the parameter of Granger causality, and αn =
∑n

i=1 ωnαn−i, 1 ≤ n ≤ K, is a
recursive equation with α0 = 1.

Proof. According to the definition of Granger causality, we have

xt =

K∑
k=1

ωkxt−k + µt. (12)

Then, we recursively replace variables in the previous window with their autoregressive equations.
By substituting xt−1 with

∑K
k=1 ωkxt−1−k + µt−1, we have

xt = ω1xt−1 +

K∑
k=2

ωkxt−k + µt

= ω1

(
ω1xt−2 +

K∑
k=2

ωkxt−1−k + µt−1

)
+
(
ω2xt−2 +

K∑
k=3

ωkxt−k + µt

)
By further substituting xt−2, we have

xt =
(
ω2
1 + ω2

) (
ω1xt−3 +

K∑
k=2

ωkxt−2−k + µt−2

)
+ ω1

(
ω2xt−3 +

K∑
k=3

ωkxt−1−k + µt−1

)
+
(
ω3xt−3 +

K∑
k=4

ωkxt−k + µt

)
By defining αn =

∑n
i=1 ωnαn−i, 1 ≤ n ≤ K, α0 = 1, the above expression can be rewritten as

xt =α2

(
ω1xt−3 +

K∑
k=2

ωkxt−2−k + µt−2

)
+ α1

(
ω2xt−3 +

K∑
k=3

ωkxt−1−k + µt−1

)
+ α0

(
ω3xt−3 +

K∑
k=4

ωkxt−k + µt

)
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By following this pattern, for any n, 1 ≤ n ≤ K, we have that

xt = αn−1

(
ω1xt−n +

K∑
k=2

ωkxt−k−n+1 + µt−n+1

)
+ αn−2

(
ω2xt−n +

K∑
k=3

ωkxt−k−n+2 + µt−n+2

)
+ · · ·+ α0

(
ωnxt−n +

K∑
k=n+1

ωkxt−k + µt

)
By rearranging the above expression, we have that

xt =

n∑
m=1

αn−mut−(n−m) + αnxt−n +

n+1∑
m=2

αn+1−m

K∑
k=m

ωkxt−k−(n+1−m)

Finally, as we focus on representing xt by the exogenous variables from a previous window and the
observed time series from the immediate previous window, we assign n = K. Then, we have that

xt =

K∑
m=1

αK−mut−(K−m) + αKxt−K +

K+1∑
m=2

αK+1−m

K∑
k=m

ωkxt−k−(K+1−m)

A.2 EXPERIMENTS

A.2.1 SYNTHETIC DATASETS

Linear Dataset Marcinkevičs & Vogt (2021) is a synthetic time series dataset with linear interaction
dynamics. The structural equations are defined as:

x
(1)
t = a1x

(1)
t−1 + u

(1)
t + ϵ

(1)
t ,

x
(2)
t = a2x

(2)
t−1 + a3x

(1)
t−1 + u

(2)
t + ϵ

(2)
t ,

x
(3)
t = a4x

(3)
t−1 + a5x

(2)
t−1 + u

(3)
t + ϵ

(3)
t ,

x
(4)
t = a6x

(4)
t−1 + a7x

(2)
t−1 + a8x

(3)
t−1 + u

(4)
t + ϵ

(4)
t ,

where coefficients ai ∼ U([−0.8,−0.2] ∪ [0.2, 0.8]), additive innovation terms u(·)
t ∼ N (0, 0.16),

and anomaly term ϵ
(·)
t .

Nonlinear Dataset Absar et al. (2023) is a synthetic time series dataset with non-linear interaction
dynamics, of which the structural equation is defined as:

Xt = AT
t∑

m=1

βm cos(Xt−m + 1) + ϵ,

where β is the regression coefficient, and ϵ represents standard Gaussian noise. The noise scale is
kept below 1 and is proportional to the value of d. The non-linear relationship between time series
is introduced through the cosine function. The adjacency matrix A of the underlying causal graph is
generated using the Erdős–Rényi model Newman (2018).

Lotka-Volterra Marcinkevičs & Vogt (2021) is a synthetic time series model that simulates a prairie
ecosystem with multiple species. The structural equations are defined as:

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η(x(i))2, for 1 ≤ j ≤ p,

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j), for 1 ≤ j ≤ p,

x
(i)
t = x

(i)
t + ϵ

(i)
t , y

(j)
t = y

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ p,
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where x(i) and y(j) denote the population sizes of prey and predator, respectively; α, β, η, δ, ρ are
parameters that decide the strengths of interactions, Pa(x(i)) and Pa(y(j)) correspond the Granger
Causality between prey and predators for x(i) and y(j) respectively, and ϵ

(·)
t is the abnormal term.

We simulate 20 prey species and 20 predator species.

Lorenz 96 Marcinkevičs & Vogt (2021) a synthetic time series data, where the i-th variable is defined
by the following nonlinear differential equations:

dx(i)

dt
= (x(i+1) − x(i−2))x(i−1) − x(i) + F, for 1 ≤ i ≤ d,

where x(0) := x(d), x(−1) := x(d−1), and x(d+1) := x1; and F is a constant controlling the
nonlinearity of the data.

Abnormal behavior injection to the synthetic datasets. For point anomalies, the anomaly term is
single or multiple extreme values for randomly selected time series variables at a specific time step t.
For example, a point anomaly at time step t can be generated with an abnormal term ϵt = [0, 2, 4, 0],
which means the second and third time series have extreme values.

For sequential anomalies, the anomaly terms are function-generated values in a given time range.
For instance, setting ϵ

(1)
t+i = 0.1 × i, for 0 ≤ i ≤ n, will cause a trend anomaly for time series

variable x(1); setting ϵ
(1)
t+i ∼ N (0, 0.16), for 0 ≤ i ≤ n, will cause a shapelet anomaly; and setting

ϵ
(1)
t+i = (a1x

(1)
t+2i−1 + u

(1)
t+2i) + (a1x

(1)
t+2i−2 + u

(1)
t+2i−1) − (a1x

(1)
t+i−1 + u

(1)
t+i), for 0 ≤ i ≤ n, will

cause a seasonal anomaly.

A.2.2 IMPLEMENTATION DETAILS

We implement distinct neural network configurations tailored to the complexity of the dataset at
hand. Specifically, for synthetic datasets, we employ a two-layer feedforward neural network archi-
tecture with a hidden dimension of 50, whereas for real-world datasets, the architecture is expanded
to eight layers, each boasting a hidden dimension of 1000. Preprocessing of data is standardized
across datasets using a MinMax scaler, with further efficiency measures including downsampling of
the SWaT dataset at intervals of every 10 seconds and the MSDS dataset every 5 steps. The training
framework is anchored by a learning rate of 1× 10−6, with the Adam optimizer facilitating parame-
ter optimization. Hyperparameters β, λ, and γ are initially set to 1, ensuring a balanced approach to
regularization and loss function adjustment. The maximum training epochs are set to 5000, incor-
porating an early stopping criterion that halts training if no improvement in loss is observed for 20
consecutive epochs. All experiments were conducted on an Ubuntu 20.04 server equipped with an
AMD Ryzen 3960X 24-Core processor at 3.8GHz, dual GeForce RTX 3090 GPUs, and 128 GB of
RAM. The implementation uses Python 3.9.7 and PyTorch 1.11.0.

A.2.3 PERFORMANCE OF ROOT CAUSE ANALYSIS AT SPECIFIC TIME STEPS

To quantify the effectiveness of approaches for locating the root cause time series at specific time
steps, we further develop the metric “recall at top-k over all time steps” below.

AC∗@K =
1

|X |
∑
X∈X

|
⋃

t∈T V
(RC)
xt ∩ {R∗

X[k]|k = 1, 2, ...,K}|
min(K, |

⋃
t∈T V

(RC)
xt |)

,

where V
(RC)
xt indicates the set of root cause time series at the t-th time step; R∗

X[k] indicates the
time series at the k-th rank over all time steps. Similarly, we also compute the overall performance
by computing the average AC∗@K, denoted as Avg∗@K = 1

K

∑K
k=1 AC∗@k.

For baselines that cannot identify the root cause at specific time steps, we consider the root cause
predicted by the baselines indicating the abnormal time series at the last time step in a sliding win-
dow.

As shown in Table 4, for the more challenging metric AC*@K, AERCA can achieve high AC*@1
scores on most datasets except the SWaT dataset, meaning that AERCA can successfully detect the
root cause at specific time steps. Furthermore, AERCA achieves near-perfect AC*@10 scores on
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most datasets. Considering that there are thousands or even tens of thousands of candidates (T ∗ d)
on each dataset when trying to highlight the root cause at specific time steps, the performance of
AERCA is promising.

Table 4: Overall performance (mean±std.) of root cause analysis at specific time steps.

Dataset Model AC∗@1 AC∗@10 AC∗@100 AC∗@500 Avg∗@500

Linear

ϵ-Diagnosis 0.000±0.000 0.000±0.000 0.000±0.000 0.250±0.316 0.086±0.125

RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.150±0.300 0.064±0.160

CIRCA 0.000±0.000 0.000±0.000 0.025±0.075 0.233±0.327 0.088±0.144

AERCA 0.763±0.137 0.990±0.018 1.000±0.000 1.000±0.000 0.998±0.001

Nonlinear

ϵ-Diagnosis 0.000±0.000 0.000±0.000 0.000±0.000 0.092±0.142 0.056±0.088

RCD 0.000±0.000 0.000±0.000 0.080±0.240 0.263±0.405 0.116±0.215

CIRCA 0.000±0.000 0.000±0.000 0.017±0.050 0.160±0.182 0.064±0.075

AERCA 0.433±0.132 0.830±0.094 0.994±0.010 0.995±0.009 0.987±0.094

Lotka-
Volterra

ϵ-Diagnosis 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

CIRCA 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

AERCA 0.997±0.005 0.998±0.004 1.000±0.000 1.000±0.000 1.000±0.000

Lorenz96

ϵ-Diagnosis 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

CIRCA 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

AERCA 0.842±0.016 0.970±0.013 0.996±0.009 0.996±0.009 0.987±0.010

SWaT

ϵ-Diagnosis 0.075±0.179 0.125±0.217 0.125±0.217 1.000±0.000 0.633±0.128

RCD 0.000±0.000 0.025±0.043 0.214±0.066 0.799±0.070 0.416±0.028

CIRCA 0.000±0.000 0.025±0.043 0.214±0.066 0.799±0.070 0.416±0.028

AERCA 0.020±0.026 0.320±0.026 1.000±0.000 1.000±0.000 0.950±0.002

MSDS

ϵ-Diagnosis 0.000±0.000 0.389±0.410 0.706±0.310 1.000±0.000 0.880±0.113

RCD 0.025±0.026 0.216±0.806 0.806±0.205 1.000±0.000 0.908±0.078

CIRCA 0.000±0.000 0.102±0.108 0.741±0.273 1.000±0.000 0.884±0.083

AERCA 0.230±0.004 1.000±0.000 1.000±0.000 1.000±0.000 0.997±0.000

(a) Avg@10 (b) Avg∗@500

Figure 3: Performance of root cause identification with various numbers of continuous exogenous
interventions.

A.2.4 SENSITIVITY ANALYSIS

We evaluate the performance of AERCA on root cause identification when the anomalies are caused
by continuous exogenous interventions. We tune the number of time steps having the exogenous
interventions and check the performance change. Recall that to make the task more challenging, at
each time step, the exogenous intervention is conducted on different time series. Figure 3 shows the
evaluation results. We can observe that in terms of Avg@10, the performance of AERCA remains
stable on both Linear and Nonlinear datasets and slightly decreases on the Lotka-Volterra dataset
when increasing the time steps receiving the exogenous interventions. It shows that AERCA can
identify the root cause correctly with continuous interventions on different time series. Meanwhile,
in terms of Avg*@500, AERCA can still achieve reasonable performance on Linear, Nonlinear,
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and Lorenz96 datasets, indicating that in most cases, AERCA can identify the time series receiving
exogenous interventions at specific time steps with high root cause scores. The main reason that
the performance of AERCA on Lotka-Volterra significantly decreases is because Lotka-Volterra
has more variables, which makes the candidates of root cause significantly larger, especially for
computing the metric AC*@K. In summary, AERCA can achieve promising performance on root
cause identification for continuous interventions when the number of dimensions in multivariate
time series is moderate.

A.2.5 CASE STUDY

Figure 4 shows a short snippet of multivariate time series on the Nonlinear dataset, where we conduct
four exogenous interventions on four different time series at different time steps. We highlight
the predicted root cause with the top 5 highest root cause scores (AC*@5) via purple bars. We
can notice that AERCA correctly detects the root cause time series when exogenous interventions
are conducted at specific time steps. Meanwhile, as shown at the bottom of each time series, the
distribution of root cause score (z-score) matches the exogenous variables, especially when the time
series receives the exogenous interventions.

Figure 4: Visualization of multivariate time series, exogenous variables, and predicted root cause
scores on the Nonlinear dataset (6 dimensions) with the ground truth and predicted root cause.
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