
Note: Additional visualizations of our experiments can be found here: https://sites.google.
com/view/assistive-teaching-2022/home

A Broader Impact & Ethics Statement
AI-assisted teaching of motor control tasks can provide significant benefits such as more reliable
teaching to individual students with different abilities (e.g. by leveraging more granular information
about student actions), adaptability to any type of motor task or expert agent, and improved safety
by reducing burden on human teachers for safety-critical tasks. However, we emphasize that our
approach is solely meant to assist human teaching, as there exist many important aspects of human
instruction that would be challenging to replace, including providing inspiration and motivation, in
depth knowledge of human physical limitations, and an awareness of the broader context of a specific
motor control task. Further risks of our approach, and avenues to address them, include:

• Bias of the expert agent. The suitability of the skills we use for teaching relies on how diverse
the set of demonstrations from an expert is. For example, if a writing task only contained demon-
strations from right-handed experts, certain action sequences that may be harmful for left-handed
students’ learning may be chosen as skills. Understanding how CompILE performs over a mix
of expert types, and how to enable more complex adaptation to a specific student’s needs at the
skill-identification step itself are important future directions.

• Over-reliance on the expert. Our work currently assumes that in order to learn a task, the student
should practice drills built from how an expert performs the task. However, a student should also
be encouraged to learn when it may be appropriate to differ from the expert’s actions if it helps the
student learn better. This requires knowledge of how individual skills serve the ultimate task’s goal
(e.g. understanding why we first turn to enter a parking spot), which future work on incorporating
interpretability methods and natural language instructions into our approach can address.

• Student physical constraints during learning. In many tasks, certain action sequences may
physically be easier for an expert to perform than a student, and may perhaps even be dangerous
for a student to practice without building up necessary techniques. This can be addressed by
leveraging more complex hierarchical approaches to skill discovery (e.g. which skills should be
mastered before attempting others) and incorporating knowledge of human physical constraints (e.g.
degree of feasible wrist rotation). Another interesting direction for future work is to compare skills
identified at different levels of expertise, and ascertain whether skills identified from a “medium-
level student” may actually be easier, and less physically demanding, to teach with than those
identified from an expert.

B Notation Glossary
For convenience, we provide a glossary of all mathematical notation used in our framework.

Term Meaning
Ξs/Ξe Student/Expert Scenarios
τsξ /τeξ Student/Expert Trajectories for scenario ξ
Me

ξ Set of skill labels corresponding to an Expert e’s trajectory for scenario ξ
E Expertise vector for a given student
bτ Boundary of a skill subsequence in a trajectory τ corresponding to a particular timestep
τem Segment of an expert e’s trajectory from interval [bτ

e

j−1, b
τe

j ) such that mτe

j = m
⊕ Concatenation operator that stitches together action sequences when creating drills
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C Student Trajectories Before and After Practicing w/ Individualized Drills

Figure 7: Overlay of all student trajectories of 3 Balinese characters for the WRITING task before teaching with
individualized drills and after. For the rightmost character (“na” in Balinese), students learn to draw a smaller
second loop at a lower angle, following the expert more closely. For other characters, we find that students
exhibit less noise, and off-character strokes more closely following the original character.

We note that while Fig. 7 compares student trajectories before and after teaching for one particular
set of Balinese characters, the reported values are averaged across all pre-test and evaluation rounds.
Furthermore, common failure modes in the pre-test rounds before teaching that are not captured by
this visualization include students giving up early and letting go of the mouse, and students re-tracing
their characters.

D Comparison Between Student and Expert CompILE Outputs

Figure 8: SKILLEXTRACTOR outputs for Expert (left) and Student (right) trajectories for both the Parking (top)
and Writing (bottom) tasks. Black dots represent skill boundaries identified by CompILE.

Comparing SKILLEXTRACTOR output boundaries on trajectories from both our experts and students
for both tasks, we can see that CompILE is able to segment both types of trajectories, but the noise
in student trajectories leads to a failure of identifying the necessary skills for the task. We leverage
this information to identify which skills students are struggling with. For example, in PARKING, the
student is clearly unable to park the car, but the initial movement towards the upper left is segmented
similarly to the expert, so the student will largely be penalized for later parts of the trajectory.

E Challenges in Human Expert Skill Identification
To address the challenges of extracting “human teachable” skills discussed above, one may consider
using human experts as part of the SKILLEXTRACTOR function. However, the key idea behind our
work is that people who are experts at performing a task may not be expert at teaching it, and may
struggle to identify skills consistently.

To observe this clearly, we asked 3 different experts to annotate 10 successful trajectories of the
PARKING task with boundaries corresponding to skills under unlimited time. The set of 10 trajectories
only contained 3 unique demonstrations, allowing us to measure whether experts were consistent
when providing skill annotations for the same expert demonstration. Fig. 9 shows that even for the
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same trajectory, the same expert user may provide a completely different skill segmentation, and even
identify a different number of skills. Even Expert 3, the most consistent expert across all duplicate
trajectories, showed slight variation across trials - however, we note that CompILE’s segmentations
closely matched theirs. Moroever, by design, CompILE returns the exact same segmentations for the
same action sequence. Overall, our user study results showed that human expert provided skills are
often unreliable, leading to skill sequences with high variations that would be challenging to teach in
a uniform way.

Figure 9: Skill segmentations from our CompILE-based SkillExtractor and 3 different human experts at the
PARKING task. For a given trajectory, experts provided 2 segment boundary annotations (columns), with each row
corresponding to a different expert. Expert Users 1 and 2 show high variability among their own segmentations,
while Expert User 3 is more consistent and provides skill segmentations similar to the output of CompILE.

Finally, we note that a key aspect of our approach is scaling the ability to identify skills within a wide
range of student trajectories for individualization. This is an even higher burden for human experts,
who need to identify skills over trajectories that may widely differ from each other and the way the
expert knows how to complete the task.

Therefore, in this work we attempted to incoporporate preliminary notions of “human teachability"
when selecting between hyperparameter settings of our CompILE-based SKILLEXTRACTOR. Specif-
ically, we filtered out skills corresponding to trajectories below a minimum length (due to human
perceptual limits), and then chose the parameters that corresponded to the set of skills with highest
entropy, with the intuition that a sufficiently diverse set of scenarios for a task would require a large
variety of skills, and to minimize the risk of SKILLEXTRACTOR grouping two distinct skills as just
one latent skill.

F Impact of Training Time on Synthetic Student
Although we report results for both half-trained and reverse difficulty synthetic students after fine-
tuning on 100 epochs, one natural question is the effect of training time. We examine this more
closely with the "reversing difficulty" student, where Fig. 10 shows that as we increase the number
of training epochs (equivalent to adjusting the Nrep parameter in our IL setting) for a fixed set of 3
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drills, student reward starts to plateau close to the average reward the expert receives. This shows that
for our synthetic model, the largest learning gain occurs at the start of training.

Figure 10: Reward starts to plateau over training iterations for the "reversing difficulty" synthetic student.
Reported values are average reward over 100 random rollouts.

In practice, a teacher could also adjust the Ndrills parameter and repeat the entire teaching session by
repeating the expertise identification method in Alg. 2, which may return different skills as a student
improves over time. Planning the optimal overall curriculum is likely extremely task-dependent, and
requires a much stronger model of student learning that incorporates concepts such as forgetting,
which we leave for future work.

G Source Code
We provide all source code necessary to replicate our user study, for both PARKING and WRITING
environments, as well as the trained CompILE models for both environments, at https://github.
com/Stanford-ILIAD/teaching.

H Environment Pre-Processing
As described in Sec. 5 of the main paper, our PARKING environment is built off of the HighwayEnv
goal-based task whereas our WRITING environment is custom built based off of the Omniglot dataset.
For the purpose of simplifying our user study, we make the following modifications:

1. For PARKING, while we train our expert agent and skill-discovery algorithms across all possible
parking goals, we only pick goals in the bottom right quadrant for teaching students in our user
study as a simplification. To expand to all goals in the task, we believe further teaching time would
be necessary due to the larger number and variety of skills required.

2. Likewise, for WRITING, we limit our sequences to contain only up to 5 different Balinese
characters (“Na”, “Ma”, “Pa”, “Ba”, “Wa”) to reduce the amount of skills required to learn the
overall task.

3. Because crowdworkers in the Omniglot dataset differ in terms of interfaces used at the time of
data collection, we “infill” all action sequences as a method of standardization. Specifically, we
infill between any two consecutive states that differ by more than 1 pixel. Because these infilled
trajectories are used to train our CompILE module for SKILLEXTRACTOR, we likewise infill all
user trajectories collected in our user study.

I Hyperparameters & Training Details
Here, we describe all necessary hyperparameters to replicate training our (i) PARKING expert agent,
(ii) skill-discovery CompILE modules for both PARKING and WRITING tasks, and (iii) synthetic
students for PARKING. All models are trained on 1 NVIDIA TITAN RTX GPU, and the longest
training time (for the expert PARKING agent) is roughly 5 hours.

1. PARKING expert agent: We train a StableBaselines3 implementation of Soft Actor-Critic for 106
epochs with a learning rate of 0.001, which achieves a roughly 100% parking success rate.

2. PARKING CompILE module: We train a CompILE module (using the code from [28]) for 2000
iterations with a learning rate of 0.001, batch size of 100, latent dimension of 16 (i.e. 16 possible
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skills), prior expected length of skill segments of 10, and prior number of segments per expert
demonstration of 4. As described in the main paper, for PARKING, we add a penalty to the original
loss function that is the MSE loss between the state differences between two consecutive states in
the CompILE reconstruction and that in the training data.

3. WRITING CompILE module: We train a CompILE module for 80 iterations with a learning rate
of 0.005, batch size of 50, latent dimension of 24 (i.e. 24 possible skills), prior expected length
of skill segments of 250, and prior number of segments per expert demonstration of 8. For both
PARKING and WRITING, we find it necessary to set the latent dimension high as many latent
codes correspond to zero skill segments.

4. PARKING synthetic “half-trained” student: We train a 4-layer feed-forward neural network for
50 epochs with a learning rate of 0.0005 and batch size 256 via behavior cloning on rollouts from
the expert agent, which receives an eval MSE loss of 0.049.

5. PARKING synthetic “reversing difficulty” student: We train a 4-layer feed-forward neural
network for 400 epochs with a learning rate of 0.0005 and batch size 256 via behavior cloning on
rollouts from the expert agent with only 20% of the data containing reverse acceleration actions
(negative y-value), which receives an eval MSE loss of 0.021.

J User Study
We recruited users on Prolific, a crowdsourcing platform to conduct research studies, as part of an
IRB-approved study (Protocol No. 49406 reviewed by Stanford University). We recruited up to 25
users for each setting in our user study for both WRITING and PARKING tasks. Overall, participants
were paid an estimated wage of 15 dollars per hour, and took on average 20 minutes to complete
the entire study, including reading instructions, learning the motor control task, and completing a
post-task survey.

Each student was provided a link to an instructions page, where they provided a username to access
the interfaces we built for both tasks. Each interface included step-by-step instructions on the side.
As described in the main paper, students participated in a series of pre-test tries at the task, a sequence
of practice sessions, and then an evaluation round. In the PARKING task, due to its difficulty, practice
sessions consisted of both expert demonstrations (with joystick movement corresponding to expert
actions) and student practice mode, while the WRITING task practice sessions consisted only of
practice (of either full sequences, skills, or drills). Furthermore, to help guide students, we overlayed
the state sequence of the target skill/drill/full-trajectory during demo and practice sessions for all
settings in PARKING. Finally, for both motor control tasks we imposed a time limit on students
for pre-test, evaluation, and practice sessions, proportional to the length of the sequence. For fair
comparison, we ensure that the total number of allowed time-steps is roughly equivalent between
settings we directly compare with each other. We include images of the instructions and example
interfaces for both tasks below.

Finally, each student participant completed a post-task survey where they provided ratings for how
helpful they found the practice sessions for learning the control task, information about whether
students used a trackpad or computer mouse, as well as any feedback about the interface or task itself.
We found no significant impact on performance from whether a students used a trackpad or computer
mouse. We provide the complete list of survey questions asked below.

Overall, students found the PARKING task particularly challenging, often asking for more practice
sessions, which many found helpful (e.g. “It was interesting to give it a go and see how I improved in
a short time.”, “I could see that I was improving as the experiment went on”). Meanwhile, students
participating in the WRITING task students enjoyed the educational experience of learning a new
script (e.g. “I am interested in writing forms and would one day like to learn some unusual scripts.”,

“interesting learning to write another language”), but wished to learn more about the characters’
meaning, motivating further research in making automatically-discovered skills (which may not
necessarily be characters) more interpretable to students (e.g. “I would like to know what Balinese
characters I’m tracing and their meaning”).
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Figure 11: User study interface for the PARKING task where student participants learn how to park a car with a
joystick controller. A black circle marks the front of the car, and the blue square marks the goal parking spot.

Figure 12: User study interface for the WRITING task where student participants learn how to trace Balinese
characters. After the user lets go of their mouse, or when the timer is over, a score representing the reward would
be displayed.
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Figure 13: Instructions for the PARKING task where student participants learn how to park a car with a joystick
controller.
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Figure 14: Instructions for the WRITING task where student participants learn how to trace Balinese characters.
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User Study Survey Questions:

1. Did you find the demos and practice sessions useful in learning how to park the car? / Did you
find the practice sessions helpful in learning how to write the different characters? (Rating 1-7)

2. How easy was it to learn how to park the car? / How easy was it to learn how to write the
characters? (Rating 1-7)

3. How easy was it to learn how to park the car? / How easy was it to learn how to write the
characters? (Rating 1-7)

4. What else would have been helpful to learn how to park the car? / What else would have been
helpful to learn how to write the characters?

5. What did you like about the experiment?
6. What would you wish to change about the experiment?
7. Did you use a laptop trackpad or a mouse to complete this study?
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