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Figure 6: Structure overview of Q-SLAM. 1) Tracking: initialize per-frame camera poses and depth
prediction. Correct the noisy depth using our proposed depth correction module based on the seg-
mentation results from monocular inputs. 2) NeRF: using the selected keyframes to supervise the
optimization of NeRF network equipped with our proposed quadric-decomposed transformer. 3)
Mapping: global bundle adjustment to jointly optimize the scene representation and camera poses
taking rays sampled from all keyframes. Reconstruct the complete scene by fusing the rendered
RGB images and depth maps with TSDF-fusion [33].

A Additional Methodology Details404

A.1 Quadirc surface fitting and depth correction405

By setting ∇Cc = 0 in Eq. 2 to obtain the optimal c∗406

c∗ =
1

N

N∑
i=1

(Cq · qi + Cl · xi) ≜ Cq · q̄+ Cl · x̄ (9)

The cost function in Eq. 2 becomes:407

C =

N∑
i=1

(Cq · (qi − q̄) + Cl · (xi − x̄))
2 (10)

where q̄ = 1
N

∑N
i=1 qi are the quadric term averaged on points in a patch, x̄ = 1

N

∑N
i=1 xi is the408

linear term.409

The intermediate variables are defined as follows:410

L ≜
∑N

i=1 (xi − x̄) (xi − x̄)
T

M ≜
∑N

i=1 (qi − q̄) (qi − q̄)
T

N ≜ −
∑N

i=1 (qi − q̄) (xi − x̄)
T

(11)

Setting ∇CCl
= 0 gives411

L C∗
l = NTCq (12)
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By substituting C∗
l back to Eq. 10, we can obtain412

C ≜
N∑
i=1

∥∥∥((qi − q̄)
T
+ (xi − x̄)

T L−1NT
)
Cq
∥∥∥2

= CqTΨCq , where Ψ ≜ M− N L−1NT

(13)

Minimizing Eq. 13 over cq gives the eigenvector c∗q of Ψ corresponding to the minimum eigenvalue,413

and c∗l can be solved from Eq. 12, and c∗ from Eq. 9.414

As defined by Taubin et al. [44], the distance from a point x to a quadric surface f is:415

d(x, f) ≈ f2(C,x)
|∇xf(C,x)|2

(14)

For every fitted patch, we calculate the average distance between the original points to the fitted416

surface as the fitting error. Those patches with error exceeding the given threshold will be discarded.417

We only preserve the patches with relatively small fitting error, which implies a good fitting surface418

for the following depth correction.419

A.2 Ray points sampling420

Initially, rays are constructed from the provided image and calibration matrix, and Ns points are421

uniformly sampled along each ray within the range [dnear, dfar]. Utilizing the corrected depth422

values, denoted as d, we refine the sampling process by selecting additional Nd samples within the423

range of [0.95d, 1.05d]. We do not simply sample around d because potential errors in the corrected424

depth values might lead to an extended sampling distance away from the true surface.425

A.3 Dynamic branch design426

Following SUDS [45], we design a simplified dynamic branch and calculate the final radiance fields427

of moving objects as follows:428

σ(x, t) = σs(x) + σd(x, t), c(x,d, t) =
σs

σ
cs(x,d) +

σd

σ
cd(x,d, t) (15)

where x and d represents the 3D coordinates and viewing direction respectively, and t is the times-429

tamp. The subscript s and d stand for static and dynamic branch respectively, and the outputs of430

dynamic branch depend on time, while the static branch does not.431

The color Ĉ and depth D̂ are rendered as follows:432

Ĉ(r, t) =

∫ +∞

0

T (s)σ(r(s), t)c(r(s),d, t) ds (16)

433

D̂(r, t) =

∫ +∞

0

T (s)σ(r(s), t)ds (17)

We do not incorporate the semantic head for outdoor scenes, because there are much more classes434

of objects compared to indoor scenes. To supervise the training on dynamic objects, we generate the435

static masks following [45], and apply a regularization loss of dynamic branch on the static regions.436

Lr =
∑

x∈static

|σd(x, t)|1 (18)

B Additional Implementation Details437

B.1 Data source438

The data of other NeRF-SLAM methods in Tab. 1 is sourced from Nicer-SLAM [43], and the439

geometric reconstruction results (Acc., Comp., etc.) of SplaTAM [14] comes from RTG-SLAM440
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since the original paper does not report these metrics. The results of other method in Tab. 2 are441

mainly taken from GO-SLAM [2].442

B.2 Dataset443

Q-SLAM is evaluated on a variety of datasets, including Replica [36], ScanNet [37], and TUM444

RGB-D [46] dataset. For evaluation of reconstruction quality, we test our method on 8 synthetic445

scenes from Replica, which provides high-quality synthetic scenes, akin to the evaluation frame-446

work adopted by NeRF-SLAM [4]. Following GO-SLAM [2], we evaluate the tracking accuracy447

on ScanNet dataset which offers extensively annotated RGB-D scans of real-world scenarios, en-448

compassing challenging short and long trajectories. Following Nice-SLAM [8], we also evaluate449

on various scenes on indoor TUM RGB-D dataset, with ground truth poses provided by a motion450

capture system. For camera tracking assessment, our approach is tested under two distinct modes:451

one utilizing ground truth and the other utilizing estimated depth from monocular images as inputs.452

The batch size of sampled rays to NeRF network is 8192.453

B.3 Evaluation Metrics454

We evaluate tracking accuracy by aligning the estimated trajectory with the ground truth trajectory455

and computing the Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE). This456

metric quantifies the Euclidean distance between the estimated pose and the corresponding ground457

truth pose. In line with the evaluation approach of NeRF-SLAM [4], we utilize Peak Signal-to-458

Noise Ratio (PSNR), SSIM [39], and LPIPS [40] for image rendering evaluation, and Accuracy459

[cm], Completion [cm], Completion Ratio [%] for 3D reconstruction assessment.460

• Absolute Trajectory Error (ATE) (cm) ↓: Evaluates trajectory estimation accuracy by mea-461

suring the average Euclidean translation distance between corresponding poses in estimated462

and ground truth trajectories, often reported in terms of Root Mean Square Error (RMSE).463

• Peak Signal to Noise Ratio (PSNR) ↑: Measures image quality by evaluating the ratio464

between the maximum pixel value and the root mean squared error, usually expressed in465

terms of the logarithmic decibel scale.466

• Structural Similarity Index Measure (SSIM) ↑: Assesses image quality by examining the467

similarities in luminance, contrast, and structural information among patches of pixels.468

• Learned Perceptual Image Patch Similarity (LPIPS) ↓: Utilizes learned convolutional fea-469

tures to assess image quality based on feature map mean squared error across layers.470

• Accuracy (cm) ↓: Computes the average distance between sampled points from the recon-471

structed mesh and the nearest ground-truth point.472

• Completion (cm) ↓: Measures the average distance between sampled points from the473

ground-truth mesh and the nearest reconstructed.474

• Completion Ratio (%) ↑: the percentage of points in the reconstructed mesh with Comple-475

tion under 5 cm.476

B.4 Hyperparameters477

All experiments are conducted on NVIDIA A6000 GPU with PyTorch 1.10.0. We use Adam as478

our optimizer with β1 = 0.9, β2 = 0.999. The tracking backbone is Droid-SLAM, where we use479

the pretrained weights to estimate depths and poses. We use TensoRF as the mapping backbone,480

equipped with our proposed depth correction and quadric transformer. The threshold for motion481

filter is 4.0 pixels, a tracked frame is considered as a keyframe only if the average optical flow is482

greater than the threshold. The window size for local bundle adjustment is 25. During the joint483

optimization process, camera poses are optimized for one epoch, and the NeRF network parameters484

are optimized for five epochs.485
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B.5 Segmentation and Quadric Fitting486

For the segmentation network, we use Segment Anything Model (SAM) [47], an off-the-shelf net-487

work to produce the mask for quadric fitting. To prevent the negative effect of outliers, quadric488

fitting only applies to segments with area larger than 200 pixels.489

During the fitting process, we calculate the coefficient of determination to evaluate the fitting per-490

formance. Let zi be the predicted depth value and fi be the corresponding corrected depth. The491

coefficient of determination is calculated as follows:492

z̄ =
1

n

n∑
i=1

zi

SSres =
∑
i

(zi − fi)
2

SStot =
∑
i

(zi − z̄)
2

R2 = 1− SSres

SStot

We only perform depth correction on quadric surfaces with fitting coefficient greater than the given493

threshold 0.85, otherwise, we just use the predicted depth for the supervision of NeRF training.494

B.6 Mesh Reconstruction495

Different from other approaches that reconstruct mesh of a scene by running marching cubes on the496

Signed Distance Function (SDF) values of the queried points, we render images and depths for the497

selected keyframes. The reason for the difference is that our rendering requires to correlate points498

along and across rays, while other approaches process 3D points independently. We first render499

RGB images and depth maps, and then use TSDF-fusion [33] to reconstruct the 3D volume mesh.500

C Additional Experimental Results501

TUM-RGBD dataset. We evaluate the tracking performance of our methods on the small-scale502

indoor-scene dataset with two different inputs, monocular and RGBD images. As presented in Ta-503

ble 5, our approach outperforms traditional SLAM, including ORB-SLAM2 [48] and ORB-SLAM3504

[49], which exhibits failures in certain scenarios. In comparison to recent NeRF-based SLAM sys-505

tems, our solution consistently achieves superior results across most scenes. We attribute the im-506

provements to our proposed quadric representation and quadric transformer, especially for scenes507

with well-segmented planes and surfaces such as desks, floors, and rooms.508

Table 5: ATE RMSE [m] Results on TUM [46] dataset freiburg1 set (monocular setting). ORB-
SLAM2 [48] and ORB-SLAM3 [49] fail on certain scenes.

360 desk desk2 floor plant room rpy teddy xyz avg

ORB-SLAM2 [48] - 0.071 - 0.023 - - - - 0.010 -
ORB-SLAM3 [49] - 0.017 0.210 - 0.034 - - - 0.009 -

DeepV2D [50] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepFactors [51] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

DROID-SLAM [16] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038
GO-SLAM[2] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010 0.035

Ours 0.086 0.013 0.023 0.026 0.027 0.049 0.021 0.049 0.009 0.033
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Following GO-SLAM [2], we also test our solution with RGBD images as input, as indicated in509

Table 6. While the quadric-based depth correction is not performed under this setting, our proposed510

quadric ray transformer and semantic supervision also contribute to the performance improvement.

Table 6: ATE [m] Results on TUM dataset [46] with RGB-D inputs from freiburg1, freiburg2 and
freiburg3 set.

Method fr1/desk fr2/xyz fr3/office

Kintinuous [52] 0.037 0.029 0.030
BAD-SLAM [53] 0.017 0.011 0.017
ORB-SLAM2 [48] 0.016 0.004 0.010

iMAP [5] 0.049 0.020 0.058
NICE-SLAM [8] 0.027 0.018 0.030

Ours 0.014 0.005 0.011

511

D Visualization512

In Fig. 7, we provide the qualitative results of the reconstruction. It can be observed that our method513

outperforms GO-SLAM, especially on the boundaries of objects.514

Figure 7: Qualitative reconstruction results on Replica dataset. We compare our solution with recent
SOTA SLAM systems Co-SLAM [1] and GO-SLAM [2]. Our method can recover better texture
features, especially on the boundary of instances.

We provide several selected visualization results for depth correction as shown in Fig. 8. Benefiting515

from the segmentation mask, the depth correction improves the sharpness of the boundary of objects.516

5



Figure 8: Qualitative results of depth correction.
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