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ABSTRACT

The fusion of raw sensor data to create a Bird’s Eye View (BEV) representation
is critical for autonomous vehicle planning and control. Despite the growing in-
terest in using deep learning models for BEV semantic segmentation, anticipating
segmentation errors and enhancing the explainability of these models remain un-
derexplored. This paper introduces a comprehensive benchmark for predictive
uncertainty quantification in BEV segmentation, evaluating multiple uncertainty
quantification methods across three popular datasets with three representative net-
work architectures. Our study focuses on the effectiveness of quantified uncertainty
in detecting misclassified and out-of-distribution (OOD) pixels while also improv-
ing model calibration. Through empirical analysis, we uncover challenges in exist-
ing uncertainty quantification methods and demonstrate the potential of evidential
deep learning techniques, which capture both aleatoric and epistemic uncertainty.
To address these challenges, we propose a novel loss function, Uncertainty-Focal-
Cross-Entropy (UFCE), specifically designed for highly imbalanced data, along
with a simple uncertainty-scaling regularization term that improves both uncertainty
quantification and model calibration for BEV segmentation.

1 INTRODUCTION

Bird’s Eye View (BEV) semantic segmentation is a critical component of modern vehicular technology
and has received increased attention in recent years. It has been adopted in advanced autonomous
vehicle systems, such as Tesla’s Autopilot. BEV representations offer a top-down perspective
of the environment surrounding a vehicle, created by fusing data from multiple sensors such as
cameras, LiDAR, and radar (Philion & Fidler, 2020). This comprehensive view allows autonomous
systems to accurately perceive the position and movement of nearby objects, including other vehicles,
pedestrians, and obstacles. Therefore, BEV semantic segmentation (BEVSS) plays a vital role in
both autonomous driving systems and advanced driver-assistance systems (ADAS) (Liu et al., 2023).

Identifying potential errors before they lead to dangerous outcomes is crucial for ensuring the safety
and reliability of BEVSS. However, Deep Neural Networks (DNNs) commonly used for BEV
representation learning tend to make overconfident predictions on unseen data (Guo et al., 2017) and
underconfident predictions on noisy data (Wang et al., 2021). In 2018, an Uber autonomous vehicle
in Arizona failed to correctly identify a pedestrian crossing outside a designated crosswalk at night,
resulting in a fatal collision (Goodman, 2018). In March 2022, a Tesla Model S on Autopilot crashed
into a stationary vehicle on a Florida highway, injuring five police officers (Shepardson, 2022).

Uncertainty prediction in segmentation can enable autonomous systems to return control to the driver
when necessary. There are two primary types of uncertainty (Kendall & Gal, 2017). Aleatoric
uncertainty, which arises from inherent randomnesses, such as noisy data and labels. By identifying
areas with high aleatoric uncertainty, the vehicle can make better decisions, especially in complex or
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ambiguous situations. Epistemic uncertainty, on the other hand, stems from a lack of knowledge,
such as when the test-time input differs significantly from the training data. Quantifying epistemic
uncertainty helps the system handle out-of-distribution scenarios and adapt to unexpected conditions,
especially in dynamic driving environments.

Uncertainty quantification methods can be broadly categorized based on their computational com-
plexity and approach. The first category involves multiple forward passes to estimate a model’s
predictive uncertainty, including methods such as deep ensembles (Lakshminarayanan et al., 2017)
and dropout-based approaches (Gal & Ghahramani, 2016). While effective, these methods are compu-
tationally expensive, making them impractical for real-time applications. The second category utilizes
deterministic single forward-pass neural networks. Conjugate-prior-based methods, like evidential
neural networks (Sensoy et al., 2018), predict a conjugate prior distribution of class probabilities,
providing multi-dimensional uncertainty estimates. Additionally, post-hoc methods, such as those
based on softmax (Hendrycks & Gimpel, 2016) and energy models (Liu et al., 2020), are notable for
their ease of adoption without requiring modifications to the underlying network architecture,

This study investigates the uncertainty-aware BEVSS task, which involves both pixel-level classifica-
tion and the associated uncertainty estimations. Our main contributions are :

• We introduce the first benchmark for evaluating uncertainty quantification methods in
BEVSS, analyzing five representative approaches (softmax entropy, energy, deep ensemble,
dropout, and evidential) across three popular datasets (CARLA (Dosovitskiy et al., 2017),
nuScenes (Caesar et al., 2020), and Lyft (Kesten et al., 2019)) using three BEVSS network
architectures (Lift-Splat-Shoot (Philion & Fidler, 2020), Cross-View-Transformer (Zhou &
Krähenbühl, 2022), and Simple-BEV (Harley et al., 2023)).

• We propose the UFCE loss, which we theoretically demonstrate can implicitly regularize
sample weights, mitigating both under-fitting and over-fitting. In addition, we introduce a
simple uncertainty scaling regularization term that explicitly adjusts sample weights based
on epistemic uncertainty.

• Extensive experiments demonstrate that our proposed framework consistently achieves
the best epistemic uncertainty estimation, improving the AUPR for OOD detection by an
average of 4.758% over the runner-up model. Additionally, it delivers top-tier aleatoric
uncertainty performance, as evaluated through calibration and misclassification detection,
all while maintaining high segmentation accuracy 1.

2 UNCERTAINTY QUANTIFICATION ON BEVSS

Problem Formulation. Suppose we are given n images from RGB camera views surrounding the
ego vehicle. Let X := {Xk,Ek, Ik}nk=1 denote the input, where each camera view has a feature
matrix Xk ∈ R3×H×W (with H and W representing the height and width of the input image), an
extrinsic matrix Ek ∈ R3×4, and an intrinsic matrix Ik ∈ R3×3.

The goal of uncertainty-aware BEV semantic segmentation is to predict pixel-level classes in the
BEV coordinate frame, represented by Y ∈ {0, 1}C×M×N , along with aleatoric uncertainty ualeai,j

and epistemic uncertainty uepisi,j for each pixel indexed by (i, j). Here, C denotes the number of
classes, and M and N represent the height and width of the BEV frame, respectively.

Network architecture. We directly apply the network architecture from the well-established BEVSS
task. A common BEV semantic segmentation neural network has the general form:

P = σsoftmax (f(X;θ)) , (1)

where P ∈ [0, 1]C×M×N are the pixel-wise class probabilities, and θ refers to the network parameters.
We use pi,j to denote the class-probability vector of the BEV pixel at index (i, j).

Uncertainty quantification methods usually apply post-processing techniques or introduce slight
modifications to the network architecture, training, or inference strategy. In our experiments, we
consider three network architectures: Lift-Splat-Shoot (LSS) (Philion & Fidler, 2020), Cross-View
Transformer (CVT) (Zhou & Krähenbühl, 2022), and Simple-BEV (Harley et al., 2023). LSS lifts 2D

1The code is available at https://github.com/bluffish/ubev
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camera images into a 3D space, projects them onto a BEV plane, and then processes the BEV features
for semantic segmentation. CVT, on the other hand, leverages attention mechanisms to transform
multi-view image inputs into a unified BEV representation, enabling more effective cross-view
feature fusion. Simple-BEV defines a 3D coordinate volume over the BEV plane and projects each
coordinate into the corresponding camera image. Details are provided in Appendix A.2.1.

Uncertainty Quantification Benchmark: In this benchmark, we aim to investigate the performance
of various uncertainty quantification methods on the uncertainty-aware BEVSS task.

We apply five representative uncertainty quantification methods in the deep learning domain. One
widely used metric is entropy (Hendrycks & Gimpel, 2016), which captures aleatoric uncertainty
for in-distribution samples and is preferred due to its simplicity and low computational overhead.
Additionally, Liu et al. (2020) proposed the use of an energy score to distinguish between in-
distribution and OOD samples, which is also a post-hoc method. We also consider the ensemble-
based method (Lakshminarayanan et al., 2017), which estimates uncertainty by training multiple
models and averaging their predictions. Similarly, the dropout-based method (Gal & Ghahramani,
2016) approximates Bayesian inference by performing dropout during inference. These two methods
generate multiple class probability predictions, and the variance is used as an epistemic uncertainty
metric. These four methods do not require significant architectural changes to the network. In
contrast, the evidential neural network (ENN) (Sensoy et al., 2018) replaces the standard softmax
activation with ReLU function and produces the multinomial opinions in subjective logic. Although
this approach modifies the model architecture, it requires only a single training and inference pass
to generate both aleatoric and epistemic uncertainty, along with the class probabilities. Detailed
descriptions of the models and uncertainty calculations are presented in Appendix A.2.3.

Evidential Neural Networks (ENN): Due to computational efficiency and explainability, we extend
ENNs to conduct uncertainty quantification for BEVSS, where pixel-level prediction is expected. We
replace the last softmax in BEVSS network architecture (LSS, CVT or Simple-BEV) with the ReLU
activation function to predict concentration parameters of a non-degenerate Dirichlet distribution.

A = σReLU (f(X;θ)) + 1,A ∈ R+C×M×N (2)

We assume that the target class label is drawn from a categorical distribution parameterized by
probabilities pi,j . In this case, we can probabilistically model these probabilities using their conjugate
prior, the Dirichlet distribution, which itself is parameterized by the concentration parameters
αi,j := A[:, i, j]. For simplicity, we omit the index (i, j) in the subsequent discussion.

y ∼ Cat(y|p), p ∼ Dir(p|α). (3)

The expected class probability can be derived as shown in Equation 4, where α0 =
∑C

c=1 αc:

p̄ := E[p|α] = α/α0 (4)

Based on subjective logic opinion (Jøsang, 2016), there is a bijection between subjective opinions and
Dirichlet PDFs, allowing a C-dimensional Dirichlet probability distribution to represent a multinomial
opinion. Intuitively, we introduce the concept of “evidence”, defined as a metric indicating the volume
of supportive observations gathered from training data which suggests a sample belongs to a specific
class. Let ec ≥ 0 represent the evidence for class c, with ec = αc − 1. Higher evidence demonstrates
stronger confidence in classifying a sample into the corresponding category, whereas lower overall
evidence across all classes suggests a lack of similarity with the training data, indicating a higher
likelihood of the sample being out-of-distribution.

Then we discuss the optimization loss for evidential-based models. UCE loss associated with an
entropy regularizer is commonly used in evidential-based models (Sensoy et al., 2018; Charpentier
et al., 2020; Li et al., 2024), With a training dataset Dtrain,

LUCE-ENT(θ) = E(X,y)∼Dtrain

[
LUCE (θ,X,y)− βLENT(θ,X)

]
(5)

The first component, called UCE loss, aims to minimize the expected cross-entropy loss between the
predicted class probabilities and the target categorical distribution. Here, the predicted categorical
distribution is sampled from the anticipated Dirichlet distribution, and the target distribution follows
a one-hot encoding format. This optimization strengthens the evidential support for the true class
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while reducing support for other classes. Here, ψ(·) is the digamma function.

LUCE (θ,X,y) = Ep∼Dir(α(θ,X)) [H (p,y)] =

C∑
c=1

yc (ψ(α0)− ψ(αc))

The second component, termed the Entropy Regularizer (ER), involves the entropy of the predicted
Dirichlet distribution. This can be viewed as the Kullback-Leibler (KL) divergence between the pre-
dicted Dirichlet distribution and a uniform Dirichlet prior, promoting a smooth Dirichlet distribution.
The closed-form of the Bayesian loss is provided in Appendix A.1.

LENT(θ,X) = H (Dir (α(θ,X))) = KL (Dir(p|α(θ,X)) ∥ Dir(p|1))

3 METHODOLOGY

In this section, we begin by discussing the limitations of the commonly used UCE loss for ENN models
in Section 3.1. Next, we formally introduce our proposed UFCE loss in Section 3.2, highlighting
how it partially addresses the limitations of UCE. Finally, we present our proposed uncertainty
quantification framework in Section 3.3.

3.1 LIMITAION OF UCE

In an uncertainty-aware classification task, there are three levels of ground-truth and prediction pairs:

1. A one-hot encoded ground truth class label ŷ, compared to the predicted label y.

2. A ground-truth categorical distribution Cat(p̂) aligned with the predicted expected categori-
cal distribution Cat(p) from an ENN.

3. A ground-truth distribution over the categorical distribution Dir(α̂), compared to the pre-
dicted Dirichlet distribution Dir(α), parameterized by the ENN.

Aleatoric uncertainty (uncertainty of the class prediction) can be calculated with the negative maxi-
mum class probability or the entropy of the categorical distribution. Ideally, aleatoric uncertainty
should reflect the model’s confidence in a perfectly calibrated network. However, over-parameterized
deep neural networks, trained with the conventional cross-entropy objective, often exhibit overcon-
fidence, leading to significant calibration issues (Guo et al., 2017). The overconfidence issue is
frequently correlated with overfitting the negative log-likelihood (NLL), since even with a classifica-
tion error of zero (indicative of perfect calibration), the NLL can remain positive. The optimization
algorithm may continue to reduce this value by increasing the probability of the predicted class. In
this section, we demonstrate that the UCE loss suffers from a similar issue. For example, even with
perfect evidence volume prediction, the UCE loss remains positive and increasing the evidence for
the predicted class further decreases the UCE loss. To address this, we propose the UFCE loss, which
aims to improve the calibration performance and the quality of uncertainty estimation.

Epistemic uncertainty (uncertainty on the categorical distribution) can be calculated with the predicted
total evidence α0. In the commonly used UCE loss (Sensoy et al., 2018; Charpentier et al., 2020),
minimization continues when total evidence increases. Bengs et al. (2022) highlighted that learners
employing UCE loss with first-level ground truth (class label) tend to peak the third-level distribution
(Dirichlet distribution). This creates a false impression of complete certainty rather than accurately
reflecting uncertainty. To address this, we propose epistemic uncertainty scaling and regularized
evidential learning to improve epistemic uncertainty prediction.

Overall, aleatoric and epistemic uncertainty can be estimated based on the Dirichlet parameters α:

ualea = −max
c
p̄c, u

epis = C/α0, (6)

Proposition 1. Given a predicted distribution p ∼ Dir(α), where α = (α1, α2, . . . , αC) and C
is the number of categories, and a target distribution q ∼ Dir(α̂), assuming a one-hot style target
distribution such that α̂i = 1 for all i ̸= c∗ where c∗ is the ground truth label and α̂c∗ = 2, we have,

LUCE = KL(Dir(α) ∥ Dir(α̂)) +H(Dir(α))− log(B(α̂)) (7)
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where log(B(α̂)) is a constant with B(·) is Beta function.

Proposition 1 shows that optimizing UCE loss minimizes the sum of the KL divergence between the
predicted and ground truth distributions and the entropy of the predicted distribution. Consequently,
minimizing UCE loss forces the predicted Dirichlet distribution to align the one-hot target evidence
distribution while simultaneously making it more peaked. Since epistemic uncertainty is measured
by the spread of the Dirichlet distribution, this results in an overconfident model prone to overfitting.

3.2 UFCE - IMPLICIT WEIGHT REGULARIZATION

Motivated by the better calibration capability of Focal loss (Lin et al., 2017) compared to cross-
entropy, we propose the Uncertainty Focal Cross Entropy (UFCE) loss, which takes the expectation
of focal loss rather than cross-entropy loss.

LUFCE(θ,X,y) = E(X,y)∼DtrainEp∼Dir(α(θ,X))

[
−

C∑
c=1

yc(1− pc)
γ log pc

]

= E(X,y)∼Dtrain

(
B(α0, γ)

B(α0 − αc∗ , γ)
[ψ(α0 + γ)− ψ(αc∗)]

) (8)

where γ is a hyperparameter, c∗ is the ground truth class index, and B(·) is the Beta function. When
γ = 0, the UFCE loss is equivalent to the UCE loss.

Can the UFCE loss improve calibration over UCE loss? We investigate this question by analyzing
the relationship between UFCE and UCE losses and their gradient behavior.

The general form of the UFCE loss has the following lower bound (see Appendix Proposition 4):
LUFCE ≥ LUCE − γ · Ep∼Dir(α)

[
H(p)

]
(9)

This bound indicates that minimizing UFCE loss leads to both minimizing UCE loss and maximizing
the expected entropy function (H(p)) of the categorical distribution Cat(p). The hyperparameter
γ balances these two terms. Maximizing the entropy term reduces the gap between αc∗ and the
evidence of false classes αc,∀c ̸= c∗, implying that UFCE loss models are generally less confident in
their evidence predictions than UCE loss models, particularly for correctly classified samples.
Proposition 2. Comparing LUFCE and LUCE with numerical analysis on the gradient of the parame-
ters wc∗ in the last linear layer, we have,∥∥∥∥∂LUFCE

∂wc∗

∥∥∥∥−
∥∥∥∥∂LUCE

∂wc∗

∥∥∥∥{≥ 0 if p̄c∗ ≤ τ1(αc∗ , γ)

< 0 if p̄c∗ > τ2(αc∗ , γ)
,

where τ1(αc∗ , γ) and τ2(αc∗ , γ) are two thresholds within ( 1
α0
, 1− 1

α0
). respectively.

Figure 1: The y-axis represents the differ-
ence between the L1-norms of the UFCE and
UCE gradients with αc∗ = 5, while the x-
axis corresponds to p̄c∗ , the expected pre-
dicted probability of the ground truth class.

Proposition 2 shows the relationship between the norms
of the gradients of the last linear layer for UFCE and
UCE loss under the same network architecture. It is clear
that for every γ and αc∗ , there exists a threshold τ1 such
that for all p̄c∗ ∈ ( 1

α0
, τ1],

∥∥∥∂LUFCE

∂wc∗

∥∥∥ ≥
∥∥∥∂LUCE

∂wc∗

∥∥∥. This
implies that the evidence belonging to the ground truth
class predicted by the UFCE mode will initially increase
faster than that of the UCE model.

Moreover, there exists a τ2, and for all p̄c∗ ∈ [τ2, 1 −
1
α0

),
∥∥∥∂LUFCE

∂wc∗

∥∥∥ ≤
∥∥∥∂LUCE

∂wc∗

∥∥∥. It implies once pc∗ surpasses
the threshold τ , UFCE will apply a regularizing effect to
prevent the model from continuing to focus on examples
it is already confident about, thus avoiding overfitting.

Figure 1 shows an example with γ = 1 and αc∗ = 5, τ1 =
τ2 ≈ 0.4. This also implicitly acts as a weight regularizer
by pushing the model to focus more on less confident
scenarios, which is crucial for highly imbalanced data.
Further analysis can be found in Figure 2 and Figure 3.
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3.3 UNCERTAINTY QUANTIFICATION FRAMEWORK

Epistemic uncertainty scaling (EUS): Owing to the imbalance between in-distribution (ID) and
OOD pixels within the BEVSS datasets, we observe a tendency for the model to erroneously classify
ID pixels that are proximal to OOD objects. This often leads to the model assigning low confidence
to these ID pixels, resulting in high epistemic uncertainty. Consequently, this issue significantly
increases the occurrence of false positives during the OOD detection task. To address this, we propose
using epistemic uncertainty scaling to explicitly apply different weights for samples based on their
predicted epistemic uncertainty in the previous step of optimization. The equation 8 is adjusted to:

LUFCE-EUS =

(
1 +

C · ξ
α0

)
· LUFCE (10)

where ξ is a hyperparameter and α0 is the value predicted by the neural network in the previous
optimization step. An example with low evidence in the training set will catch more attention during
the training process and may lead to better performance on such “difficult” samples.

Evidence-Regularized Learning (ER). We consider the OOD-exposure setting to further enhance
the epistemic uncertainty estimation. Assume Dtrain

in is the ID training data and Dtrain
out is the

auxiliary OOD training data. Note that we have true OOD (Dtest
out ) for the evaluation where the

auxiliary OOD and true OOD belong to different distributions. We propose training the model to
minimize the KL divergence between predictions and a flat Dirichlet distribution for these auxiliary
OOD samples.

LER = E(Xout,y)∼Dtrain
out

KL (Dir(α) ∥ Dir(1)) (11)

For fair comparison, we also include a setting with OOD exposure for the energy-based model. With
the same strategy as (Liu et al., 2020), we consider energy-bounded learning for OOD detection.
Details can be found in Appendix A.2.3.

Proposed framework: We replace the last softmax activation function of the original BEVSS
model with a ReLU function in order to produce concentrated parameters for pixel-wise Dirichlet
distribution. The model is optimized by the following objective functions:

LUFCE-EUS-ER = LUFCE-EUS + λLER (12)

Our proposed framework comprises three primary components: the Uncertainty Focal Cross-Entropy
(UFCE) loss, epistemic uncertainty scaling (EUS), and Evidence-Regularized Learning (ER). We
consider three hyperparameters. γ in the UFCE, ξ in the EUS and λ for the ER term.

4 EXPERIMENTS

In this section, we introduce a benchmark that evaluates uncertainty-aware BEVSS. This benchmark
includes three datasets, three BEVSS network architectures, five uncertainty quantification models,
and two uncertainty estimation tasks. We address the following research questions:

RQ1: Are aleatoric and epistemic uncertainties estimated by these models reliable? Specifically,
can the aleatoric uncertainty metrics accurately detect misclassified pixels, and can the epistemic
uncertainty metrics effectively identify OOD samples?

RQ2: Does our proposed UFCE loss enhance model performance in terms of calibration and
uncertainty estimation compared to the traditionally used UCE loss in ENNs?

RQ3: Does the proposed uncertainty quantification framework improve the prediction of epistemic
uncertainty as evaluated by the OOD detection task?

Following these three research questions, we provide extensive experiments and further discussions.

4.1 BENCHMARK SETUPS

Evaluation. Following the task setting from (Philion & Fidler, 2020) and (Zhou & Krähenbühl, 2022),
we conduct both vehicle segmentation and drivable area segmentation. We evaluate performance
using four metrics: (1) Pure segmentation via Intersection-over-Union (IoU). (2) Calibration via
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Expected Calibration Error (ECE). (3) Aleatoric Uncertainty via the misclassification detection to
identify the misclassified pixels, measured with Area Under ROC Curve (AUROC) and Area Under
PR Curve (AUPR). (4) Epistemic Uncertainty via the OOD detection to identify the OOD pixels,
measured with AUROC and AUPR.

Datasets. We utilize the CARLA simulator-generated dataset 2, two real-world datasets (nuScenes and
Lyft), and a corrupted version, nuScenes-C (Xie et al., 2024). In the default setting, “motorcycle” and
“bicycle” serve as the true and pseudo-OOD classes for nuScenes and Lyft, respectively, while CARLA
uses “deer” as the true OOD and “bears, horses, cows, elephants” as pseudo-OODs. To evaluate
robustness to pseudo-OOD choices, an alternative configuration sets “traffic cones, pushable/pullable
objects, motorcycles” as pseudo-OODs and “barriers” as the true OOD for nuScenes, with “kangaroo”
as the true OOD for CARLA, which reduces similarity to pseudo-OODs compared to the default
setting. Detailed dataset descriptions and statistics are in Appendix A.4.

BEVSS Network Architecture. We utilize LSS, CVT, and Simple-BEV as model backbones with
publicly available implementations. LSS converts raw camera inputs into BEV representations by
predicting depth distributions, constructing feature frustums, and rasterizing them onto a BEV grid,
while CVT employs a transformer-based approach with cross-attention and camera-aware positional
embeddings to align features into the BEV space. In contrast, Simple-BEV bypasses depth estimation
entirely, projecting 3D coordinate volumes onto camera images to sample features, emphasizing
efficiency and robustness to projection errors. Detailed descriptions can be found in Appendix A.2.1.

Uncertainty Quantification Methods. We consider widely used uncertainty quantification models
in traditional deep learning. The “Entropy” and “Energy” models perform post-hoc processing on
predicted logits, with “Energy” model being particularly popular for its adaptability and strong OOD
detection performance. We also include the widely-used “Dropout” and “Ensemble” models. The
“Ensemble” model consists of three separately trained models with different initialization seeds, while
the “Dropout” model employs activated dropout layers during inference with 10 forward passes. Both
models use either cross-entropy or focal loss. Lastly, the “ENN” model with UCE-ENT loss serves as
a baseline to validate our framework. Notably, only the “Energy” and “ENN” models can be trained
with or without pseudo-OOD information. Details are in Appendix A.2.3.

Hyperparameters. LSS and CVT are trained with a batch size of 32, while Simple-BEV uses a batch
size of 16, all for 20 epochs on NVIDIA A6000 or A100 GPUs. Network-specific hyperparameters
for LSS, CVT, and Simple-BEV are adopted from their original studies. We use the learning rate
scheduler from CVT, setting the learning rate to 4e-3 for focal loss variants (as in CVT) and 1e-3 for
cross-entropy variants (as in LSS), with the Adam optimizer and a weight decay of 1e-7, consistent
with both LSS and CVT. We tune three regularization weights, λ, ξ, and γ, based on the AUPR
metric for pseudo-OOD detection on the validation set. To manage computational complexity, we
adopt a step-by-step tuning approach, fixing two parameters while adjusting the third, instead of
performing a full grid search. Detailed information on hyperparameter tuning strategy, optimal values,
and sensitivity analysis can be found in Appendix A.3.1.

4.2 RESULTS

In the main paper, we present results on nuScenes using LSS and CVT as backbones, covering
predicted segmentation and aleatoric uncertainty (Table 1), epistemic uncertainty (Table 2), running
time (Table 3), robustness analysis (Table 4), and ablation studies (Table 5).

In the appendix, we provide results on CARLA and Lyft using all backbones including LSS, CVT,
and Simple-BEV (Tables 13–16). Additionally, we include hyperparameter analysis (Tables 7–9) and
robustness experiments (Tables 17–23), which encompass detailed results on corrupted nuScenes-
C, diverse town and weather conditions in CARLA, and pseudo-OOD selections. Qualitative
comparisons are provided in Figures 4–6.

Benchmark Observations (RQ1): Pure segmentation: (1) Across a comprehensive range of con-
figurations (50 in total), focal-based losses demonstrate superior segmentation performance when
compared to the standard cross-entropy loss in all but two instances, where the difference is marginal
(within 0.7%). This pattern is particularly pronounced in models utilizing the CVT backbone, where
focal-based losses yield more significant improvements. (2) The UFCE loss for the ENN consistently

2Due to the large size of the dataset, we will provide it upon request.
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Table 1: Calibration and misclassification detection performance on the nuScence dataset for vehicle
segmentation. Best and Runner-up results are highlighted in red and blue.

Model Loss
LSS CVT

Pure Classification Misclassification Pure Classification Misclassification

IoU ↑ ECE↓ AUROC ↑ AUPR ↑ FPR95 ↓ IoU ↑ ECE↓ AUROC ↑ AUPR ↑ FPR95 ↓
Without pseudo OOD

Entropy CE 0.332 0.00887 0.909 0.315 0.234 0.277 0.00374 0.949 0.325 0.213

Focal 0.347 0.00301 0.941 0.332 0.197 0.325 0.00341 0.949 0.321 0.206

Energy CE 0.332 0.00887 0.909 0.315 0.234 0.277 0.00374 0.949 0.325 0.213

Focal 0.347 0.00301 0.941 0.332 0.197 0.325 0.00341 0.949 0.321 0.206

Ensemble CE 0.355 0.00569 0.933 0.317 0.218 0.301 0.00276 0.951 0.315 0.216

Focal 0.370 0.00233 0.946 0.315 0.203 0.344 0.00243 0.953 0.324 0.195

Dropout CE 0.332 0.00819 0.905 0.315 0.235 0.279 0.00373 0.946 0.332 0.213

Focal 0.347 0.00261 0.936 0.325 0.208 0.325 0.00363 0.948 0.327 0.202

ENN UCE 0.341 0.00429 0.819 0.273 0.335 0.291 0.00371 0.900 0.305 0.224

UFCE 0.343 0.00332 0.873 0.310 0.225 0.319 0.0019 0.918 0.319 0.208

With pseudo OOD

Energy CE 0.348 0.00721 0.949 0.331 0.200 0.296 0.00238 0.951 0.316 0.219

Focal 0.346 0.00466 0.951 0.331 0.192 0.333 0.00186 0.955 0.321 0.196

ENN UCE 0.343 0.00342 0.838 0.288 0.296 0.282 0.00336 0.919 0.313 0.227

Ours 0.356 0.00193 0.911 0.317 0.190 0.319 0.00019 0.934 0.321 0.196

Observations: 1. Involving pseudo-OOD in the training phase does not impact pure segmentation,
calibration and misclassification detection. 2. Without pseudo-OOD, the proposed UFCE loss for the ENN
model consistently outperforms the commonly used UCE loss across all metrics, showing average
improvements of 0.0014 in calibration ECE, 3.6% in misclassification AUROC, 2.5% in AUPR and 6.3% on
FPR95 across two backbones. 3. No single model consistently performs best across all metrics, but Focal
consistently performs better than CE.

Table 2: OOD detection performance for vehicle segmentation . Best and Runner-up results are
highlighted in red and blue.

Model Loss
nuScenes CARLA

LSS CVT LSS CVT

AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95↓
Without pseudo OOD

Entropy CE 0.584 0.00052 0.799 0.728 0.00057 0.824 0.693 0.00236 0.782 0.813 0.00307 0.704

Focal 0.647 0.00056 0.764 0.690 0.00053 0.828 0.693 0.00236 0.782 0.794 0.00271 0.736

Energy CE 0.602 0.00049 0.794 0.720 0.00060 0.801 0.683 0.00217 0.762 0.813 0.00304 0.708

Focal 0.564 0.00050 0.781 0.639 0.00053 0.823 0.683 0.00217 0.762 0.788 0.00265 0.737

Ensemble CE 0.385 0.00016 0.979 0.478 0.00021 0.960 0.488 0.00066 0.965 0.505 0.00068 0.963

Focal 0.537 0.00025 0.941 0.503 0.00021 0.964 0.455 0.00066 0.953 0.491 0.00067 0.962

Dropout CE 0.411 0.00017 0.975 0.384 0.00017 0.957 0.441 0.00062 0.966 0.36 0.00052 0.971

Focal 0.348 0.00015 0.994 0.402 0.00019 0.931 0.390 0.00056 0.964 0.317 0.00049 0.974

ENN UCE 0.717 0.00075 0.791 0.661 0.00049 0.857 0.620 0.00172 0.795 0.685 0.00235 0.814

UFCE 0.518 0.00034 0.892 0.683 0.00066 0.816 0.535 0.00163 0.835 0.748 0.00237 0.775

With pseudo OOD

Energy CE 0.774 0.04740 0.408 0.839 0.02060 0.356 0.897 0.07450 0.259 0.929 0.05140 0.159

Focal 0.821 0.04440 0.378 0.860 0.02370 0.319 0.908 0.07800 0.183 0.948 0.07880 0.137

ENN UCE 0.889 0.315 0.315 0.921 0.212 0.306 0.889 0.147 0.272 0.970 0.111 0.161

Ours 0.929 0.335 0.219 0.928 0.269 0.244 0.960 0.204 0.180 0.979 0.237 0.125

Observations: 1. Without pseudo-OOD, no uncertainty quantification models can predict satisfying
epistemic uncertainty, as shown by extremely low OOD detection PR, implying epistemic uncertainty
estimation is challenging for BEVSS. 2. Compared to all baselines, our proposed model (last line in the
table) has the best OOD detection performance on all 12 metrics, with an average improvement of 2.7% in
AUROC, 6.5% in AUPR and 4.3% in FPR95 over the runner-up model.
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outperforms the UCE loss across all 14 configurations. Calibration: In the majority of scenarios,
models with focal-based loss exhibit lower ECE scores, indicating better calibration than cross-
entropy based models. Similarly, UFCE consistently outperforms UCE. No single model consistently
performs best in terms of calibration. Misclassification detection: (1) Despite most models achieving
AUROC scores over 90%, the AUPR values remain below 40% across two datasets, indicating
significant room for improvement in aleatoric uncertainty estimation. (2) Models using a focal-based
loss perform better in misclassification detection across most settings compared to those using a
CE-based loss. Our model performs consistently better than the UCE-based ENN.

Table 3: Running time comparison between uncertainty quantification models

Model Task Energy Ensemble Dropout ENN-UCE ENN-UFCE Ours

LSS Training 10 hours 30 hours 10 hours 10 hours 10 hours 10 hours
Inference 54 ms 147 ms 457 ms 55 ms 51 ms 56 ms

CVT Training 8 hours 24 hours 8 hours 8 hours 8 hours 8 hours
Inference 15 ms 32 ms 123 ms 14 ms 16 ms 15 ms

OOD detection: (1) Without pseudo-OOD exposure, all models perform poorly in OOD detection,
as evidenced by low AUPR values. (2) Only the energy-based and evidential-based models can
utilize pseudo-OOD data. With pseudo-OOD exposure, both models show significant improvements
in AUROC and AUPR, indicating that utilizing pseudo-OODs may be a promising direction. Our
proposed framework achieves the highest OOD detection performance across all eight evaluated
settings. (3) OOD detection in BEVSS is a challenging task, as evidenced by the low AUPR.

Complexity analysis: Table 3 presents the estimated duration for training on a pair of A100 GPUs
and inference on a single A6000 GPU. Ensemble models require significantly more time for training,
whereas the Dropout model incurs a longer duration during inference. Conversely, the ENN demon-
strates reduced time complexity for both training and inference processes. Our proposed model has
similar training and inference time cost with the energy model.

Analysis of UFCE Loss (RQ2): We discuss the effect of UFCE loss from three views. Calibration:
(1) Compared to UCE loss without pseudo-OOD exposure, models using UFCE loss achieve slightly
higher IoU and lower ECE scores across most configurations for vehicle detection and driveable
region detection tasks on three datasets and three network architectures. Additionally, under pseudo-
OOD supervision, UFCE-based models consistently show better IoU and ECE scores across all
experimental setups, highlighting UFCE’s superior segmentation accuracy and model calibration.

Table 4: Robustness study on the selection of pseudo-OOD with vehicle
segmentation task on nuScenes. Best and Runner-up results are
highlighted in red and blue.

Model
LSS CVT

OOD Detection OOD Detection

AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓
UFCE-EUS-ER 0.895 0.215 0.274 0.940 0.153 0.272

UCE-EUS-ER 0.914 0.208 0.291 0.908 0.117 0.346

UCE-ER 0.862 0.192 0.302 0.887 0.0934 0.354

UFCE 0.495 0.000609 0.919 0.727 0.00118 0.861

We evaluate the alternative pseudo-OOD setting, using traffic cones,
pushable/pullable objects, and motorcycles as pseudo-OOD, with barriers
as the true OOD. Our model outperforms the runner-up in 5 out of 6
metrics, achieving an average AUPR improvement of 18%, with both
UFCE and EUS significantly contributing to these gains.

(2) Compared to all models
with the same configuration,
the ENN using UFCE loss
achieves results compara-
ble to those designed solely
for segmentation. Notably,
the ENN with UFCE loss
achieves the lowest ECE
score on 4 out of 6 configu-
rations and another second
lowest on 1 configuration,
demonstrating its effective-
ness in calibration. In addi-
tion, with pseudo-OOD ex-
posure, the ENN shows im-
proved segmentation perfor-
mance. This enhancement
is due to the model’s capa-
bility to predict accurate Dirichlet distributions, especially for pixels near OOD instances.

Misclassification detection: UFCE loss surpasses UCE loss with consistently higher AUROC and
AUPR scores, generally ranking in the mid-to-upper range among models.
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OOD detection: Compared to UCE loss with pseudo-OOD supervision, our proposed framework
with UFCE loss demonstrates significantly better performance, with up to a 12% increase in AUPR
and a 4% boost in AUROC. These results highlight the significant potential of the UFCE approach to
improve the reliability of epistemic uncertainty estimation.

Table 5: Ablation study for vehicle segmentation on nuScenes . Best and Runner-up results are
highlighted in red and blue.

Model Pure Classification Misclassification OOD Detection

IoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓
LSS

UFCE-EUS-ER 0.356 0.00193 0.911 0.317 0.190 0.929 0.335 0.219

UCE-EUS-ER 0.339 0.00363 0.842 0.290 0.290 0.842 0.340 0.329

UCE-ER 0.342 0.00342 0.838 0.289 0.296 0.889 0.315 0.315

UCE 0.341 0.00429 0.819 0.273 0.335 0.717 0.00075 0.791

CVT

UFCE-EUS-ER 0.319 0.00019 0.934 0.321 0.196 0.928 0.269 0.244

UCE-EUS-ER 0.281 0.00360 0.920 0.314 0.217 0.931 0.210 0.326

UCE-ER 0.282 0.00336 0.919 0.313 0.227 0.921 0.212 0.306

UCE 0.291 0.00371 0.900 0.305 0.224 0.661 0.00049 0.857

The base model is “UCE” and we progressively add the proposed components. First, we introduce ER to
obtain “UCE-ER”, followed by adding EUS to create “UCE-EUS-ER”. Finally, we replace UCE with
UFCE, resulting in the model “UFCE-EUS-ER”. Observation: Adding “ER” largely improve the OOD
detection performance (average 26%), “EUS” further improve he misclassification detection and OOD
detection slightly. The “UFCE” improves the calibration and misclassification detection with a significant
gap ( ECE:0.002555, AUROC:4.15%, AUPR:1.7%, FPR95:6.05%)

Ablation Study (RQ3): There are three primary components: UFCE, EUS, ER. We conduct ablation
studies using the nuScenes dataset with the LSS and CVT backbones to assess the impact of each
component on system performance without compromising generality. The results are summarized in
Table 5. Starting with the standard ENN model using the UCE loss as the baseline, we progressively
add components to assess their contributions. First, we introduce the ER term, which incorporates
pseudo-OOD data during training. This addition leads to a significant improvement in OOD detection
performance, with up to a 31% improvement in AUPR. Next, we add the EUS regularization, which
further enhances both misclassification detection and OOD detection performance. Finally, we
replace the UCE loss with our proposed UFCE loss, achieving the best overall results. This change
results in up to a 6% improvement in AUPR, particularly benefiting calibration and misclassification
detection without sacrificing segmentation accuracy.

Discussion on the pseudo-OOD: Intuitively, greater similarity between true and pseudo-OOD pairs
enhances OOD detection performance, while overfitting to pseudo-OODs raises concerns about the
model’s generalization ability. To further investigate, we conducted experiments using dissimilar
pseudo-OOD and true OOD pairs compared to the default setting (Table 2). The results for nuScenes
are shown in Table 4, while the results for CARLA are provided in Table 17 in Appendix A.5.5.
The findings confirm our intuition: higher similarity between true and pseudo-OOD pairs leads to
better OOD detection performance. Notably, our proposed model consistently outperformed the best
baseline methods across all eight scenarios, achieving improvements of up to 12.6% in AUPR. These
results underscore the robustness of our approach, even in settings with less similar OOD pairs.

5 CONCLUSION

This paper presents a comprehensive evaluation of various uncertainty quantification methods for
BEVSS. Our findings reveal that current methods do not achieve satisfactory results in uncertainty
quantification, particularly in OOD detection, highlighting the need for advancements in this do-
main. Inspired by the robust calibration properties of Focal Loss, we introduce the UFCE loss,
which significantly enhances model calibration. Our proposed uncertainty quantification framework,
based on evidential deep learning, consistently outperforms baseline models in predicting epistemic
uncertainty, as well as in aleatoric uncertainty and calibration, across a wide range of scenarios.
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A APPENDIX

A.1 PROOFS

Assume the target distribution q ∼ Dir(α̂) and the predicted distribution p ∼ Dir(α), where
α = (α1, α2, . . . , αC) and α̂ = (α̂1, α̂2, . . . , α̂C) with C is the number of categories. We first
provide some preliminary results related to Dirichlet distribution.

The probability density function for a Dirichlet distribution for a vector p is given by:

D(p|α) =
1

B(α)

C∏
i=1

pαi−1
i (13)

where B(α) is the beta function for the vector α.

B(α) =

∏C
i=1 Γ(αi)

Γ (α0)
(14)

We use α0 =
∑C

i=1 αi and α̂0 =
∑C

i=1 α̂i for simplification.

Then, the Kullback-Leibler divergence of p from q is given by

KL[p ∥ q] = logB(α̂)− logB(α) +

C∑
i=1

(αi − α̂i) [ψ(αi)− ψ (α0)] (15)

The entropy of p is given by:

H(p) = logB(α)+ (α0 − C)ψ (α0)−
C∑
i=1

(αi − 1)ψ(αi) (16)

Proposition 1. Given a predicted distribution p ∼ Dir(α), where α = (α1, α2, . . . , αC) and C
is the number of categories, and a target distribution q ∼ Dir(α̂), assuming a one-hot style target
distribution such that α̂i = 1 for all i ̸= c∗ where c∗ is the ground truth label and α̂c∗ = 2, we have,

LUCE = KL(Dir(α) ∥ Dir(α̂)) +H(Dir(α))− log(B(α̂)) (7)

Proof. Combine Equation 15 and 16, then we have

KL(Dir(α) ∥ Dir(α̂)) + H(Dir(α)) = logB(α̂) +

C∑
i=1

(α̂i − 1) [ψ(α0)− ψ(αi)] (17)

Given that α̂ is a perfect separable target distribution, i.e. , α̂i = 1 for all i ̸= c∗, then we have
KL(Dir(α) ∥ Dir(α̂)) + H(Dir(α)) = (α̂c∗ − 1) [ψ(α0)− ψ(αc∗)] + logB(α̂) (18)

The uncertainty cross entropy loss is the expectation of cross entropy loss, i.e.

LUCE = Ep∼Dir(α)

[
−

C∑
i=1

yc log pc

]
= ψ(α0)− ψ(αc∗) (19)

Then we have:

LUCE =
KL(Dir(α) ∥ Dir(α̂)) + H(Dir(α))− logB(α̂)

α̂c∗ − 1
(20)

=
KL(Dir(α) ∥ Dir(α̂))

α̂c∗ − 1
+

H(Dir(α))

α̂c∗ − 1
+

logB(α̂)

α̂c∗ − 1
(21)

Considering the loss for a single point, the term ec = αc − 1 represents the number of events that
occurred given the uniform prior, with 1 being the maximum value 0 being the minimum value.
Therefore, for each sample observed, we only have α̂c∗ = ec∗+1 = 2 while α̂c = ec+1 = 1,∀c ̸= c∗,
which corresponds to the only event occurred at ground-truth class c∗. Consequently, the loss function
is given by:

LUCE = KL(Dir(α) ∥ Dir(α̂)) + H(Dir(α))− log(B(α̂)) (22)
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Based on Proposition 1, when we minimize the UCE loss, we are minimizing the KL divergence
between a predicted Dirichlet distribution with a target distribution with ‘one-hot’ evidence, as well as
minimize the entropy of the predicted Dirichlet distribution. This will lead the Dirichlet distribution
to peak at some point and can not spread to denote the true distribution, leading to overfitting.

Proposition 3. Given a random variable p following a Dirichlet distribution Dir(α), then the
expectation of Focal loss has the following analytical form:

LUFCE = Ep∼Dir(α) [−(1− pc∗)
γ log pc∗ ] (23)

=
Γ(α0 − αc∗ + γ)Γ(α0)

Γ(α0 + γ)Γ(α0 − αc∗)
[ψ(α0 + γ)− ψ(αc∗)] (24)

where B(·) denote Beta function and α ∈ [1,+∞)C is the predicted strength parameter and C is
the number of classes.

Proof. Let B(·) denote the Beta function and Beta(·) denote the Beta distribution. Define the
Gamma function as Γ(·), the Digamma function as ψ(·), and the Trigamma function as ψ1(·). Let
y be the ground-truth target one-hot vector and p be the predicted probability distribution over the
simplex ∆. For simplicity, denote c∗ as the index of the ground-truth class and define α0 =

∑
c αc.

The analytical form of Uncertainty Focal Loss can be derived as

LUFCE = Ep∼Dir(α)

[
−

C∑
c=1

yc(1− pc)
γ log pc

]
= −

∫
(1− pc∗)

γ log(pc∗)Dir(p|α)dp

= −
∫
(1− pc∗)

γ log(pc∗)Beta(pc∗ |αc∗ , α0 − αc∗)dpc∗

= − 1

B(αc∗ , α0 − αc∗)

∫
(1− pc∗)

γ log(pc∗)p
αc∗−1
c∗ (1− pc∗)

α0−αc∗−1dpc∗

= − 1

B(αc∗ , α0 − αc∗)

∫ (
d

dαc∗
pαc∗−1
c∗

)
(1− pc∗)

γ(1− pc∗)
α0−αc∗−1dpc∗

= − 1

B(αc∗ , α0 − αc∗)

d

dαc∗

∫ [
(1− pc∗)

γpαc∗−1
c∗ (1− pc∗)

α0−αc∗−1
]
dpc∗

= − 1

B(αc∗ , α0 − αc∗)

d

dαc∗

∫ [
pαc∗−1
c∗ (1− pc∗)

α0−αc∗+γ−1
]
dpc∗

= − 1

B(αc∗ , α0 − αc∗)

d

dαc∗
B(αc∗ , α0 − αc∗ + γ)

= − 1

B(αc∗ , α0 − αc∗)

d

dαc∗

Γ(αc∗)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)

= − 1

B(αc∗ , α0 − αc∗)
B(αc∗ , α0 − αc∗ + γ)

[
ψ(αc∗)− ψ(α0 + γ)

]
=

Γ(αc∗)Γ(α0 − αc∗ + γ)/Γ(α0 + γ)

Γ(αc∗)Γ(α0 − αc∗)/Γ(α0)

[
ψ(α0 + γ)− ψ(αc∗)

]
=

Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)

[
ψ(α0 + γ)− ψ(αc∗)

]
.

(25)

Proposition 4. Given that γ ≥ 1, the UFCE loss has the lower bound involving UCE loss as:

LUFCE ≥ LUCE − γ · Ep∼Dir(α)

[
H(p)

]
. (26)
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Proof. For any γ ≥ 1, by applying Bernoulli’s inequality and Hölder’s inequality, we have the
following relation when having the same predicted α:

LUFCE = Ep∼Dir(α)

[
−

C∑
c=1

(1− pc)
γyc log(pc)

]

≥ Ep∼Dir(α)

[
−

C∑
c=1

(1− γ · pc)yc log(pc)
]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc) +

C∑
c=1

γycpc log(pc)

]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)−
∣∣∣∣ C∑
c=1

γycpc log(pc)

∣∣∣∣]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)− γ

∥∥∥∥y⊤(p ◦ log(p))
∥∥∥∥
1

]

≥ Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)− γ
∥∥y∥∥∞∥∥p ◦ log(p)

∥∥
1

]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)− γ

(
max

j
yj

)∣∣∣∣ C∑
c=1

pc log(pc)

∣∣∣∣]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)− γ

∣∣∣∣ C∑
c=1

pc log(pc)

∣∣∣∣]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)

]
− γ · Ep∼Dir(α)

[
−

C∑
c=1

pc log(pc)

]

= Ep∼Dir(α)

[
−

C∑
c=1

yc log(pc)

]
− γ · Ep∼Dir(α)

[
H(p)

]
= LUCE − γ · Ep∼Dir(α)

[
H(p)

]
,

(27)

where ◦ denotes element-wise product.

Proposition 4 shows that the lower bound of UFCE loss is equivalent to the UCE loss minus the
entropy where γ is a trade-off parameter.

Proposition 5. For uncertainty focal loss LUFCE , the partial derivative with respect to the ground
truth class c∗ has the form:

∂

∂αc∗
LUFCE =

Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)

{[
ψ(α0)− ψ(α0 + γ)

]
·
[
ψ(α0 + γ)− ψ(αc∗)

]
(28)

+

[
ψ1(α0 + γ)− ψ1(αc∗)

]}
. (29)
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Proof. for UFCE loss, the gradient is

∂

∂αc∗
LUFCE =

∂

∂αc∗

[
Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)
· [ψ(α0 + γ)− ψ(αc∗)]

]
=

[
∂

∂αc∗

B(α0, γ)

B(α0 − αc∗ , γ)

]
· [ψ(α0 + γ)− ψ(αc∗)]

+
B(α0, γ)

B(α0 − αc∗ , γ)
· ∂

∂αc∗

[
ψ(α0 + γ)− ψ(αc∗)

]
=

[
B(α0, γ)

B(α0 − αc∗ , γ)

]
· [ψ(α0)− ψ(α0 + γ)] · [ψ(α0 + γ)− ψ(αc∗)]

+
B(α0, γ)

B(α0 − αc∗ , γ)
·
[
ψ1(α0 + γ)− ψ1(αc∗)

]
=

Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)

{[
ψ(α0)− ψ(α0 + γ)

]
·
[
ψ(α0 + γ)− ψ(αc∗)

]
+

[
ψ1(α0 + γ)− ψ1(αc∗)

]}
.

(30)

In the following proposition, we consider the influence of gradients on the prediction of αc∗ . Let
wc∗ denote the vector of weight parameters in the last linear layer that influences the prediction of
the true-class evidence c∗. Let s denote the logits and z be the input to the last linear layer. The
prediction of αc∗ has the following form:

c∗ = σReLU

(
wT

c∗

[
z
1

])
,

where the last weight in wc∗ is related to the intercept.

Proposition 2. Comparing LUFCE and LUCE with numerical analysis on the gradient of the parame-
ters wc∗ in the last linear layer, we have,∥∥∥∥∂LUFCE

∂wc∗

∥∥∥∥−
∥∥∥∥∂LUCE

∂wc∗

∥∥∥∥{≥ 0 if p̄c∗ ≤ τ1(αc∗ , γ)

< 0 if p̄c∗ > τ2(αc∗ , γ)
,

where τ1(αc∗ , γ) and τ2(αc∗ , γ) are two thresholds within ( 1
α0
, 1− 1

α0
). respectively.

Proof. Define wc∗ as the model parameter of the last linear layer. Using the chain rule, we can easily
derive the gradient for the last linear layer’s parameter:

∂LUFCE

∂wc∗
=

(
∂s

∂wc∗

)(
∂αc

∂s

)(
∂LUFCE

∂αc∗

)
,

∂LUCE

∂wc∗
=

(
∂s

∂wc∗

)(
∂αc

∂s

)(
∂LUCE

∂αc∗

)
.

(31)

This establishes a connection between the gradient of the last layer’s weight and the gradient of the
loss functions with respect to αc∗ . Thus,

∥∥∥∂LUFCE

∂αc

∥∥∥−
∥∥∥∂LUCE

∂αc

∥∥∥ implies
∥∥∥∂LUFCE

∂wc∗

∥∥∥−
∥∥∥∂LUCE

∂wc∗

∥∥∥.

The uncertainty cross entropy loss is given by:

LUCE = Ep∼Dir(α)

[
−

C∑
c=1

yc log pc

]
=

C∑
c=1

yc [ψ(α0)− ψ(αc)] = ψ(α0)− ψ(αc∗) (32)

Its gradient is given by the difference of trigamma functions:

∂LUCE

∂αc∗
= ψ1(α0)− ψ1(αc∗). (33)
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According to Proposition 5, we have:

∂LUFCE

∂αc∗
=

Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)
{[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(αc∗)] + [ψ1(α0 + γ)− ψ1(αc∗)]} .

The difference between the l1-norm of gradients is:∣∣∣∣∂LUFCE

∂α0

∣∣∣∣− ∣∣∣∣∂LUCE

∂α0

∣∣∣∣ = −Γ(α0)Γ(α0 − αc∗ + γ)

Γ(α0 + γ)Γ(α0 − αc∗)

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(αc∗)] +

[ψ1(α0 + γ)− ψ1(αc∗)]
}
+ (ψ1(α0)− ψ1(αc∗)) , (34)

where ∂LUFCE

∂α0
and ∂LUCE

∂α0
can be shown to be negative for all α0 > 2, αc∗ > 1, and γ ∈ [0, 5].

Let p̄c∗ = αc∗
α0

and αc∗ = p̄c∗α0. We now analyze the relation between the difference and the
projected class probability term p̄c∗ . Rewriting the difference based on p̄c∗ , we denote the resulting
form as f(p̄c∗ , α0, γ):

f(p̄c∗ , α0, γ) = −Γ(α0)Γ(α0 − p̄c∗α0 + γ)

Γ(α0 + γ)Γ(α0 − p̄c∗α0)

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(p̄c∗α0)] +

[ψ1(α0 + γ)− ψ1(p̄c∗α0)]
}
+ (ψ1(α0)− ψ1(p̄c∗α0)) .

Next, we derive the gradient of this difference function with respect to p̄c∗ . Let:

A(p̄c∗) =
Γ(α0)Γ(α0 − p̄c∗α0 + γ)

Γ(α0 + γ)Γ(α0 − p̄c∗α0)
,

B(p̄c∗) = [ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(p̄c∗α0)] + [ψ1(α0 + γ)− ψ1(p̄c∗α0)] .

Then,
f(p̄c∗ ;α0, γ) = −A(p̄c∗)B(p̄c∗) + (ψ1(α0)− ψ1(p̄c∗α0)) .

First, we find ∂A(p̄c∗ )
∂p̄c∗

. Recall that the derivative of the Gamma function with respect to its argument
is: d

dzΓ(z) = Γ(z)ψ(z). Using the product rule and the chain rule:

∂A(p̄c∗)

∂p̄c∗
=

Γ(α0)

Γ(α0 + γ)

[
d

dp̄c∗

(
Γ(α0 − p̄c∗α0 + γ)

Γ(α0 − p̄c∗α0)

)]
=

Γ(α0)

Γ(α0 + γ)

[
d

dp̄c∗

Γ(α0 − p̄c∗α0 + γ) [−α0ψ(α0 − p̄c∗α0 + γ) + α0ψ(α0 − p̄c∗α0)]

Γ(α0 − p̄c∗α0)

]
=

Γ(α0 − p̄c∗α0 + γ)

Γ(α0 − p̄c∗α0)
[−α0ψ(α0 − p̄c∗α0 + γ) + α0ψ(α0 − p̄c∗α0)]

= A(p̄c∗) [−α0ψ(α0 − p̄c∗α0 + γ) + α0ψ(α0 − p̄c∗α0)] .
(35)

Next, we find ∂B(p)
∂p̄c∗

:

∂B(p̄c∗)

∂p̄c∗
= [ψ(α0)− ψ(α0 + γ)] [−α0ψ1(p̄c∗α0)] + [−α0ψ2(p̄c∗α0)] . (36)

Then, we find the total derivative of f(p̄c∗ ;α0, γ):
∂f(p̄c∗ ;α0, γ)

∂p̄c∗
= −∂A(p̄c

∗)

∂p̄c∗
B(p̄c∗)−A(p̄c∗)

∂B(p̄c∗)

∂p̄c∗
+ (−α0ψ2(p̄c∗α0))

= −A(p̄c∗) [−α0ψ(α0 − p̄c∗α0 + γ) + α0ψ(α0 − p̄c∗α0)]B(p̄c∗)

−A(p̄c∗) [[ψ(α0)− ψ(α0 + γ)] [−α0ψ1(p̄c∗α0)] + [−α0ψ2(p̄c∗α0)]]

− α0ψ2(p̄c∗α0)

= A(p̄c∗)α0 [ψ(α0 − p̄c∗α0 + γ)− ψ(α0 − p̄c∗α0)]B(p̄c∗)

−A(p̄c∗)α0 [[ψ(α0)− ψ(α0 + γ)]ψ1(p̄c∗α0) + ψ2(p̄c∗α0)]− α0ψ2(p̄c∗α0).
(37)
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Noting that this derivative involves polynomial terms of polygamma functions, which are differen-
tiable on (0,+∞), this verifies f(·) is also differentiable on (0,+∞). Given that α0 ≥ αc∗ + 1 and
αc∗ ≥ 1, the feature range of p̄c∗ is

(
1
α0
, 1− 1

α0

)
, f(·) remains differentiable in this interval. We

demonstrate that ∂f(p̄c∗ ;α0,γ)
∂p̄c∗

is positive and negative at the bounding points of this range, respectively.
According to the intermediate-value theorem, there exists at least one configuration of p̄c∗ in this
range such that ∂f(p̄c∗ ;α0,γ)

∂p̄c∗
= 0. Therefore, there exist two thresholds τ1(αc∗ , γ) and τ2(αc∗ , γ)

within
(

1
α0
, 1− 1

α0

)
, such that

∣∣∣∂LUFCE

∂αc∗

∣∣∣ > ∣∣∣∂LUCE

∂αc∗

∣∣∣ when p̄c∗ < τ1(αc∗ , γ), and
∣∣∣∂LUFCE

∂αc∗

∣∣∣ < ∣∣∣∂LUCE

∂αc∗

∣∣∣
when p̄c∗ > τ2(αc∗ , γ).

First, substitute p̄c∗ = 1
α0

:

f

(
1

α0
;α0, γ

)
= −Γ(α0)Γ(α0 − 1 + γ)

Γ(α0 + γ)Γ(α0 − 1)

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(1)]

+ [ψ1(α0 + γ)− ψ1(1)]
}
+ (ψ1(α0)− ψ1(1)) .

(38)

Using the properties of the Gamma function, Γ(α0 − 1) = Γ(α0)
α0−1 and ψ(1) = −γE and ψ1(1) =

π2

6

, where γE is the Euler-Mascheroni constant, the expression simplifies to:

f

(
1

α0
;α0, γ

)
= − α0 − 1

α0 + γ − 1

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(1)]

+ [ψ1(α0 + γ)− ψ1(1)]
}
+ (ψ1(α0)− ψ1(1))

= − α0 − 1

α0 + γ − 1

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ) + γE ]

+

[
ψ1(α0 + γ)− π2

6

]}
+

(
ψ1(α0)−

π2

6

)
.

(39)

It is evident from numerical analysis that f
(

1
α0

;α0, γ
)
> 0 for all γ ∈ [0, 5] and α0 > 2.

Substituting p̄c∗ = 1− 1
α0

, we have

f

(
1− 1

α0
;α0, γ

)
= −Γ(α0)Γ(1 + γ)

Γ(α0 + γ)Γ(1)

{
[ψ(α0)− ψ(α0 + γ)] [ψ(α0 + γ)− ψ(α0 − 1)]

+ [ψ1(α0 + γ)− ψ1(α0 − 1)]
}
+ (ψ1(α0)− ψ1(α0 − 1)) .

(40)

It is evident from numerical analysis that f
(
1− 1

α0
;α0, γ

)
< 0 for all γ ∈ [0, 5] and α0 > 2.

A.2 RELATED WORK

A.2.1 VISION-BASED BIRD’S EYE VIEW SEMANTIC SEGMENTATION

Bird’s-eye view (BEV) serves as an effective representation for fusing information from multiple
cameras, making it a central component in autonomous driving systems. However, transforming
camera images into BEV maps presents significant challenges, primarily due to the complexity of
depth estimation and 3D geometric transformations. The key component of BEVSS is the 2D-to-3D
lifting strategy, which employs techniques such as depth-weighted splitting (Philion & Fidler, 2020;
Hu et al., 2021), attention mechanisms (Zhou & Krähenbühl, 2022), and bilinear sampling (Harley
et al., 2023).

In this paper, we use three representative methods, Lift splat shoot (LSS) (Philion & Fidler, 2020),
Cross-View Transformer (CVT) (Zhou & Krähenbühl, 2022), and Simple-BEV (Harley et al., 2023).
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Figure 2: Numerical analysis of
∥∥∥∂LUfce

∂wc∗

∥∥∥−
∥∥∥ ∂LUce

∂wc∗

∥∥∥ for different composition of αc∗ and γ
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Figure 3: Implicit weight regularization impact by UFCE with αc∗ = 10

LSS leverages raw pixel inputs from multiple surrounding cameras and “lifts” each image individually
into a frustum of features. Initially, it predicts a categorical distribution over a predefined set of
possible depths. Subsequently, the frustum of features is generated by multiplying the features with
their predicted depth probability. By utilizing known camera calibration matrices for each camera, a
point cloud of features in the ego coordinate space can be obtained. LSS then “splats” all the frustums
into a rasterized bird’s-eye-view grid using a PointPillar (Lang et al., 2018) model. These splatted
features are then fed into a decoder module to predict BEVSS. The concept of transforming from
camera pixels to 3D point clouds and subsequently to BEV pixels has inspired several subsequent
models, such as BEVDet (Huang et al., 2021) and FIERY (Hu et al., 2021).

CVT takes a distinct approach by leveraging transformer architecture and cross-attention mechanism.
CVT begins by extracting features from multiple surrounding camera images using a pre-trained
EfficientNet-B4(Tan & Le, 2019) model. These extracted features serve as the attention values in the
subsequent cross-attention step. To create the attention keys, the features are concatenated with the
camera-aware positional embedding. This positional embedding is constructed using known camera
pose and intrinsic information, enabling the model to account for the specific characteristics of each
camera. The positional encoding of the BEV space serves as the queries during the cross attention
process.

Simple-BEV simplifies the process of generating BEV representations by avoiding the use of
estimated depth maps. Instead, it defines a 3D coordinate volume over the BEV plane and projects
each coordinate into the corresponding camera images. Image features are then sampled from the
surrounding regions of the projected locations. While the resulting features are not precisely aligned
in the BEV space and are distributed across potential locations, this approach significantly enhances
efficiency and robustness to projection errors. PointBEV (Chambon et al., 2024) further improves the
’feature pulling’ strategy with the sparse representations.

A.2.2 UNCERTAINTY QUANTIFICATION ON BIRD’S EYE VIEW SEMANTIC SEGMENTATION

To the best of our knowledge, there is no pioneer work on the uncertainty quantification on the
BEVSS task. We introduce the most relative literature in the section.

Uncertainty quantification on input-dependent data: The uncertainty quantification methods used
in this work are primarily designed for input-independent data, such as images for classification.
However, developing uncertainty quantification techniques tailored for input-dependent data remains
underexplored but necessary. Zhao et al. (2020) applied evidential deep learning to node-level graph
tasks, while Hart et al. (2023); Stadler et al. (2021) incorporated graph topology relationships. He et al.
(2023) explored uncertainty in text classification through conservative learning, and He et al. (2024)
investigated evidential deep learning for sequential data. We consider this an important direction for
future research.
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Uncertainty quantification in camera view’s semantic segmentation. Uncertainty quantification
in pixel-level camera semantic segmentation is the most relevant research task. Similarly, uncertainty
in this task also arises from two primary sources: aleatoric uncertainty, which reflects inherent
ambiguity in the data (e.g., sensor noise or occlusions), and epistemic uncertainty, which represents
the model’s lack of knowledge due to limited or biased training data. Mukhoti & Gal (2018) evaluated
Bayesian deep learning methods, including MC Dropout and Concrete Dropout, applied to semantic
segmentation and introduced new patch-based evaluation metrics. However, these metrics focused
on the relationship between accuracy and uncertainty, limited to aleatoric uncertainty. In addition,
Bayesian-based approaches require multiple forward passes, making it impractical for real-time
applications such as autonomous driving. Mukhoti et al. (2021) proposed single-pass uncertainty
estimation by extending deep deterministic uncertainty to semantic segmentation tasks. They used
Gaussian Discriminant Analysis (GDA) to model feature space means and covariance matrices per
class, enabling the quantification of epistemic uncertainty through feature densities, while aleatoric
uncertainty was estimated via the softmax distribution. However, this work did not provide a
comprehensive quantitative evaluation of the quality of the estimated epistemic uncertainty. Ancha
et al. (2024) advanced uncertainty estimation with a model based on the evidential deep learning
framework. Their approach is built on a natural posterior network that estimates a pixel-level Dirichlet
distribution with a density estimator based on a GMM-enhanced normalizing flow and linear classifier.
To mitigate feature collapsing issues, they introduced a decoder that reconstructs image patches from
pixel-level latent features. The proposed model is evaluated from both calibration view and OOD
detection-like tasks. However, the heavy modification on the network architecture makes it hard to
apply to the BEVSS task. Yu et al. (2024) constructed a graph over image pixels and incorporated
graph topology into uncertainty estimation. However, this method relies on high-dimensional pixel
features from hyperspectral images, making it unsuitable for RGB images.

Fusing camera view uncertainties to BEV space: Challenges and Opportunities. Uncertainty
quantification in BEV semantic segmentation (BEVSS) lacks established literature, and extending
methods from the camera space to BEV is non-trivial. To illustrate this challenge, we conducted
a simple experiment. Using the CARLA dataset, we trained an Evidential Neural Network (ENN)
model based on DeepLabV3 to quantify pixel-level uncertainty in camera images. The predicted
uncertainty was then mapped from the camera space to the BEV space using a ground truth mapping
function, with animals included as the OOD category. Experimental results showed an average AUPR
of 47% in the camera space, but only 7% in the BEV space.

This discrepancy arises possibly because the predicted OOD regions are often larger than the actual
objects. When mapped to BEV, these over-predicted regions expand further due to perspective distor-
tion. Conversely, correctly predicted regions are restricted to the visible parts of the object, resulting
in significant inaccuracies and poor performance in BEV. Finally, we highlight that incorporating
camera-view uncertainties can enhance the quality of uncertainty quantification in BEV, offering a
promising direction for future research.

Robutness in bird’s eye view semantic segmentation. OOD robustness in BEV semantic segmen-
tation focuses on maintaining model performance under novel and unexpected conditions, such as
varying weather, lighting changes, or sensor malfunctions. RoboBEV Xie et al. (2024) provides
an extensive benchmark for evaluating the robustness of BEV perception models in autonomous
driving, testing their performance under various natural corruptions. For instance, they demonstrate
significant performance drops in segmentation tasks when evaluating the CVT model trained on clean
datasets against corrupted datasets.

We further clarify the distinction between OOD robustness and OOD detection within our exper-
imental context. OOD robustness (or generalization) aims to ensure that models maintain high
performance on OOD samples with domain shifts. In contrast, OOD detection emphasizes model
reliability by identifying samples with semantic shifts—cases where the model cannot or should
not generalize. Importantly, these concepts can be complementary: an uncertainty-aware model
should also be robust to domain shifts, meaning it must maintain effective OOD detection even under
conditions of domain shift.

Calibration in bird’s eye view semantic segmentation. There indeed several works focus primarily
on calibration while neglecting challenges such as out-of-distribution data and dataset shifts, which
require epistemic uncertainty estimation. Kängsepp & Kull (2022) focus on overconfident probability
estimates in semantic segmentation issue by applying isotonic regression for pixel-wise calibration
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and beta calibration for object-wise calibration. This method improves confidence reliability but does
not explicitly address epistemic uncertainty. MapPrior (Zhu et al., 2023) integrates a generative prior
with traditional discriminative BEV models to enhance BEV semantic segmentation performance
while focusing on calibration, particularly aleatoric uncertainty. It combines an initial noisy BEV
layout estimate from a predictive model with a generative refinement stage that samples diverse
outputs from a transformer-based latent space. However, MapPrior’s approach is limited to aleatoric
uncertainty and relies on an additional model architecture, making it less adaptable to other BEV
semantic segmentation models.

Uncertainty quantification on downstream tasks. Several works have explored uncertainty in
downstream tasks that use bird’s-eye view (BEV) maps as intermediate representations. However,
these work are also limited to calibration. UAP (Dewangan et al., 2023) targets motion planning
and trajectory optimization by building an uncertainty-aware occupancy grid map. It estimates
collision probabilities based on sampled distances to nearby occupied cells and optimizes trajectories
using a sampling-based approach, incorporating uncertainty into the planning process. Fervers et al.
(2023) focus on metric cross-view geolocalization (CVGL), which aims to localize ground-based
vehicles relative to aerial map images. Their approach matches BEV representations to aerial images
by predicting soft probability distributions over possible vehicle poses. The uncertainty derived
from these probability distributions is integrated into a Kalman filter, improving the accuracy and
robustness of trajectory tracking over time.

A.2.3 UNCERTAINTY QUANTIFICATION BASELINES

Softmax-based (Hendrycks & Gimpel, 2016) Softmax entropy is one of the most commonly used
metrics for uncertainty (Hendrycks & Gimpel, 2016). It is the entropy (H(p(Yi,j |X;θ))) of softmax
distribution p(Yi,j |X;θ).

H(p(Yi,j |X;θ)) =
∑C

c=1
pc,i,j log pc,i,j . (41)

This metric is known to capture aleatoric uncertainty, but can not capture epistemic uncertainty
reliably.

Energy-based (Liu et al., 2020) The energy-based model is designed to distinguish OOD data from
ID data. Energy scores, which are theoretically aligned with the input’s probability density, exhibit
reduced susceptibility to overconfidence issues and can be considered as epistemic uncertainty. As
a post-hoc method applied to predicted logits, energy scores can be flexibly utilized as a scoring
function for any pre-trained neural classifier.

uepisi,j = uenergyi,j = −T · log
C∑

c=1

explc,i,j /T (42)

where lc,i,j represents the predicted logits for pixel (i, j) associated with class c, where logits
are defined as the output of the final layer prior to the softmax activation function in a standard
classification model, i.e. L = f(X;θ). T is the temperature scaling. The energy score will be
employed to quantify epistemic uncertainty. There is no aleatoric uncertainty explicitly defined for
energy-based models, so we use the softmax confidence score to measure aleatoric uncertainty.

ualeai,j = uconfi,j = −maxcpc,i,j (43)

Ensembles-based (Lakshminarayanan et al., 2017). Deep Ensembles-based method learn M
different versions of network weights {θ(1), · · · ,θ(M)} and aggregates the predictions of these
versions. The aleatoric uncertainty is measured by the softmax entropy of the mean of the predictions
from different network weights. The epistemic uncertainty is measured by the variance between the
model predictions.

ualeai,j =
∑C

c=1

(
1

M

∑M

m=1
p
(m)
c,i,j

)
log

(
1

M

∑M

m=1
p
(m)
c,i,j

)
uepisi,j = var({p(m)

ĉ,i,j}
M
m=1), ĉ = argmax

(
1

M

∑M

m=1
p
(m)
i,j

) (44)
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where p(m)
i,j ∈ [0, 1]C refers to the predictions of BEV network based on the network weights θ(m).

We use M = 3 for experiments.

Dropout-based (Gal & Ghahramani, 2016). Dropout-based methods approximate Bayesian
inference based on activated dropout layers. It conducts multiple stochastic forward passes with
active dropout layers at test time. Similar to Deep ensembles, the entropy of expected softmax
probability and variance of multiple predictions are used as aleatoric and epistemic uncertainty scores,
respectively. We use M = 10 for experiments.

Energy-bounded Learning (EB). For a fair comparison, we also include OOD-exposure for an
energy-based model. With the same strategy as Liu et al. (2020), we consider energy-bounded
learning for OOD detection. This approach entails fine-tuning the neural network by assigning lower
energy levels to ID data and higher energy levels to OOD data. Specifically, the classification model
is trained using the following objective function:

LCeEb = E(X,y)∼Dtrain
in

H(p,y) + η · LEb (45)

where p is the predicted class probabilities and LEb is the regularization loss defined in terms of
energy:

LEb = E(Xin,y)∼Dtrain
in

(
max

(
0 , uenergyXin

−min

))2
(46)

= E(Xout,y)∼Dtrain
out

(
max

(
0 , mout − uenergyXout

))2
(47)

where the min,mout are two bounded hyperparamters. Details can be found in Liu et al. (2020). We
can also replace cross entropy loss with focal loss for better calibration:

LFceEb = E(X,y)∼Dtrain
in

Focal(p,y) + η · LEb (48)

where Focal(p,y) = −
∑C

c=1 yc(1− pc)
γ log pc.

A.3 IMPLEMENTATION DETAILS

For the model training, we will use equation 49 for the original ENN model optimized by Bayesian
loss and equation 50 for our proposed UFCE-based models.

LUCE-ENT-ER = LUCE-ENT + λLER (49)

LUFCE-ER = LUFCE + λLER (50)

It is important to highlight that LER and LENT represent distinct concepts within our framework. LER,
identified as a target loss, assumes that the level-2 ground truth for pseudo OOD samples corresponds
to a flat Dirichlet distribution, reflecting the actual discrepancy between predictions and ground
truth. Conversely, LENT is characterized as a surrogate loss, fulfilling an auxiliary role. Through
the employment of the ENT regularizer, the model is implicitly encouraged to predict a smoother
distribution for all training samples.

A.3.1 HYPERPARAMETERS

Fixed hyperparamters: We set the weight of the entropy regularization term in the UCE loss
(β in Equation 5) to 0.001. The energy-bounded regularization weight in the energy model (η in
Equations 46 and 48) is set to 0.0001. For all models where “vehicle” is considered the positive class,
we assign a positive class weight of 2. In scenarios where “drivable region” is a positive class, the
class weight is set to 1. We employ learning rates of 4× 10−3 for focal loss variants and 1× 10−3

for cross-entropy variants, using the Adam optimizer with a weight decay of 1× 10−7. The batch
size is set to 32 across all experimental scenarios.

Hyperparameters tuning strategy: We tune three regularization weights related to our proposed
model: λ, ξ, and γ. Due to computational constraints, we did not perform a full grid search over these
hyperparameters. Instead, we conducted a step-by-step search based on the pseudo-OOD detection
task, specifically optimizing for the AUPR metric evaluated on the validation set. First, we performed
a coarse grid search over λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1} with ξ = 0 and γ = 0, finding that
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λ = 0.01 generally provided good performance across most scenarios. Next, with λ fixed at 0.01,
we tuned ξ ∈ {8, 16, 32, 64, 128} with γ = 0, and selected ξ = 64 for the remaining experiments.
Finally, we fine-tuned γ ∈ {0.05, 0.5, 1.5} while keeping λ = 0.01 and ξ = 64 fixed. The detailed
hyperparameters used in our reported results are listed in Table 6.

Table 6: Hyperparameter Settings for Different Datasets and Methods

Dataset Method γ λ ξ

CARLA
LSS 0.5 0.01 64
CVT 0.05 0.01 64
Simple-BEV 0.05 0.01 64

nuScenes
LSS 1 0.01 64
CVT 0.05 0.01 64
Simple-BEV 0.05 0.01 64

Lyft
LSS 1 0.01 64
CVT 0.05 0.01 64
Simple-BEV 0.05 0.01 64

Hyperparameters Sensitivity Analysis: To evaluate the robustness of our model with respect to its
hyperparameters, we conducted a comprehensive sensitivity analysis on the nuScenes dataset with
vehicle segmentation task using the LSS model as the backbone.

We first analyze the impact of the hyperparameter λ on model performance, with results presented
in Table 7. Intuitively, a larger λ corresponds to a higher pseudo-OOD regularization weight,
encouraging the model to predict a uniform Dirichlet distribution for pseudo-OOD pixels. However,
this may also negatively affect the original task performance. Experimentally, we observe that
larger λ values lead to a decline in pure segmentation and calibration performance. Due to the
observed significant variations in segmentation metrics and misclassification results are closely tied
to segmentation performance, we ignore the misclassification detection performance here. For OOD
detection, we emphasize the AUPR metric as a key indicator. With increasing λ, we initially observe
an improvement in AUPR (accompanied by higher AUROC and lower FPR95), followed by a decline
as λ becomes too large. This indicates that while moderate pseudo-OOD regularization enhances
OOD detection, overly strong regularization can degrade overall performance.

Table 7: Hyperpameter sensitivity analysis for varying λ. We conduct the vehicle segmentation with
LSS as the backbone on nuScenes with ξ = 64, γ = 0.5.

λ Pure Classification Misclassification OOD Detection

IoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

0.001 0.361 0.00335 0.895 0.320 0.192 0.801 0.224 0.410
0.005 0.357 0.00327 0.890 0.318 0.199 0.833 0.225 0.340
0.01 0.343 0.00035 0.925 0.324 0.191 0.743 0.165 0.383
0.05 0.304 0.01090 0.936 0.300 0.233 0.840 0.115 0.276
0.1 0.259 0.01740 0.919 0.276 0.288 0.860 0.0537 0.230

We then analyze the impact of the hyperparameter γ on model performance, with results presented in
Table 8. We observe that varying γ does not significantly affect segmentation performance. However,
selecting an appropriate value for γ leads to better calibration performance, as evidenced by the lower
Expected Calibration Error (ECE) score, and improved aleatoric uncertainty prediction, indicated by
better misclassification detection performance. This demonstrates that the UFCE loss can enhance
both calibration and misclassification detection performance. Besides, we observe that OOD detection
performance is quite sensitive to the selection of γ.

Finally, we investigate the effect of hyperparameter ξ on model performance, with results presented
in Table 9. First, We observe that increasing ξ led to a slightly higher IoU), indicating improved
segmentation accuracy (then we omit the misclassification detection performance considering the
correlation between these two tasks). We noted that higher values of ξ resulted in increased AUROC
on OOD detection performance in general.
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Table 8: Hyperpameter sensitivity analysis for varying γ. We conduct the vehicle segmentation with
LSS as the backbone on nuScenes with ξ = 0, λ = 0.1.

γ Pure Classification Misclassification OOD Detection

IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

0.05 0.349 0.00378 0.913 0.321 0.195 0.876 0.184 0.278
0.5 0.348 0.00166 0.901 0.328 0.187 0.774 0.341 0.358
1.5 0.349 0.01170 0.924 0.331 0.183 0.634 0.334 0.473

Table 9: Hyperpameter sensitivity analysis for varying ξ. We conduct the vehicle segmentation with
LSS as the backbone on nuScenes with γ = 0.5, λ = 0.01.

ξ Pure Classification Misclassification OOD Detection

IoU ↑ ECE ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

0 0.348 0.00166 0.901 0.328 0.187 0.774 0.341 0.358
8 0.349 0.00079 0.913 0.327 0.186 0.785 0.273 0.348
16 0.351 0.00089 0.910 0.321 0.186 0.747 0.328 0.390
32 0.350 0.00154 0.900 0.324 0.192 0.822 0.321 0.315
64 0.351 0.00133 0.904 0.321 0.187 0.797 0.315 0.364
128 0.353 0.00137 0.893 0.321 0.192 0.818 0.334 0.355

A.4 DATASET DETAILS

Datasets. We consider both synthetic and real-world datasets for our experiments and details are
presented in Table 10. For synthetic data, we utilize the widely recognized CARLA simulator (Doso-
vitskiy et al., 2017) to collect our dataset, which will be made available upon request due to its large
size. Our simulated CARLA dataset features five towns with varied layouts and diverse weather
conditions to enhance dataset diversity. In terms of real-world data, we employ the nuScenes (Caesar
et al., 2020) and Lyft (Kesten et al., 2019) dataset, which is also used in the evaluation of the two
segmentation backbones used in our paper: LSS and CVT, as well as an updated leaderboard. We
choose not to use the KITTI (Behley et al., 2019) dataset for several reasons. KITTY primarily
features suburban streets with low traffic density and simpler traffic scenarios, with annotations
limited to the front camera view instead of a full 360-degree perspective. It also lacks radar data and
is designated for non-commercial use only. In contrast, nuScenes aims to enhance these features by
providing dense data from both urban and suburban environments in Singapore and Boston.

Below, we provide detailed descriptions of each dataset: (1) nuScenes. This dataset comprises of
35661 samples. It offers a 360° view around the ego-vehicle through six camera perspectives, with
each view providing both intrinsic and extrinsic details. We resize the camera images to 224x480
pixels, and produce Bird’s-Eye-View (BEV) labels of 200x200 pixels for analysis. (2) Lyft. This
dataset comprises of 22,888 samples. It offers a 360° view around the ego-vehicle through multiple
camera perspectives, providing both intrinsic and extrinsic details for each view. We resize the camera
images to 224x480 pixels and generate Bird’s-Eye-View (BEV) labels at a resolution of 200x200
pixels for analysis. (3) CARLA. In this simulated environment, six cameras are installed at 60-degree
intervals around the ego vehicle, emulating the setup found in nuScenes. The simulation includes
various weather conditions (e.g., Clear Noon, Cloudy Noon, Wet Noon) and urban layouts (e.g.,
Town10, Town03) to enrich the dataset’s diversity. For each camera, we capture and record intrinsic
and extrinsic information. The dataset consists of 224x480 pixel camera images and 200x200 pixel
BEV labels, similar to nuScenes. In total, 40,000 frames are collected for training, with an additional
10,000 frames designated for validation.

True OOD and pseudo OOD setting. We evaluate the quality of the predicted epistemic uncertainty
through an out-of-distribution (OOD) detection task. In-Distribution (ID) pixels are those that belong
to the segmentation task with clear labels, such as “vehicle” and “background”. True-OOD pixels
represent a semantic shift from the training data; they only appear in the test dataset and were not
seen during training. The OOD detection performance reported in this paper identifies pixels as either
ID or true OOD. Pseudo-OOD pixels are artificially designated as OOD during training to regularize
the model, helping it learn to distinguish between ID and OOD pixels. These pseudo OOD pixels
exist in the training and validation sets, and hyperparameter tuning is based on the pseudo-OOD
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Table 10: Dataset details with diversity descriptions.

Dataset Camera Space BEV Space Diversity Description
Cameras Positions Resolution FOV Scale Resolution

CARLA 6 60-degree intervals
around the ego

vehicle

224 ×
480

90 100 m ×
100 m around

vehicle

200 ×
200

Diverse scenes over 10 weather
conditions (e.g., Clear Noon,
Cloudy Noon, Wet Noon) and
5 urban layouts (e.g., Town10,
Town03)

nuScenes 6 Front, Front-Left,
Front-Right,
Back-Left,

Back-Right, Back

224 ×
480

70,110 100 m ×
100 m around
vehicle, 50 cm

resolution

200 ×
200

1,000 diverse scenes collected
over various weather, time of
day, and traffic conditions

Lyft Level 5 6 Front, Front-Left,
Front-Right,
Side-Left,

Side-Right, Back

224 ×
480

82 150 m ×
150 m around

vehicle

Variable Diverse urban driving scenes
with varying traffic densities
and environments in Palo Alto,
California

detection performance on the validation set. The detailed setting we used in this paper is presented in
Table 11.

Criteria used to select the pseudo-OOD data. We initially adhered to the criteria outlined in the
benchmark study by Franchi et al. (2022), a seminal work in the field of autonomous driving, to
identify candidate OOD classes. In this context, OOD data typically encompasses less frequently
encountered dynamic objects (e.g., motorcycles, bicycles, bears, horses, cows, elephants) and static
objects (e.g., food stands, barriers) that are distinct from primary segmentation categories like
vehicles, road regions, and pedestrians. These objects were designated as candidate OOD classes.
Subsequently, in our experiments, we randomly partitioned these candidate classes into pseudo-OOD
and true OOD categories.

It is worth noting that the OOD benchmark dataset MUAD (https://muad-dataset.github.io/) provided
by Franchi et al. (2022) was collected using a simulator based on front-camera imagery for image
segmentation. However, it does not include a collection of images from multiple cameras or labels
for BEV segmentation. To address this, we adopted a similar procedure and generated a BEV
segmentation dataset with OOD objects using the well-established CARLA simulator.

Table 11: Dataset configurations for different settings.

Dataset Setting 1 (Default) Setting 2 Setting 3

ID Pseudo-OOD True-
OOD

ID Pseudo-OOD True-
OOD

ID Pseudo-
OOD

True-
OOD

CARLA vehicle bears, horses,
cows,

elephants

deer vehicle bears, horses, cows,
elephants

kangaroo n.a. n.a. n.a.

nuScenes vehicle bicycle motorcycle vehicle traffic cones,
pushable/pullable

objects, motorcycles

barriers drivable
region

bicycle motorcycle

Lyft vehicle bicycle motorcycle n.a. n.a. n.a. n.a. n.a. n.a.

Splits for evaluation. (1) nuScenes: Considering that only public training and validation sets are
available, we report results on the validation set, following standard practice in the literature. Notably,
we remove all frames that contain true OOD pixels from both the training and validation sets used for
training and evaluation, respectively. For models that are not exposed to pseudo-OOD pixels during
training, we also remove frames containing pseudo-OOD objects from the training set. (2) Lyft. We
use the same split strategy as nuScenes. (3) CARLA. To introduce pseudo and true OOD objects
into our synthetically generated dataset, we employ 3D models of specific objects, integrating these
models into the CARLA simulator scenes to generate custom objects. We first gather clean datasets
for training, validation, and testing separately, where each frame exclusively contains in-distribution
objects. Then, we gather separate train-pseudo and val-pseudo datasets, incorporating pseudo-OOD
objects into each scene. Finally, we collect a dataset featuring true OOD objects, specifically deer.

In Table 12, we provide the number of frames and OOD pixel ratio for splitter datasets.
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Table 12: Dataset split information

Dataset train train-aug val val-aug test

No.
frames

No.
frames

Pseudo-
OOD
ratio

No.
frames

No.
frames

Pseudo-
OOD
ratio

No.
frames

True-
OOD
ratio

CARLA 40,000 80,000 0.11% 40,000 80,000 0.14% 2,000 0.07%
nuScenes 19,208 23,831 0.017% 3,878 5,082 0.012% 1,204 0.02%
Lyft 11,487 16,184 0.18% 4,431 6,094 0.016% 113 0.009%

Dataset split principle: “train” and “val” datasets only contain ID pixels, “train-aug” and “val-aug” contain the ID and pseudo-OOD pixels,
and “test” set contains both ID and true OOD pixels. For models without pseudo-OOD exposure during training, we use the “train” and “val”
datasets. For models with pseudo-OOD exposure, we utilize the “train-aug” and “val-aug” datasets. All models are evaluated on the “test”
dataset. When calculating pure segmentation and misclassification performance, we mask out the OOD pixels to focus solely on the ID
pixels.

CARLA Data generation process We first introduce key concepts for dataset generation. These are
listed from the bottom up in terms of scale to make everything easy to understand. Then we introduce
the main control loop.

• Tick: A tick is a single unit of simulation in the simulator. Every tick, the position of
vehicles, states of sensors, weather conditions, and traffic lights are updated. A tick is the
smallest denomination that we use.

• Frame: A frame is a single sample of data. Each frame consists of 6 RGB images and a
single BEV semantic segmentation image. The RGB images have a resolution of 224x480,
and the BEV image has a resolution of 200x200. The BEV image covers an area of 100
meters x 100 meters.

• Scene: We define a scene as a time-frame of N ticks on a specific map. In the beginning
of the scene, the map is loaded. Then, 5 vehicles with sensors attached (ego vehicles) are
spawned at random locations. These vehicles have 6 RGB cameras attached to them at 60
degree intervals These intervals represent front, front left, front right, back, back let, and
back right. We also gather the depth ground truth maps at the same intervals. We place a
birds-eye-view segmentation camera above the vehicle that captures an area of 100x100m at
a resolution of 200x200 pixels. Then, 50 non-ego vehicles are spawned in random locations.
Then, if needed, 40 OOD objects are spawned in random positions. The simulator will run
through each of the N ticks one by one in a sequential manner, and will save one frame for
each ego vehicle every five ticks.

• Main control loop: The main control loop runs through M scenes, systematically varying
weather conditions and urban layouts to generate a diverse dataset.

– Weathers Condition: ClearNoon, CloudyNoon, WetNoon, MidRainyNoon, Soft-
RainyNoon, ClearSunset, CloudySunset, WetSunset, WetCloudSunset, SoftRainySun-
set

– Urban Layouts: Town10, Town07, Town05, Town03, Town02. Specifically, we have

* Town 02: A small simple town with a mixture of residential and commercial
buildings.

* Town 05: Squared-grid town with cross junctions and a bridge. It has multiple
lanes per direction. Useful to perform lane changes.

* Town 07: A rural environment with narrow roads, corn, barns and hardly any traffic
lights.

* Town 10: A downtown urban environment with skyscrapers, residential buildings
and an ocean promenade.

Within each scene:

– Weather Variation: Every N/10 ticks, the weather changes to the next condition in
the set. This approach ensures that each weather condition is represented equally
throughout the scene.

– Urban Layout Selection: The town for each scene is selected in a cyclic manner using
the following logic: town = towns[i]; i = (i + 1) mod 5. where townsis the
list of urban layouts, and i is the index that cycles through the towns. The modulo
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operation ensures that after reaching the last town, the index wraps around to the first,
providing a continuous loop through the available urban layouts.

After each scene: All objects are destroyed, and the town environment is cleared. A new
scene begins by loading the next town as determined by the selection process. The number
of frames can be calculated with (N/5) ∗M ∗ (No. of ego vehicles).

A.5 ADDITIONAL EXPERIMENTS

In this section, we first provide clear definitions and calculations for the evaluation metrics used in
our study, ensuring transparency and reproducibility. Then we introduce the additional experimental
results.

Pure segmentation via IoU: Intersection over Union (IoU) is used to evaluate the segmentation
performance of the models. It is calculated as the IOU for positive class, which is defined as:

IoU =
True Positives

True Positives + False Positives + False Negatives
Higher IoU values indicate better segmentation performance, as they reflect accurate predictions for
both the object and background regions.

Calibration via ECE: Expected Calibration Error (ECE) measures how well the predicted probabili-
ties align with the true likelihood of correctness. It is computed by dividing the confidence scores
into M bins and calculating the weighted average of the difference between accuracy and confidence
for each bin:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

where Bm represents the set of predictions in bin m, |Bm| is the number of samples in the bin, n
is the total number of samples, acc(Bm) is the accuracy, and conf(Bm) is the average confidence.
Lower ECE values indicate better calibration. We use M = 10 for experiments.

Misclassification detection: To evaluate misclassification detection, we treat misclassified pixels
as the positive class and do the binary classification task with the aleatoric uncertainty as the score.
Metrics such as Area Under the Receiver Operating Characteristic curve (AUROC) and Area Under
the Precision-Recall curve (AUPR) are used.

OOD detection: For out-of-distribution (OOD) detection, we assess the model’s ability to differenti-
ate OOD pixels from in-distribution (ID) pixels. Similar to misclassification detection, AUROC and
AUPR are used as evaluation metrics, and OOD pixels are positive classes with epistemic uncertainty
as the score.

A.5.1 FULL EVALUATION ON LYFT

Results on Lyft dataset. Table 13 presents the comprehensive results on the Lyft (Kesten et al.,
2019) dataset using LSS and CVT as model backbones. Our findings on Lyft align with those from
our studies on CARLA and nuScenes. Overall, our proposed model employing the UFCE loss
consistently outperforms the UCE loss in terms of semantic segmentation accuracy, calibration, and
misclassification detection. Furthermore, incorporating epistemic uncertainty scaling and pseudo-
OOD exposure significantly enhances OOD detection performance.

A.5.2 QUANTITATIVE EVALUATION ON CALRA (FULL)

Result on calibration/misclassification detection on CARLA: Table 14 presents the segmentation,
calibration, and misclassification detection results on the CARLA dataset using LSS and CVT
as model backbones. We observe that our proposed model demonstrates the best OOD detection
performance, the second-best calibration performance, and comparable results in segmentation and
misclassification detection compared to other models.

A.5.3 QUANTITATIVE EVALUATION ON NUSCENES (ROAD SEGMENTATION)

Result on OOD detection on nuScenes dataset for road segmentation: Table 15 presents the
segmentation and calibration performance on the nuScenes dataset, with “road” designated as the
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Table 13: Evaluation on Lyft dataset for vehicle segmentation . Best and Runner-up results are
highlighted in red and blue.

Baseline Loss
LSS CVT

Pure Classification Misclassification OOD Detection Pure Classification Misclassification OOD Detection

IoU ↑ ECE↓ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑ IoU ↑ ECE↓ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑
Without pseudo OOD

Entropy CE 0.393 0.01530 0.876 0.316 0.555 0.00124 0.322 0.00619 0.934 0.311 0.795 0.00259

Focal 0.422 0.00831 0.928 0.341 0.638 0.00147 0.329 0.00630 0.937 0.317 0.752 0.00216

Energy CE 0.393 0.01530 0.876 0.316 0.594 0.00127 0.322 0.00619 0.934 0.311 0.789 0.00266

Focal 0.422 0.00831 0.928 0.342 0.629 0.00133 0.329 0.00630 0.937 0.317 0.729 0.00207

Ensemble CE 0.411 0.00993 0.883 0.317 0.405 0.00057 0.351 0.00402 0.948 0.314 0.399 0.00058

Focal 0.446 0.00406 0.937 0.334 0.466 0.00071 0.396 0.00335 0.957 0.334 0.535 0.00093

Dropout CE 0.381 0.01470 0.870 0.317 0.295 0.00047 0.322 0.00735 0.932 0.314 0.362 0.00056

Focal 0.413 0.00776 0.925 0.340 0.308 0.00048 0.318 0.00768 0.933 0.317 0.373 0.00057

ENN UCE 0.396 0.00585 0.762 0.239 0.447 0.00082 0.341 0.00997 0.879 0.283 0.717 0.00235

UFCE 0.427 0.00576 0.847 0.304 0.485 0.00089 0.383 0.00344 0.914 0.332 0.665 0.00213

With pseudo OOD

Energy CE 0.442 0.01210 0.950 0.341 0.724 0.033 0.385 0.00430 0.957 0.335 0.802 0.019

Focal 0.456 0.00449 0.962 0.355 0.757 0.042 0.429 0.00516 0.964 0.349 0.761 0.024

ENN UCE 0.439 0.00650 0.820 0.286 0.826 0.149 0.384 0.00688 0.905 0.306 0.913 0.060

Ours 0.467 0.00720 0.820 0.279 0.826 0.184 0.419 0.00088 0.934 0.340 0.936 0.145

Observations: 1. The proposed UFCE loss for the ENN model consistently outperforms the commonly used UCE loss across 20/24
metrics. 2. Our proposed model (last row) shows the best OOD detection performance across LSS and CVT backbone, the specifically on
AUPR metric.

Table 14: Calibration and Misclassification detection performance on the CARLA dataset for vehicle
segmentation . Best and Runner-up results are highlighted in red and blue.

Model Loss
LSS CVT

Pure Classification Misclassification Pure Classification Misclassification

IoU ↑ ECE↓ AUROC ↑ AUPR ↑ FPR95 ↓ IoU ↑ ECE↓ AUROC ↑ AUPR ↑ FPR95 ↓
Without pseudo OOD

Entropy CE 0.403 0.00309 0.928 0.272 0.222 0.361 0.00183 0.952 0.246 0.215

Focal 0.403 0.00309 0.928 0.272 0.221 0.435 0.00146 0.970 0.265 0.148

Energy CE 0.403 0.00309 0.928 0.272 0.222 0.361 0.00183 0.952 0.246 0.215

Focal 0.403 0.00309 0.928 0.272 0.221 0.435 0.00146 0.970 0.265 0.148

Ensemble CE 0.433 0.00202 0.941 0.266 0.215 0.410 0.00160 0.961 0.222 0.227

Focal 0.462 0.00140 0.971 0.270 0.157 0.471 0.00135 0.973 0.260 0.154

Dropout CE 0.409 0.00277 0.922 0.269 0.243 0.366 0.00183 0.944 0.238 0.235

Focal 0.422 0.00135 0.956 0.293 0.167 0.442 0.00142 0.966 0.264 0.167

ENN UCE 0.407 0.00212 0.817 0.252 0.345 0.398 0.00098 0.917 0.253 0.192

UFCE 0.424 0.00033 0.913 0.283 0.153 0.422 0.00103 0.933 0.263 0.154

With pseudo OOD

Energy CE 0.441 0.00249 0.975 0.314 0.110 0.425 0.00124 0.977 0.264 0.119

Focal 0.469 0.00588 0.979 0.277 0.094 0.465 0.00096 0.980 0.266 0.090

ENN UCE 0.428 0.00131 0.894 0.300 0.193 0.432 0.00457 0.961 0.263 0.133

Ours 0.459 0.00040 0.950 0.303 0.099 0.468 0.00180 0.967 0.294 0.097

Observations: 1. Involving pseudo-OOD in the training phase does not impact pure segmentation, calibration and misclassification
detection. 2. Without pseudo-OOD, the proposed UFCE loss for the ENN model consistently outperforms the commonly used UCE loss
across 9 out of 10 metrics. 3. No single model consistently performs best across all metrics, but Focal consistently performs better than CE.

positive class for segmentation. To verify the calibration improvements brought by the proposed
UFocal loss, all evaluations are conducted on the clean validation dataset. We observe that our
proposed UFocal loss consistently achieves lower ECE and higher IoU scores, indicating better
calibration performance and segmentation accuracy compared to the UCE loss. Additionally, the
misclassification detection performance is also superior to that of the UCE loss. Compared to other
baselines, our model demonstrates top-tier performance.

A.5.4 QUANTITATIVE EVALUATION ON SIMPLE-BEV ON NUSCENES

Full Results with SimpleBEV backbone on nuScenes dataset for vehicle segmentation. Table 16
presents the full results with the SimpleBEV (Harley et al., 2023) as the backbone. While the original
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Table 15: Segmentation, Calibration and Misclassification detection on road segmentation for
nuScenes. Best and Runner-up results are highlighted in red and blue.

Model Loss
LSS CVT

Pure Classification Misclassification Pure Classification Misclassification

Road IoU↑ ECE↓ AUROC↑ AUPR↑ Road IoU↑ ECE↓ AUROC↑ AUPR↑

Entropy CE 0.756 0.0448 0.870 0.330 0.637 0.0495 0.835 0.354

Focal 0.763 0.0266 0.886 0.341 0.678 0.0458 0.848 0.345

Ensemble CE 0.776 0.0156 0.883 0.309 0.656 0.0269 0.840 0.324

Focal 0.769 0.0308 0.882 0.314 0.698 0.0263 0.853 0.324

Dropout CE 0.744 0.0455 0.867 0.329 0.624 0.0573 0.831 0.351

Focal 0.752 0.0300 0.883 0.337 0.670 0.0511 0.844 0.343

ENN UCE 0.752 0.0417 0.783 0.291 0.639 0.0455 0.806 0.335

UFCE 0.760 0.0250 0.839 0.319 0.679 0.0438 0.828 0.336
Observations: 1. The proposed UFCE loss for the ENN model consistently outperforms the commonly used UCE loss across all metrics,
showing improvements of 2.6% in segmentation IoU, 0.9 in calibration ECE, 3.9% in misclassification AUROC, and 1.5% in AUPR across
LSS and CVT backbone. 2. For road detection, there is no clear evidence showing that Focal loss performs better than classic CE loss in
terms of segmentation or aleatoric uncertainty prediction.

paper reported a vehicle segmentation IoU of 44.7 on nuScenes, we report 38.2. This discrepancy
arises because we adopt a consistent experimental setup across all backbones, including LSS and
CVT. Specifically, we exclude frames containing true OOD objects from the training set and use
camera images with a resolution of 224 × 480 without any image augmentations. Additionally, we
employ bilinear sampling as the lifting strategy, EfficientNet-B4 as the network backbone, and batch
size of 16.

We observe that (1).The proposed model achieves the second-best performance in pure segmentation,
with a gap of only 0.1% from the best baseline, while outperforming all models in calibration. (2). All
models demonstrate comparable performance in misclassification detection. (3). For OOD detection,
the proposed model achieves the best performance in AUROC and AUPR, with a 12% improvement
in AUPR over the second-best model and FPR95 is only 0.008 higher than the best baseline.

Table 16: Simple-BEV backbone: Segmentation, Calibration, Misclassification detection, OOD
detection performance for vehicle segmentation on nuScenes . Best and Runner-up results are
highlighted in red and blue.

model loss Pure Classification Misclassification OOD Detection

IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓
Without pseudo OOD

Entropy CE 0.352 0.00721 0.936 0.326 0.196 0.684 0.001 0.816

Focal 0.366 0.00697 0.942 0.322 0.193 0.661 0.001 0.841

Energy CE 0.352 0.00721 0.936 0.326 0.196 0.638 0.000 0.819

Focal 0.366 0.00698 0.942 0.322 0.193 0.614 0.000 0.835

Ensemble CE 0.373 0.00456 0.946 0.322 0.197 0.534 0.000 0.920

Focal 0.388 0.00453 0.946 0.322 0.185 0.504 0.000 0.937

Dropout CE 0.350 0.00617 0.934 0.325 0.207 0.458 0.000 0.964

Focal 0.364 0.00623 0.940 0.323 0.200 0.523 0.000 0.931

ENN UCE 0.361 0.00647 0.844 0.285 0.286 0.657 0.000 0.832

UFCE 0.370 0.00296 0.848 0.294 0.279 0.604 0.000 0.831

With pseudo OOD

Energy CE 0.360 0.00586 0.946 0.332 0.183 0.820 0.071 0.326

Focal 0.372 0.00606 0.947 0.332 0.186 0.838 0.058 0.325

ENN UCE 0.364 0.00455 0.882 0.314 0.207 0.914 0.215 0.272

Ours 0.372 0.00315 0.896 0.322 0.187 0.845 0.319 0.356
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A.5.5 ROBUTNESS ON SELECTION OF PSEUDO-OOD

Robustness to the selection of pseudo-OOD (cont.). We investigate how the similarity between
pseudo-OOD and true OOD affects epistemic uncertainty predictions. For this, we use two pseudo-
OOD and true-OOD pairs for nuScenes and CARLA, with detailed settings presented in Table 11.
Generalization results for nuScenes are shown in Table 4, with the main discussion provided in
Section 4.2. Generalization results for CARLA are presented in Table 17, where we evaluate OOD
detection performance using “kangaroo” as the true OOD and “bears, horses, cows, elephants” as
pseudo-OODs. For this true/pseudo-OOD pair, our proposed framework consistently outperforms
others across all six metrics, achieving an average AUPR improvement of 3.2% over the runner-up,
sharing the same observation on nuScenes.

Table 17: Robustness Analysis (selection of pseudo-OOD): OOD detection performance for vehicle
segmentation on CARLA (“kangaroo” as true OOD). Best and Runner-up results are highlighted
in red and blue.

Model Loss LSS CVT

AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓
Without pseudo OOD

Entropy CE 0.665 0.005 0.768 0.767 0.007 0.691

Focal 0.725 0.006 0.727 0.783 0.007 0.675

Energy CE 0.672 0.005 0.742 0.749 0.006 0.69

Focal 0.717 0.006 0.726 0.755 0.007 0.675

Ensemble CE 0.485 0.001 0.963 0.487 0.001 0.962

Focal 0.449 0.001 0.955 0.504 0.001 0.951

Dropout CE 0.432 0.001 0.966 0.388 0.001 0.962

Focal 0.401 0.001 0.967 0.342 0.001 0.974

ENN UCE 0.623 0.004 0.779 0.68 0.005 0.784

UFCE 0.593 0.004 0.794 0.727 0.006 0.712

With pseudo OOD

Energy CE 0.746 0.045 0.556 0.746 0.034 0.442

Focal 0.727 0.049 0.489 0.786 0.051 0.425

ENN UCE 0.818 0.097 0.417 0.911 0.077 0.353

Ours 0.882 0.111 0.368 0.914 0.127 0.322

Table 18 presents the OOD detection performance across various pseudo/true OOD pairs. The results
support our intuition that higher similarity between true and pseudo-OOD pairs leads to improved
OOD detection performance, suggesting that identifying representative pseudo-OODs is a promising
direction for advancing OOD detection tasks. Notably, our proposed model consistently outperforms
the best baseline methods across all eight scenarios, achieving improvements of up to 12.6% in AUPR.
This highlights the robustness of our approach, even in settings with less similar OOD pairs.

Table 18: OOD detection performance (AUPR ↑) for similar and dissimilar OOD pairs across datasets
and backbones, comparing our model to the best baselines and its ablated variants.

Dataset Similarity between
True/Pseudo OOD

LSS CVT

Best Baseline Ours Best Baseline Ours

nuScenes Similar 31.5 33.5 21.2 26.9
Dissimilar 20.8 21.5 11.7 15.3

CARLA Similar 14.7 20.4 11.1 23.7
Dissimilar 9.7 11.0 7.7 12.7

A.5.6 ROBUTNESS ON CORRUPTED DATASET

Robustness on nuScenes-C. nuScenes-C(Xie et al., 2024) introduces various corruptions to the
validation set of the nuScenes dataset, comprising eight types of corruption, each with three levels
of severity: easy, mid, and hard. Brightness, Dark, Fog, and Snow represent external environmental
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dynamics, such as illumination changes or extreme weather conditions. Motion Blur and Color Quant
simulate effects caused by high-speed motion and image quantization, respectively. Camera Crash
and Frame Lost model camera malfunctions.

Using a model trained on the clean nuScenes training dataset (excluding frames containing true
OOD pixels), we evaluate its performance on the corrupted validation set to assess its robustness to
domain shifts. We compare our model against the most relevant baseline, “ENN-UCE,” and the model
that generally performs best in OOD detection tasks, “Energy-Focal”. The results are presented in
Table 19.

For misclassification detection, our model achieves the highest AUROC in 14 out of 21 scenarios and
the second highest in the remaining 7 scenarios. Our model archives the highest AUPR in 13 out of 21
scenarios and the second highest in the remaining 8 scenarios. Our model consistently outperforms
the ENN-UCE baseline across all 21 scenarios on both AUROC and AUPR. For OOD detection, our
model achieves the best AUPR in 16 out of 21 scenarios and the second-best AUPR for the other
5 scenarios. Our model archives the best AUROC in 8 out of 21 scenarios and second-best in the
remaining 13 scenarios. We note that AUROC and AUPR offer different perspectives to measure the
quality of a ranking on data points (BEV pixels in our context) for separating positives and negatives.
A relatively lower AUROC but higher AUPR for our method in some scenarios suggests our model
identifies more true positives among top-ranked pixels than the ENN-UCE model, while ENN-UCE
model better separates true positives and negatives among lower-ranked BEV pixels. It indicates
that data corruptions in these scenarios may affect the quality of epistemic uncertainty quantification
for some lowly ranked pixels, but not for the top ranked ones. However, high AUPR is particularly
important in applications where human experts manually verify top-ranked misclassified instances or
anomalies. Given the high cost of manual verification, ensuring a high rate of true positives among
the top-ranked data points makes AUPR a more suitable metric in such cases.

We observe a greater performance drop under domain shifts with higher corruption severity, consistent
with the findings in Xie et al. (2024), where significant performance degradation was noted in the
segmentation task using CVT on nuScenes compared to the clean dataset. Additionally, sensor-driven
distortions, such as color quantization and motion blur, have the least impact, while snow and camera
crashes cause the most severe performance degradation. These experiments highlight the need for
robust models or optimization strategies, which we plan to explore as a future direction.

A.5.7 ROBUTNESS ON DIVERSE CONDITIONS (CARLA)

We evaluate our models on diverse subsets of the test sets, considering variations in urban layouts
and weather conditions. In the CARLA dataset, we include four towns across 10 weather conditions,
with details on dataset generation provided in Appendix A.4.

Evaluation results on different towns are shown in Table 20. Towns 2 and 5 represent denser ur-
ban layouts compared to Towns 7 and 10. We observe consistent performance across each subset,
aligning with the evaluations conducted on the full CARLA dataset. Specifically, our model con-
sistently outperforms all baselines in OOD detection tasks across all towns, while also achieving
better segmentation, calibration, and misclassification detection compared to the standard UCE loss.
Furthermore, we observe performance gaps across urban layouts, highlighting the need to improve
model robustness in diverse environments.

Evaluation results on varying weather conditions are shown in table 21, 22, 23. While the results align
with the conclusions drawn from evaluations on the full dataset when comparing our proposed model
to the baselines, we also observe performance variations across different weather conditions. Interest-
ingly, the results challenge the intuition that the best performance would occur under “ClearNoon”
conditions. Notably, OOD detection performance is positively correlated with segmentation per-
formance, which may be attributed to clearer environments improving segmentation quality and,
consequently, OOD detection.

A.5.8 ROBUTNESS ON MODEL INITIALIZATIONS

We report the model variance for our proposed model in Table 24 and the evidential UCE baseline.
We randomly initialize the model three times and the variance is within 3%.
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Table 19: Robustness Analysis (data corruption): evaluation on estimated uncertainty with CVT as
the backbone on nuScenes-C.

Corruption Type Severity Model Misclassification OOD Detection
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

None Clean
Energy-Focal 0.955 0.321 0.196 0.860 0.024 0.319

ENN-UCE 0.919 0.313 0.227 0.921 0.212 0.306
Ours 0.934 0.321 0.196 0.928 0.269 0.244

CameraCrash

Easy
Energy-Focal 0.863 0.226 0.436 0.710 0.016 0.581

ENN-UCE 0.823 0.195 0.478 0.859 0.052 0.459
Ours 0.878 0.318 0.365 0.787 0.109 0.525

Mid
Energy-Focal 0.785 0.140 0.644 0.615 0.011 0.742

ENN-UCE 0.727 0.117 0.659 0.723 0.008 0.734
Ours 0.867 0.351 0.538 0.651 0.067 0.700

Hard
Energy-Focal 0.796 0.151 0.605 0.623 0.004 0.809

ENN-UCE 0.751 0.140 0.611 0.791 0.003 0.756
Ours 0.813 0.251 0.440 0.663 0.027 0.773

FrameLost

Easy
Energy-Focal 0.880 0.235 0.411 0.712 0.021 0.536

ENN-UCE 0.846 0.227 0.423 0.862 0.118 0.483
Ours 0.880 0.291 0.364 0.805 0.148 0.533

Mid
Energy-Focal 0.783 0.132 0.654 0.516 0.003 0.792

ENN-UCE 0.727 0.117 0.673 0.743 0.044 0.790
Ours 0.848 0.290 0.503 0.605 0.038 0.843

Hard
Energy-Focal 0.728 0.112 0.723 0.499 0.002 0.871

ENN-UCE 0.657 0.074 0.785 0.674 0.032 0.799
Ours 0.826 0.280 0.572 0.559 0.024 0.898

ColorQuant

Easy
Energy-Focal 0.949 0.315 0.209 0.850 0.025 0.354

ENN-UCE 0.905 0.307 0.246 0.926 0.174 0.301
Ours 0.925 0.310 0.219 0.923 0.243 0.275

Mid
Energy-Focal 0.929 0.297 0.263 0.825 0.028 0.407

ENN-UCE 0.866 0.273 0.302 0.915 0.100 0.322
Ours 0.902 0.287 0.289 0.889 0.144 0.367

Hard
Energy-Focal 0.866 0.223 0.436 0.777 0.025 0.579

ENN-UCE 0.775 0.197 0.462 0.843 0.008 0.507
Ours 0.831 0.227 0.445 0.866 0.008 0.431

MotionBlur

Easy
Energy-Focal 0.947 0.309 0.229 0.831 0.024 0.357

ENN-UCE 0.899 0.284 0.279 0.921 0.194 0.384
Ours 0.934 0.307 0.228 0.931 0.244 0.266

Mid
Energy-Focal 0.900 0.249 0.374 0.748 0.020 0.573

ENN-UCE 0.820 0.225 0.387 0.853 0.149 0.443
Ours 0.898 0.260 0.342 0.857 0.155 0.417

Hard
Energy-Focal 0.864 0.214 0.443 0.739 0.020 0.616

ENN-UCE 0.772 0.195 0.451 0.836 0.138 0.494
Ours 0.867 0.235 0.402 0.833 0.131 0.463

Brightness

Easy
Energy-Focal 0.939 0.300 0.253 0.875 0.049 0.314

ENN-UCE 0.881 0.278 0.278 0.915 0.176 0.346
Ours 0.911 0.288 0.254 0.898 0.172 0.329

Mid
Energy-Focal 0.909 0.261 0.342 0.852 0.038 0.375

ENN-UCE 0.833 0.227 0.379 0.860 0.057 0.434
Ours 0.881 0.248 0.360 0.883 0.075 0.324

Hard
Energy-Focal 0.887 0.239 0.400 0.803 0.008 0.461

ENN-UCE 0.792 0.202 0.448 0.792 0.010 0.494
Ours 0.862 0.221 0.442 0.870 0.037 0.420

Snow

Easy
Energy-Focal 0.890 0.233 0.387 0.809 0.017 0.619

ENN-UCE 0.741 0.183 0.482 0.750 0.057 0.600
Ours 0.841 0.237 0.384 0.830 0.104 0.480

Mid
Energy-Focal 0.839 0.169 0.523 0.785 0.006 0.636

ENN-UCE 0.613 0.080 0.732 0.679 0.004 0.762
Ours 0.798 0.176 0.512 0.724 0.053 0.626

Hard
Energy-Focal 0.826 0.158 0.547 0.792 0.005 0.685

ENN-UCE 0.580 0.063 0.797 0.604 0.001 0.809
Ours 0.754 0.137 0.604 0.676 0.067 0.709

Fog

Easy
Energy-Focal 0.920 0.280 0.310 0.873 0.029 0.341

ENN-UCE 0.857 0.249 0.352 0.840 0.134 0.485
Ours 0.906 0.271 0.318 0.880 0.173 0.353

Mid
Energy-Focal 0.899 0.250 0.376 0.849 0.019 0.416

ENN-UCE 0.858 0.248 0.372 0.829 0.114 0.498
Ours 0.892 0.251 0.368 0.856 0.160 0.426

Hard
Energy-Focal 0.878 0.227 0.426 0.803 0.014 0.427

ENN-UCE 0.851 0.239 0.395 0.838 0.061 0.500
Ours 0.890 0.241 0.388 0.823 0.090 0.432
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Table 20: Robustness Analysis (urban layouts): evaluation with LSS backbone on CARLA in diverse
towns. Best results are highlighted in red.

pseudo OOD model loss Pure Classification Misclassification OOD Detection
IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

Town 10

No

Baseline CE 0.377 0.00331 0.931 0.270 0.228 0.688 0.003 0.805
Focal 0.392 0.00140 0.956 0.291 0.177 0.755 0.003 0.749

Energy CE 0.377 0.00331 0.931 0.270 0.228 0.667 0.002 0.784
Focal 0.392 0.00140 0.956 0.291 0.177 0.748 0.003 0.754

Ensemble CE 0.409 0.00218 0.942 0.257 0.228 0.491 0.001 0.963
Focal 0.431 0.00165 0.964 0.262 0.194 0.453 0.001 0.961

Dropout CE 0.381 0.00299 0.921 0.264 0.252 0.462 0.001 0.960
Focal 0.398 0.00151 0.941 0.276 0.213 0.391 0.001 0.967

Evidential UCE 0.384 0.00231 0.813 0.245 0.352 0.604 0.002 0.816
UFCE 0.390 0.00031 0.905 0.274 0.167 0.578 0.003 0.820

Yes
Energy CE 0.413 0.00263 0.969 0.297 0.141 0.857 0.058 0.358

Focal 0.427 0.00586 0.976 0.278 0.111 0.861 0.061 0.284

Evidential UCE 0.403 0.00141 0.876 0.276 0.228 0.866 0.106 0.338
Ours 0.427 0.00064 0.939 0.286 0.133 0.946 0.180 0.235

Town 5

No

Baseline CE 0.407 0.00329 0.930 0.289 0.208 0.677 0.003 0.784
Focal 0.414 0.00158 0.960 0.303 0.158 0.765 0.003 0.729

Energy CE 0.407 0.00329 0.930 0.289 0.208 0.678 0.003 0.763
Focal 0.414 0.00158 0.960 0.303 0.158 0.766 0.003 0.719

Ensemble CE 0.438 0.00207 0.942 0.278 0.201 0.493 0.001 0.961
Focal 0.457 0.00139 0.969 0.283 0.158 0.442 0.001 0.960

Dropout CE 0.413 0.00294 0.919 0.276 0.235 0.437 0.001 0.963
Focal 0.420 0.00170 0.948 0.291 0.186 0.401 0.001 0.964

Evidential UCE 0.413 0.00229 0.822 0.256 0.334 0.630 0.002 0.798
UFCE 0.416 0.00007 0.916 0.291 0.147 0.520 0.002 0.832

Yes
Energy CE 0.443 0.00267 0.975 0.315 0.117 0.878 0.071 0.298

Focal 0.456 0.00609 0.979 0.282 0.106 0.892 0.086 0.214

Evidential UCE 0.441 0.00136 0.893 0.294 0.196 0.891 0.144 0.256
Ours 0.455 0.00049 0.945 0.306 0.111 0.957 0.213 0.192

Town 7

No

Baseline CE 0.376 0.00348 0.935 0.283 0.206 0.599 0.001 0.877
Focal 0.393 0.00182 0.967 0.311 0.126 0.725 0.002 0.821

Energy CE 0.376 0.00348 0.935 0.283 0.206 0.604 0.001 0.849
Focal 0.393 0.00182 0.967 0.311 0.126 0.706 0.002 0.820

Ensemble CE 0.400 0.00224 0.951 0.276 0.181 0.482 0.001 0.953
Focal 0.425 0.00132 0.975 0.295 0.134 0.460 0.001 0.957

Dropout CE 0.374 0.00322 0.929 0.279 0.225 0.509 0.001 0.951
Focal 0.387 0.00182 0.960 0.308 0.149 0.461 0.001 0.952

Evidential UCE 0.384 0.00244 0.822 0.259 0.333 0.532 0.001 0.868
UFCE 0.394 0.00017 0.922 0.304 0.136 0.550 0.001 0.839

Yes
Energy CE 0.418 0.00282 0.975 0.325 0.097 0.845 0.059 0.349

Focal 0.420 0.00478 0.982 0.311 0.078 0.888 0.076 0.236

Evidential UCE 0.410 0.00156 0.899 0.308 0.184 0.858 0.126 0.326
Ours 0.438 0.00035 0.957 0.320 0.079 0.949 0.230 0.227

Town 2

No

Baseline CE 0.407 0.00320 0.943 0.294 0.185 0.696 0.002 0.788
Focal 0.437 0.00115 0.971 0.310 0.114 0.759 0.002 0.754

Energy CE 0.407 0.00320 0.943 0.294 0.185 0.697 0.002 0.753
Focal 0.437 0.00115 0.971 0.310 0.114 0.757 0.002 0.750

Ensemble CE 0.445 0.00195 0.954 0.287 0.174 0.490 0.001 0.964
Focal 0.478 0.00125 0.978 0.292 0.117 0.461 0.001 0.954

Dropout CE 0.411 0.00291 0.935 0.287 0.204 0.436 0.001 0.967
Focal 0.440 0.00133 0.964 0.299 0.136 0.397 0.001 0.962

Evidential UCE 0.422 0.00203 0.842 0.275 0.297 0.632 0.002 0.800
UFCE 0.435 0.00029 0.925 0.306 0.130 0.540 0.001 0.870

Yes
Energy CE 0.458 0.00246 0.979 0.321 0.101 0.894 0.057 0.261

Focal 0.473 0.00571 0.985 0.308 0.067 0.893 0.062 0.225

Evidential UCE 0.444 0.00114 0.907 0.309 0.168 0.896 0.093 0.271
Ours 0.479 0.00022 0.963 0.319 0.074 0.964 0.156 0.161
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Table 21: Robustness Analysis (weather conditions - part 1): evaluation with LSS backbone on
CARLA in diverse weather conditions. Best results are highlighted in red.

pseudo OOD model loss Pure Classification Misclassification OOD Detection
IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

ClearNoon

No

Baseline CE 0.401 0.00318 0.927 0.275 0.217 0.654 0.002 0.839
Focal 0.420 0.00159 0.959 0.295 0.156 0.737 0.002 0.761

Energy CE 0.401 0.00318 0.927 0.275 0.217 0.648 0.002 0.809
Focal 0.420 0.00159 0.959 0.296 0.156 0.740 0.002 0.757

Ensemble CE 0.433 0.00207 0.941 0.261 0.200 0.493 0.001 0.958
Focal 0.460 0.00146 0.969 0.271 0.160 0.454 0.001 0.953

Dropout CE 0.398 0.00292 0.920 0.270 0.235 0.484 0.001 0.947
Focal 0.419 0.00154 0.952 0.289 0.178 0.411 0.001 0.957

Evidential UCE 0.411 0.00220 0.815 0.244 0.348 0.573 0.002 0.831
UFCE 0.416 0.00015 0.912 0.287 0.157 0.543 0.002 0.834

Yes
Energy CE 0.449 0.00255 0.975 0.317 0.111 0.852 0.051 0.347

Focal 0.449 0.00493 0.980 0.299 0.087 0.862 0.064 0.278

Evidential UCE 0.443 0.00133 0.889 0.292 0.203 0.866 0.098 0.299
Ours 0.455 0.00038 0.950 0.310 0.091 0.945 0.159 0.255

CloudyNoon

No

Baseline CE 0.434 0.00300 0.926 0.278 0.213 0.679 0.002 0.801
Focal 0.428 0.00136 0.969 0.307 0.130 0.731 0.002 0.760

Energy CE 0.387 0.00343 0.940 0.284 0.206 0.664 0.002 0.783
Focal 0.413 0.00133 0.963 0.300 0.145 0.731 0.002 0.764

Ensemble CE 0.419 0.00219 0.947 0.277 0.202 0.507 0.001 0.948
Focal 0.460 0.00118 0.975 0.304 0.132 0.463 0.001 0.956

Dropout CE 0.415 0.00290 0.933 0.286 0.220 0.485 0.001 0.959
Focal 0.417 0.00163 0.955 0.303 0.164 0.428 0.001 0.951

Evidential UCE 0.418 0.00222 0.833 0.273 0.313 0.587 0.002 0.836
UFCE 0.423 0.00016 0.923 0.307 0.136 0.560 0.002 0.833

Yes
Energy CE 0.454 0.00256 0.981 0.331 0.082 0.913 0.068 0.231

Focal 0.487 0.00415 0.985 0.306 0.070 0.922 0.090 0.158

Evidential UCE 0.451 0.00120 0.913 0.316 0.158 0.897 0.124 0.236
Ours 0.471 0.00010 0.965 0.332 0.059 0.975 0.229 0.104

WetNoon

No

Baseline CE 0.415 0.00316 0.940 0.294 0.189 0.643 0.002 0.832
Focal 0.418 0.00159 0.967 0.319 0.128 0.754 0.003 0.739

Energy CE 0.415 0.00316 0.940 0.294 0.189 0.654 0.002 0.799
Focal 0.418 0.00159 0.967 0.319 0.128 0.755 0.003 0.739

Ensemble CE 0.439 0.00199 0.956 0.300 0.162 0.501 0.001 0.954
Focal 0.460 0.00118 0.975 0.303 0.132 0.463 0.001 0.957

Dropout CE 0.415 0.00290 0.933 0.286 0.220 0.485 0.001 0.959
Focal 0.417 0.00163 0.955 0.303 0.164 0.428 0.001 0.951

Evidential UCE 0.418 0.00222 0.833 0.272 0.313 0.587 0.002 0.835
UFCE 0.423 0.00015 0.923 0.307 0.136 0.560 0.002 0.833

Yes
Energy CE 0.454 0.00256 0.981 0.330 0.082 0.913 0.068 0.231

Focal 0.467 0.00549 0.987 0.308 0.052 0.911 0.078 0.177

Evidential UCE 0.451 0.00120 0.913 0.317 0.158 0.897 0.124 0.236
Ours 0.471 0.00010 0.965 0.333 0.059 0.975 0.229 0.104

MidRainyNoon

No

Baseline CE 0.410 0.00319 0.938 0.302 0.192 0.657 0.002 0.838
Focal 0.428 0.00136 0.969 0.306 0.130 0.731 0.002 0.760

Energy CE 0.410 0.00319 0.938 0.302 0.192 0.672 0.002 0.798
Focal 0.428 0.00135 0.969 0.306 0.130 0.735 0.002 0.765

Ensemble CE 0.445 0.00196 0.953 0.283 0.173 0.474 0.001 0.969
Focal 0.466 0.00129 0.978 0.297 0.121 0.457 0.001 0.963

Dropout CE 0.418 0.00283 0.927 0.286 0.220 0.475 0.001 0.957
Focal 0.432 0.00142 0.956 0.296 0.167 0.442 0.001 0.955

Evidential UCE 0.420 0.00211 0.834 0.264 0.311 0.595 0.002 0.817
UFCE 0.429 0.00014 0.926 0.297 0.128 0.515 0.001 0.871

Yes
Energy CE 0.453 0.00255 0.981 0.327 0.083 0.904 0.085 0.249

Focal 0.462 0.00564 0.986 0.308 0.058 0.909 0.089 0.189

Evidential UCE 0.447 0.00118 0.910 0.310 0.164 0.901 0.143 0.259
Ours 0.469 0.00034 0.963 0.312 0.068 0.965 0.268 0.148
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Table 22: Robustness Analysis (weather conditions - part 2): evaluation with LSS backbone on
CARLA in diverse weather conditions. Best results are highlighted in red.

pseudo OOD model loss Pure Classification Misclassification OOD Detection
IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

SoftRainNoon

No

Baseline CE 0.395 0.00333 0.942 0.293 0.197 0.655 0.002 0.842
Focal 0.413 0.00133 0.963 0.299 0.145 0.734 0.002 0.758

Energy CE 0.387 0.00343 0.940 0.284 0.206 0.664 0.002 0.783
Focal 0.413 0.00133 0.963 0.300 0.145 0.731 0.002 0.764

Ensemble CE 0.439 0.00199 0.956 0.300 0.162 0.501 0.001 0.954
Focal 0.460 0.00118 0.975 0.303 0.132 0.462 0.001 0.957

Dropout CE 0.415 0.00290 0.933 0.286 0.220 0.485 0.001 0.959
Focal 0.417 0.00163 0.955 0.303 0.164 0.428 0.001 0.951

Evidential UCE 0.418 0.00222 0.833 0.272 0.313 0.587 0.002 0.836
UFCE 0.423 0.00016 0.923 0.308 0.136 0.560 0.002 0.833

Yes
Energy CE 0.454 0.00256 0.981 0.330 0.082 0.913 0.068 0.231

Focal 0.441 0.00603 0.983 0.297 0.076 0.902 0.071 0.209

Evidential UCE 0.451 0.00120 0.913 0.317 0.158 0.897 0.124 0.236
Ours 0.471 0.00010 0.965 0.332 0.059 0.975 0.229 0.104

ClearSunset

No

Baseline CE 0.387 0.00343 0.940 0.283 0.206 0.668 0.002 0.804
Focal 0.413 0.00134 0.963 0.300 0.145 0.734 0.002 0.758

Energy CE 0.387 0.00343 0.940 0.283 0.206 0.664 0.002 0.783
Focal 0.418 0.00159 0.967 0.318 0.128 0.755 0.003 0.739

Ensemble CE 0.439 0.00199 0.956 0.300 0.162 0.501 0.001 0.954
Focal 0.460 0.00118 0.975 0.303 0.132 0.463 0.001 0.956

Dropout CE 0.415 0.00290 0.933 0.286 0.220 0.485 0.001 0.959
Focal 0.417 0.00163 0.955 0.303 0.164 0.428 0.001 0.951

Evidential UCE 0.418 0.00222 0.833 0.272 0.313 0.587 0.002 0.835
UFCE 0.423 0.00015 0.923 0.307 0.136 0.560 0.002 0.833

Yes
Energy CE 0.454 0.00256 0.981 0.330 0.082 0.913 0.068 0.231

Focal 0.445 0.00588 0.977 0.278 0.106 0.868 0.073 0.261

Evidential UCE 0.451 0.00120 0.913 0.316 0.158 0.897 0.124 0.236
Ours 0.471 0.00010 0.965 0.333 0.059 0.975 0.229 0.104

CloudySunset

No

Baseline CE 0.374 0.00349 0.933 0.281 0.218 0.678 0.002 0.790
Focal 0.380 0.00145 0.966 0.307 0.143 0.771 0.003 0.771

Energy CE 0.373 0.00342 0.938 0.279 0.209 0.658 0.002 0.799
Focal 0.391 0.00133 0.966 0.300 0.141 0.766 0.003 0.717

Ensemble CE 0.401 0.00215 0.950 0.277 0.190 0.489 0.001 0.957
Focal 0.427 0.00143 0.973 0.282 0.157 0.425 0.001 0.964

Dropout CE 0.376 0.00317 0.930 0.267 0.235 0.448 0.001 0.959
Focal 0.398 0.00162 0.953 0.289 0.176 0.383 0.001 0.952

Evidential UCE 0.370 0.00246 0.834 0.265 0.310 0.612 0.002 0.791
UFCE 0.387 0.00030 0.919 0.298 0.148 0.538 0.002 0.803

Yes
Energy CE 0.404 0.00277 0.974 0.319 0.121 0.865 0.059 0.318

Focal 0.427 0.00613 0.979 0.289 0.113 0.889 0.065 0.213

Evidential UCE 0.401 0.00147 0.885 0.288 0.209 0.871 0.104 0.328
Ours 0.431 0.00062 0.947 0.297 0.117 0.959 0.182 0.217

WetSunset

No

Baseline CE 0.371 0.00344 0.933 0.283 0.213 0.684 0.002 0.780
Focal 0.391 0.00133 0.966 0.299 0.141 0.772 0.003 0.717

Energy CE 0.373 0.00342 0.938 0.278 0.209 0.658 0.002 0.799
Focal 0.391 0.00133 0.966 0.299 0.141 0.766 0.003 0.717

Ensemble CE 0.402 0.00214 0.950 0.277 0.190 0.489 0.001 0.957
Focal 0.427 0.00143 0.973 0.282 0.157 0.425 0.001 0.964

Dropout CE 0.376 0.00317 0.930 0.267 0.235 0.448 0.001 0.960
Focal 0.398 0.00162 0.953 0.289 0.176 0.383 0.001 0.953

Evidential UCE 0.370 0.00246 0.834 0.265 0.310 0.612 0.002 0.791
UFCE 0.387 0.00030 0.919 0.299 0.148 0.538 0.002 0.803

Yes
Energy CE 0.404 0.00277 0.974 0.319 0.121 0.865 0.059 0.318

Focal 0.427 0.00613 0.979 0.288 0.113 0.889 0.065 0.213

Evidential UCE 0.401 0.00147 0.885 0.288 0.209 0.871 0.104 0.328
Ours 0.431 0.00062 0.947 0.296 0.117 0.959 0.182 0.217
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Table 23: Robustness Analysis (weather conditions - part 3): evaluation with LSS backbone on
CARLA in diverse weather conditions. Best results are highlighted in red.

pseudo OOD model loss Pure Classification Misclassification OOD Detection
IoU ↑ ECE↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

WetCloudySunset

No

Baseline CE 0.361 0.00353 0.932 0.279 0.214 0.680 0.002 0.788
Focal 0.391 0.00133 0.966 0.299 0.141 0.772 0.003 0.718

Energy CE 0.373 0.00342 0.938 0.279 0.209 0.658 0.002 0.799
Focal 0.391 0.00133 0.966 0.299 0.141 0.766 0.003 0.717

Ensemble CE 0.401 0.00215 0.950 0.277 0.190 0.489 0.001 0.957
Focal 0.427 0.00143 0.973 0.281 0.157 0.425 0.001 0.964

Dropout CE 0.376 0.00317 0.930 0.267 0.235 0.448 0.001 0.960
Focal 0.398 0.00162 0.953 0.289 0.176 0.383 0.001 0.953

Evidential UCE 0.370 0.00246 0.834 0.266 0.310 0.612 0.002 0.791
UFCE 0.387 0.00030 0.920 0.299 0.148 0.538 0.002 0.803

Yes
Energy CE 0.404 0.00277 0.974 0.319 0.121 0.865 0.059 0.318

Focal 0.427 0.00613 0.979 0.288 0.113 0.889 0.065 0.213

Evidential UCE 0.401 0.00147 0.885 0.288 0.209 0.871 0.104 0.328
Ours 0.431 0.00062 0.947 0.297 0.117 0.959 0.182 0.217

SoftRainSunset

No

Baseline CE 0.373 0.00342 0.938 0.279 0.209 0.681 0.002 0.810
Focal 0.448 0.00170 0.958 0.313 0.141 0.737 0.003 0.711

Energy CE 0.434 0.00300 0.926 0.277 0.213 0.674 0.002 0.770
Focal 0.448 0.00170 0.958 0.313 0.141 0.736 0.003 0.708

Ensemble CE 0.463 0.00194 0.944 0.276 0.187 0.504 0.001 0.958
Focal 0.490 0.00127 0.970 0.292 0.144 0.463 0.001 0.960

Dropout CE 0.431 0.00272 0.924 0.277 0.219 0.478 0.001 0.955
Focal 0.442 0.00140 0.952 0.311 0.154 0.428 0.001 0.953

Evidential UCE 0.443 0.00206 0.816 0.258 0.347 0.595 0.002 0.806
UFCE 0.441 0.00025 0.914 0.301 0.153 0.553 0.002 0.826

Yes
Energy CE 0.490 0.00238 0.979 0.324 0.084 0.906 0.072 0.250

Focal 0.487 0.00415 0.985 0.305 0.070 0.922 0.090 0.158

Evidential UCE 0.482 0.00112 0.893 0.306 0.197 0.913 0.170 0.195
Ours 0.494 0.00029 0.956 0.325 0.072 0.975 0.276 0.105
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Table 24: Variance for CVT on nuScenes.

Num. Models Model
Pure Classification Misclassification OOD

IoU ↑ ECE ↓ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑

3
UFCE-EUS-ER 34.4± 0.0013 0.0793± 0.000016 94.4± 0.0009 32.8± 0.0021 92.4± 0.021 28.7± 0.29

UCE-ENT-EUS-ER 31.3± 0.00053 0.353± 0.00000511 92.7± 0.0000023 31.8± 0.001 87.5± 0.31 25.4± 0.00063

A.5.9 QUALITATIVE EVALUATIONS FOR MODEL COMPARISON

We qualitatively analyze the model performance with pixel-level prediction when viewed from a
bird’s eye perspective, and show the effectiveness of our proposed model.

We first present the semantic segmentation predictions in Figure 4. Our model demonstrates com-
parable segmentation performance to energy-based, dropout, and ensemble models. Compared to
ENN-UCE, our model produces tighter object boundary predictions.

Figure 4: Comparison of Semantic Segmentation Performance: Each row represents an example,
with the first column showing the ground truth labels, where the yellow regions indicate the positive
class (“vehicle” in these examples). We visualize the predicted probabilities for the positive class
generated by our model and four baselines. Brighter regions correspond to higher probability values.

Ground Truth BEV Ours ENN­UCE Energy Dropout Ensemble

We present the predicted aleatoric uncertainty in Figure 5. We anticipate that correctly classified pixels
will exhibit low aleatoric uncertainty, while misclassified pixels will display high aleatoric uncertainty.
Analyzing misclassification detection is complex because the ground truth varies across different
model predictions. Based on these three frames, we cannot see a large performance difference
between the various model variants.

Figure 6 presents the predicted epistemic uncertainty. Ideally, in-distribution (ID) pixels should exhibit
low epistemic uncertainty, while out-of-distribution (OOD) pixels should show high uncertainty.
Our focus is on the relative uncertainty levels between ID and OOD pixels rather than the absolute
uncertainty scale. The results demonstrate that our proposed model achieves the most accurate
identification of OOD pixels, indicating the best-predicted epistemic uncertainties. In contrast, the
ENN-UCE baseline shows a significant increase in false positives. Even with the assistance of
pseudo-OOD, the energy model fails to accurately locate OOD pixels. Dropout and ensemble models,
unable to leverage pseudo-OOD, exhibit the worst performance.
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Figure 5: Comparison of Predicted Aleatoric Uncertainty for Misclassification Detection: Each row
represents an example, with each pair of columns corresponding to one model. The left column
shows the misclassified labels, where yellow indicates misclassified pixels, while the right column
visualizes the predicted aleatoric uncertainty for the same model, with brighter regions representing
higher uncertainty values.

Misc. Pixels Aleatoric Unc. Misc. Pixels Aleatoric Unc. Misc. Pixels Aleatoric Unc. Misc. Pixels Aleatoric Unc. Misc. Pixels Aleatoric Unc.

Ours ENN­UCE Energy Dropout Ensemble

Figure 6: Comparison of Predicted Epistemic Uncertainty for OOD Detection: Each row represents
an example, with the first column displaying the ground truth labels, where yellow regions indicate
OOD pixels ("motorcycle" in these examples). The predicted epistemic uncertainty is visualized,
with brighter regions indicating higher uncertainty values.

Ground Truth OOD Ours ENN­UCE Energy Dropout Ensemble
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