A Social Impact

Deep neural networks (DNNs) have been successfully applied in many safety-critical tasks, such
as autonomous driving, face recognition and verification, efc. And adversarial samples have posed
a serious threat to machine learning systems. For real-world applications, the DNN model as well
as the training dataset, are often hidden from users. Therefore, the attackers need to generate the
adversarial examples under black-box setting where they do not know any information of the target
model. For black-box setting, the adversarial transferability matters since it can allow the attackers to
attack target models by using adversarial examples generated on the surrogate models. This work
can potentially contribute to understanding of transferability of adversarial examples. Besides, the
better transferability of adversarial examples calls the machine learning and security communities
into action to create stronger defenses and robust models against black-box attacks.

B Implementation Details

We conducted all experiments in an Nvidia-V100 GPU. And we run all experiments 3 times and
average all results over 3 random seeds.

Dataset The used two datasets are licensed under MIT. Imagenet is licensed under Custom (non-
commercial).

Implementation Details of Evaluated Models. For ResNet-50, DenseNet-121, VGG-16, Inception-
v3, we adopt the pre-trained models provided by torchvision package. For Inception-ResNet-v2,
NASNet-Large, ViT-Base/16, adv-Inc-v3, and ens-adv-Inc-Res-v2, we adopt the provided pre-trained
models?.

Implementation Details of Baseline Attack Methods. We adopt the source code * provided by
Zhao et al. [49] to implement I, MI, TI, and DI attacks. The decay factor for MI is set as 1.0. The
kernel size is set as 5 for TI attack, following Gao et al. [1 1]. The transformation probability is set as
0.7 for DI. For SI and Admix, we adopt the parameters suggested in Wang et al. [41]. The number
of copies for Sl is set as 5. The number of randomly sample mo and n of Admix are set as 3 and
0.2 respectively. For implementation of ILA and LinBP, we utilize the source code * provided by
Guo et al. [14]. For implementation of TTP, we use the pre-trained generator > based on ResNet-50
provided by [30].

Computational Cost. Here, we analyze the computational cost of our method. In Algorithm 1
with global iteration number K, late-start iteration number K g and inner iteration number 7', our
RAP-LS requires K + (K — Kg) T forward and backward calculation. While the original attack
algorithm requires K forward and backward calculation. The extra computation cost of RAP-LS is
(K — Kpg) * T times forward and backward calculation.

The adversarial example generation process is conducted based on the offline surrogate models.
Compared with this offline time cost, the attacking performance is much more important for black-
box attacks. Besides, our late-start strategy could alleviate the time cost.

Implementation Details of Visualization. We visualize the flatness of the loss landscape around
2% on surrogate model by plotting the loss change when moving " along a random direction
with different magnitudes. Specially, we first sample d from a Gaussian distribution and normalize it
on a £5 unit norm ball, d < ﬁ. Then, we calculate the loss change (flatness) f(a) with different

magnitudes a,
fla) = LM (G(x*Y + a - d); 0),y) — LM (G(x"); 0), ). (6)

Considering d is randomly selected, we repeat the above calculation 20 times with different d and
take the averaged value to conduct the visualization.

*https://github.com/rwightman/pytorch- image-models
*https://github.com/ZhengyuZhao/Targeted-Tansfer
“https://github.com/qizhangli/linbp-attack
*https://github.com/Muzammal-Naseer/TTP
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We also add the visualization results about targeted attacks.
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Figure 6: The flatness visualization of targeted adversarial examples.

C Experimental Results about More baseline attacks

In this section, we show the comparison of our method RAP and EOT [1], VT [40], EMI [42], and
Ghost Net [22] attack methods.

C.1 Experimental Results about VT and EMI

In the below Table 8 and 9, we demonstrate the untargeted and targeted attack performance of VT,
EMI, and our methods. We choose MI-TI-DI as the baseline method and follow experimental settings
in Section 4.1. As shown in experimental results, our RAP-LS achieves better performance, especially
for targeted attacks. Compared with VT, RAP-LS gets an increase of 6.7% for targeted attacks in
terms of average success rate. This demonstrates the effectiveness of our methods.

Table 8: The untargeted attack success rate (%) of VT, EMI, and RAP-LS with the MI-TI-DI baseline.

Attack ResNet-50 —- DenseNet-121—
Dense-121 VGG-16 Inc-v3 | Res-50 VGG-16 Inc-v3
MI-TI-DI 99.8 99.8 85.7 99.4 99.2 89.1
MI-TI-DI-VT 100 100 95.8 100 100 96.0
EMI-TI-DI 100 100 93.6 100 100 94.2
MI-TI-DI+RAP-LS 100 100 96.9 100 100 97.1
Attack VGG-16 = Inc-v3—-
Res-50 Dense-121 Inc-v3 | Res-50 Dense-121 VGG-16

MI-TI-DI 90 88.8 56.8 82.9 85.7 85.1
MI-TI-DI-VT 93.9 93 76.5 87.1 90.3 87.5
EMI-TI-DI 91.7 91.5 74.3 86 88.4 86.2
MI-TI-DI+RAP-LS 97.7 97.3 81.4 90.6 93.3 91.0

Table 9: The targeted attack success rate (%) of VT, EMI, and RAP-LS with the MI-TI-DI baseline

Attack ResNet-50 — DenseNet-121—
Dense-121 VGG-16 Inc-v3 | Res-50 VGG-16 Inc-v3
MI-TI-DI 74.9 62.8 10.9 449 38.5 7.7
MI-TI-DI-VT 82.5 71.9 21.6 59.2 53.6 21.3
EMI-TI-DI 79.1 67.8 19.2 56.3 50.4 19.8
MI-TI-DI+RAP-LS 88.5 81.5 332 74.5 65.5 26.5
Attack VGG-16 — Inc-v3—
Res-50 Dense-121 Inc-v3 | Res-50 Dense-121 VGG-16

MI-TI-DI 11.8 13.7 0.7 1.8 4.1 2.9
MI-TI-DI-VT 19.3 22.5 2.5 5.6 9.8 6.4
EMI-TI-DI 14.1 19.7 2.0 43 8.0 5.2
MI-TI-DI+RAP-LS 229 274 4.6 7.5 13.4 9.8

C.2 Experimental Results about Ghost Net attack
For combining Ghost net with RAP, we conduct the experiments on our PyTorch codes following the

original TensorFlow codes provided by the authors. The main idea of ghost network is to perturb skip
connections of ResNet to generate ensemble networks. To achieve this goal, the authors multiply
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skip connection by the random scalar r sampled from a uniform distribution. We reimplement
this procedure with the hyperparameter about  recommended in the orginal paper on the PyTorch
ResNet-50 model.

The targeted attack results (%) are shown in the below Table 10. We also follow the experimental
settings in Section 4.1. Here, we use GN to represent Ghost Net method. The results show that
ghost network method can improve the transfer attack performance. Combined with RAP-LS, the
adversarial transferability can be further improved especially on the inception-v3 model.

Table 10: The targeted attack success rate (%) of GN, and RAP-LS with the MI-TI-DI baseline

Attack ResNet-50 —-
Dense-121  VGG-16  Inc-v3
MTDI 74.9 62.8 10.9
MTDI-GN 85.9 80.7 24.9
MTDI-GN+RAP-LS 89.6 87.7 49.7

C.3 Experimental Results about EOT attack

We conducted the experiment of the EOT baseline. We choose the ResNet-50 as the source model
and MI-TI-DI as the baseline method. Instead of adding input transformation once like DI, we sample
random transformation (resizing and padding) multiple times in each iteration. Then, we add them to
following the expectation of transformation (EOT) [1]. We set the number of sampling as 10. Our
RAP can be also naturally combined with EOT attack.

The targeted attack results (%) are shown in the below Table 11. We also follow the experimental
settings in Section 4.1.

As shown in the below table, 1) the EOT attack gets a moderate increase on attack performance
compared with the baseline MI-TI-DI attack, which demonstrates that EOT could improve adversarial
transferability. 2) Our RAP attack achieves better performance and surpasses the EOT attack by a
large margin, especially for Inc-v3 and VGG-16 target models. 3) Combining RAP with EOT can
further boost EOT attack performance. These results demonstrate that RAP could achieve better
adversarial transferability and help find better flat local minima. Besides, the combination of
RAP and EOT achieves the best performance among them, which demonstrates that these two
methods could complement each other.

Table 11: The targeted attack success rate (%) of EOT, and RAP-LS with the MI-TI-DI baseline

Attack ResNet-50 —-
Dense-121  VGG-16  Inc-v3
MTDI 74.9 62.8 10.9
MTDI-EOT 76.9 66.9 11.2
MTDI+RAP 78.2 72.9 28.3
MTDI-EOT+RAP 86.1 79.5 32.8

D Experimental Results about More Defense Models

The Evaluation on More Defense Models Here, we show the evaluation of more defense models
containing multi-step Adversarial training models in ImageNet [33], Feature Denoising [47], NRP
[29], input transformation defense (R&P) [46].

For Feature Denoising, we utilize the pre-trained ResNet-152 model provided by the authors . For
AT models on ImageNet, we adopt the pre-trained ResNet-50 AT models provided by the authors
7. For (., norm, we adopt the ResNet-50 AT model with budget 4/255, which ranks first in the
RobustBench leaderboard 8. For /5 norm, we adopt the ResNet-50 AT model with budget 0.5. The

Shttps://github.com/facebookresearch/ImageNet-Adversarial-Training
"https://github. com/microsoft/robust-models-transfer
$https://robustbench.github.io
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untargeted attack performance is shown in Table 12. We follow the experimental settings in Section
4.5 of the main submission. We can observe that our RAP-LS further boosts the transferability of
baseline methods on these new defense models, getting a 5.5% boost for the average attack success
rate.

For NRP, we adopt the pre-trained purifiers provided by the authors °. Since NRP is an offline defense
module, we combine it with the two used ensemble AT models and the above two AT models. The
untargeted attack performance is shown in Table 13. We also follow the experimental settings in
Section 4.5 of the main submission. Combining NRP with AT models is a much stronger defense
mechanism, but RAP-LS still achieves an improvement by 0.8%.

For R&P, we adopt the source code provided by Dong et al. [7] to implement it. We also combine
R&P with the two used ensemble AT models and the two new AT models above. The untargeted
attack performance is shown in Table 14. We also follow the experimental settings in Section 4.5
of the main submission. For R&P, RAP-LS achieves an 9.1% increase in terms of average attack
success rate.

Table 12: The evaluation of ensemble attacks on two AT models and Feature Noising.

Attack Untarged
Res-50 AT (¢2) Res-50 AT (/)  Feature Denoising

MTDI 42.5 324 44.1
MTDI+RAP-LS 59.5 34.4 44.4

MTDSI 56.6 35.8 45.0
MTDSI+RAP-LS 70.3 36.6 45.7

MTDAI 62.1 35.6 44.2
MTDAI+RAP-LS 73.7 377 45.2

Table 13: The evaluation of ensemble attacks on defense models with NRP.

Attack Untarged

Inc-v34qy  IncRes-v2.,s Res-50 AT (/2) Res-50 AT (Yoo)

MTDI 23.1 13.5 14.2 25.7

MTDI+RAP-LS 22.7 14.8 14.9 26.3

MTDSI 22.5 14.2 15.0 26.1

MTDSI+RAP-LS 24.5 15.3 154 26.2

MTDAI 24.1 14.7 14.2 25.9

MTDAI+RAP-LS 24.9 15.6 15.3 26.1

Table 14: The evaluation of ensemble attacks on defense models with R&P.

Attack Untarged

Inc-v3,4, IncRes-v2ens Res-50 AT (f2) Res-50 AT (Yoo)

MTDI 65.0 46.2 52.5 43.7

MTDI+RAP-LS 82.1 63.2 65.3 45.8

MTDSI 86.5 69.6 64.1 459

MTDSI+RAP-LS 93.4 84.9 74.0 46.2

MTDAI 88.9 76.5 68.4 46.2

MTDAI+RAP-LS 94.8 87.0 77.7 47.7

The above experimental results also show that RAP is less effective when attacking Feature Denoising.
We think this is mainly due to the specially designed feature denoising block (i.e. the non-local block),
and the different settings of maximum perturbation size during adversarial training, as follows.

* Feature Denoising [47] inserts several non-local blocks into network to eliminate the adver-
sarial noise at the feature level. According to [47], for input feature map F;, the non-local
block computes a denoised output feature map Fjy by taking a weighted average of input
features in all spatial locations. Through this, the non-local block would model the global
relationship between features in all spatial locations, which may smooth the learned decision

*https://github.com/Muzammal - Naseer/NRP
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boundary. Recalling that our RAP is to boost the transferability by seeking for a flat local
minimum. The smoothness of decision boundary could make it harder to escape from certain
local minimum, especially for small attack perturbation size, so as to limit the performance
improvement of RAP.

* In our experiment, for Feature Denoising, the maximum perturbation size during their
training is set to 16/255. In Table 12, the maximum perturbation size of attack is also set to
16/255. The attack size of 16/255 may not be large enough for escaping from local minima
for the Feature Denoising model trained with 16/255 perturbation size. In contrast, the
maximum perturbation size of AT-¢., during training is 4/255. To verify this, we conduct
an ablation study of increasing the maximum perturbation size to 20/255. Using a larger
perturbation size of 20/255, the attacking performance against Feature Denoising is 48.3%
for MI-TI-DI and 50.7% for MI-TI-DI+RAP-LS. The relative performance improvement of
RAP-LS is 2.4%, which is much larger than the relative performance improvement of 0.3%
in Table 12 with perturbation size 16/255, which may partially explain the phenomenon.

E Additional Experimental Results

In this section, we first show the evaluation of targeted attacks with CE loss in Section E.1. Then we
show the results of ensemble attacks on more diverse network architectures in Section E.2. In Section
E.3, we report the experimental results w.zt. different value of iterations.

E.1 The Results of Targeted Attacks with CE Loss

Following the settings in main submission, we evaluate the targeted attack performance of the different
baseline methods with our method on ResNet-50, DenseNet-121, VGG-16, and Inception-v3. The
results of combinational methods are shown in Table 15. The RAP-LS outperforms all combinational
methods by a significantly margin. Taking the average attack success rate of all target models as
the evaluation metric, RAP-LS achieves 20.9%, 18.4%, and 15.1% improvements over the MTDI,
MTDSI and MTDALI, respectively.

Table 15: The targeted attack success rate (%) of combinational methods with RAP. The results
with C'E loss and 400 iterations are reported. The best results are bold and the second best results are
underlined.

Attack ResNet-50 —> ‘ DenseNet-121—>

‘ Dense-121 VGG-16 Inc-v3 Res-50 VGG-16 Inc-v3

455/78.3/859 298/70.5/76.7 45/21.3/253 | 20.0/54.0/62.7 9.9/41.7/48.7 2.6/17.5/18.5
77.7/89.0/93.7 399/69.4/76.7 26.9/45.3/50.8 | 30.5/60.4/69.5 14.9/42.8/49.7 12.7/26.6/32.5
90.2/91.4/96.1 61.8/73.7/83.4 44.5/47.9/59.0 | 558/684/79.3 35.1/51.8/64.1 263/32.4/404

‘ VGG-16 = ‘ Inc-v3i=

MTDI/+RAP / +RAP-LS
MTDSI/ +RAP / +RAP-LS
MTDAIL/ +RAP / +RAP-LS

Attack Res-50 Dense-121 Inc-v3 Res-50 Dense-121 VGG-16

0.5/10.4/12.1 0.1/11.0/13.5 00/1.7/2.0 22/49/59 2.2/9.8/11.0 1.2/4976.7
54/17.4/168  9.5/284/252 22/711/5.1 44/8.6/89 79/163/19.3 2.0/6.4/64
11.6/22.6/26.6 20.6/32.1/39.1 5.1/9.2/95 6.7/12.3/17.0 14.0/22.9/29.2 45/94/13.2

MTDI/+RAP / +RAP-LS
MTDSI/ +RAP / +RAP-LS
MTDAI/ +RAP / +RAP-LS

E.2 The Results of Ensemble Attacks on Diverse Network Architectures

We also take the evaluation of the ensemble attacks on diverse network architecture (Sec.4.5). We
adopt the ensemble-model attack by averaging the logits of different surrogate models, including
ResNet-50, DenseNet-121, VGG-16, and Inception-v3. The transfer attack success rate on diverse
models are shown in Table 16. Compared with results of single model attack in Table 7, the ensemble
attack achieve the better performance. We can observe that our RAP-LS further boosts transferability
of the baseline methods on both targeted and untargeted attacks. We take ViT as target model for
example. For untargeted attacks, RAP-LS achieves average performance improvements of 19.2%.
For targeted attacks, RAP-LS achieves average performance improvements of 10.4%.

E.3 The Experimental Results w.r.t. Different Value of Iterations

In the main submission, we report the evaluations of KX = 400. Here, we further report the
performance with different values of K for completeness in Table 17 (targeted attack) and Table 18
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Table 16: The evaluation of ensemble attacks on diverse network architectures.

Attack Untarged Targeted
IncRes-v2  NASNet-L  ViT-B/16 | IncRes-v2 NASNet-L  ViT-B/16

MTDI 98.6 99.3 46.2 65.7 80.1 2.8
MTDI+RAP-LS 100 100 73.2 844 89.7 12.7
MTDSI 99.8 100 68.3 81.7 89.4 15.0
MTDSI+RAP-LS 100 100 85.0 89.8 92.3 25.1
MTDAI 100 100 70.7 88.8 91.2 16.8
MTDAI+RAP-LS 100 100 84.6 90.4 91.8 27.8

(untargeted attack). From the results, we observe that the attacking performance generally increase as

K increases for most cases, this is also aligned with prior works [49].

Table 17: The targeted attack success rate (%) of all baseline attacks with our method. The results
with logit loss and 10/100/200/300/400 iterations are reported. We highlight the results with K = 400

in bold.

Baseline

ResNet-50 — Inception-v3
+RAP

+RAP-LS

MI-TI-DI
MI-TI-DI-SI
MI-TI-DI-Admix

0.0/0.1/0.2/0.1/0.1
0.1/0.1/02/0.1/0.1
0.0/037/02/0.2/0.1
02/12/1.7/15/15
03/26/24/20/1.8
1.4/57/59/6.0/5.8
1.5/7.9/9.8/10.5/10.9
8.9/34.1/36.7/38.1/38.1
13.5/45.7/49.2/50.5/50.8

0.0/0.2/03/0.3/0.1
0.0/06/1.0/1.0/1.1
00/0.7/09/1.2/0.8
00/38/66/7.7/179
02/66/82/8.6/9.3
0.6/14.6/16.6/16.5/17.1
0.1/12.7/22.3/26.3/28.3
33/433/479/49.9/51.8
5.0/48.1/53.4/56.2/57.1

0.0/0.1/04/70.6/0.7
0.1/0.1/14/1.6/24
00/03/13/13/1.2
02/1.2/10.2/9.4/10.1
03/2.6/9.6/9.3/10.5
1.4/5.7/185/19.2/19.6
1.5/7.9726.8/30.0/33.2
8.9/34.8/54.8/55.8/58.0
13.5/45.1/61.4/63.0/64.1

Baseline

ResNet-50 — DenseNet-121
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

09/53/50/55/4.5

34/63/63/6.0/6.3

25/86/89/9.0/17.2
8.4/54.8/60.4/61.2/62.6
9.7/29.6/30.4/30.4/30.0
23.6/55.6/55.5/55.6/54.6
16.3/66.9/71.4/73.4/74.9
41.0/82.8/84.5/86.2/86.3
48.0/88.7/90.9/91.1/91.4

00/48/79/8.8/9.5

02/9.0/14.1/158/17.5
0.0/7.1/10.1/11.2/11.0
0.1/40.6/53.2/59.4/64.9
22/45.8/509/52.5/53.2
5.3/61.2/66.0/66.9/68.0
1.8/56.7/71.2/76.4/178.2
12.9/80.2/85.7/87.8/ 88.4
20.3/83.2/87.2/88.4/89.4

09/53/14.0/14.0/14.3
34/63/259/289/29.6
25/86/16.1/16.4/17.3
84/54.6/709/72.5/73.9
9.7/29.6/60.0/61.1/61.1
23.6/55.6/74.4/74.7/74.6
16.3/66.7/85.2/85.7/88.5
41.0/82.5/91.9/92.4/93.3
47.9/88.5/93.5/93.8/93.6
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Baseline

ResNet-50 — VGG-16
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

1.0/27/26/23/2.4
12/2.1/247/22/2.2
1.1/48/48/45/4.0
7.6/51.0/56.9/56.6/57.2
44/104/89/88/9.5
10.6/24.9/25.0/26.2/26.0
12.1/559/61.0/63.9/62.8
24.6/67.4/68.5/69.7/70.1
33.4/753/77.5/78.7/79.9

00/56/83/9.8/9.8
0.1/8.6/12.3/14.1/14.5
0.1/6.0/93/9.9/12.9
0.4/424/550/61.5/63.4
1.1/27.8/31.1/30.7/32.8
3.6/41.4/452/43.8/45.4
1.5/53.0/64.7/70.9/72.9
82/66.4/73.7/752/171.7
14.6/70.4/76.7/78.3/79.0

1.0/2.7/11.4/12.8/11.8

1.2/2.1/18.2/20.0/20.6

1.1/48/142/153/15.3
7.6/51.0/69.3/69.8/69.3
4.4/10.4/35.8/35.1/36.0
10.6/24.9/51.7/51.9/51.6
12.1/55.8/78.5/81.7/81.5
24.5/66.4/82.4/83.7/84.7
333/75.2/85.4/86.4/86.3

DenseNet121 — Inception-v3

Baseline +RAP +RAP-LS

I 0.0/0.1/0.2/0.1/0.0 0.0/0.6/09/0.7/0.8 0.0/0.1/1.0/1.3/1.2

MI 0.2/0.2/0.3/0.3/0.3 00/12/2.1/2.1/2.0 02/02/25/37/3.4

TI 0.0/04/0.3/0.5/0.2 00/12/15/1.6/21 0.0/04/2.6/3.1/3.0

DI 03/19/14/1.7/1.4 00/4.1/7.0/7.6/8.8 0.3/19/9.3/9.9/10.0

SI 03/15/1.8/1.6/1.6 0.1/7.6/9.2/10.0/8.5 0.3/1.5/9.2/10.7/10.4
Admix 1.7/5.0/54/55/5.0 0.2/15.8/17.0/17.7/17.1 1.7/5.0/18.5/18.2/17.6
MI-TI-DI 12/68/79/87/17.7 0.1/13.0/19.7/22.2/23.0 1.2/6.7/21.9/26.2/26.5

MI-TI-DI-SI 5.1/17.6/189/19.3/19.8 2.0/30.4/35.1/37.0/39.0

MI-TI-DI-Admix

11.4/30.5/32.2/31.4/32.0

3.9/36.7/41.3/422/43.5

5.2/17.7/36.8/38.9/39.2
11.2/31.2/47.2/49.2/49.3

Baseline

DenseNet121 — ResNet-50
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

1.8/6.5/5.6/55/5.0
34/54/52/49/4.6
26/81/79/84/84
6.3/30.4/33.1/32.0/30.2
73/165/159/14.8/14.2
16.4/32.6/30.3/28.8/29.3
8.3/40.3/44.6/46.3/44.9
18.6/52.3/54.1/56.2/55.0
27.6/66.3/69.7/69.8/69.1

02/7.7/11.2/12.4/12.8
0.3/10.2/14.3/16.3/16.2
02/7.8/109/12.1/13.5
0.4/33.6/44.1/48.7/52.6
1.5/33.8/39.5/41.4/41.5
3.7/48.3/529/53.4/53.0
0.9/42.0/56.4/62.4/64.3
6.6/60.3/67.5/70.6/71.2
12.1/66.4/70.8/73.2/74.2

1.8/6.5/18.7/19.0/17.9
3.4/54/23.6/26.3/26.5
2.6/8.1/19.2/20.2/20.8
6.3/30.8/58.8/60.4/60.4
73/16.5/44.7/44.8/43.4
16.4/32.6/60.1/58.8/58.2
8.3/40.1/69.5/72.8/74.5
18.6/52.5/73.8/75.5/75.8
27.6/66.4/81.4/82.0/82.1

Baseline

DenseNet121 — VGG-16
+RAP

+RAP-LS

MI-TI-DI
MI-TI-DI-SI

06/38/35/3.5/2.9
1.6/24726/27/3.1
1.1/56/58/4.8/5.2
4.1/29.8/32.7/33.1/32.1
2.8/9.8/8.8/85/8.4
10.2/23.3/22.1/21.3/21.5
6.1/32.4/36.3/39.0/38.5
12.4/40.2/41.9/42.2/42.0

0.1/6.2/9.3/10.5/10.1
0.2/8.6/12.2/13.0/13.4

0.1/63/9.1/11.0/12.4
02/31.5/44.7/48.7/49.5
0.6/25.8/28.2/31.4/31.0
1.7/39.4/422/43.0/42.7
0.7/36.2/49.9/53.2/55.0
4.6/46.9/54.0/57.0/58.4

0.6/3.8/145/15.7/15.9
1.6/24/19.5/21.7/23.2
1.1/56/165/17.0/16.4
4.1/299/572/56.5/58.9
2.8/9.8/33.5/35.3/35.2
10.2/23.3/49.7/49.3/48.2
6.1/32.6/61.8/64.3/65.5
12.4/40.0/61.3/62.4/62.3

MI-TI-DI-Admix | 20.0/53.2/55.0/55.7/54.7 9.4/548/60.1/61.8/63.1 19.9/53.1/68.1/69.7/69.3
VGG-16 — Inception-v3
Baseline +RAP +RAP-LS

I 0.0/0.0/0.0/0.0/0.0 0.0/0.1/0.0/0.1/0.1 0.0/0.0/0.2/0.0/0.2

Ml 0.0/0.0/0.0/0.0/0.0 0.0/0.0/0.2/0.0/0.0 0.0/0.0/02/0.5/0.3

TI 0.0/0.0/0.0/0.1/0.0 0.0/0.1/0.1/0.1/0.1 0.0/0.0/04/04/04

DI 0.0/0.0/0.0/0.0/0.0 0.0/0.0/0.4/0.6/0.4 0.0/0.0/0.7/0.7/1.1

SI 0.0/04/03/0.2/0.2 00/20/15/20/1.7 00/06/16/19/1.8

Admix 0.1/0.7/0.8/0.6/0.7 00/27/22/23/2.4 0.1/1.0/23/3.0/2.8

MI-TI-DI 0.1/1.0/08/1.1/0.7 00/1.8/28/3.0/34 0.1/09/3.4/4.0/4.6
MI-TI-DI-SI 1.7/7.719.1/9.87/9.6 06/122/145/13.8/152 1.7/8.6/11.4/12.1/13.7
MI-TI-DI-Admix | 3.6/124/122/11.5/11.6 1.1/145/16.1/159/171 3.4/11.2/159/17.4/17.6
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VGG-16 — ResNet-50

Baseline +RAP +RAP-LS

I 0.2/04/0.3/0.3/0.1 0.0/1.0/0.8/0.8/0.7 02/05/14/15/1.4

MI 04/05/0.6/0.5/0.5 02/1.1/13/13/1.3 04/02/21/24/1.9

TI 0.3/1.0/0.7/09/0.7 00/14/15/14/1.2 03/1.0/3.0/33/3.2

DI 0.5/28/3.1/34/2.8 00/49/6.7/65/17.3 0.5/39/9.5/10.1/9.7

SI 14/44/39/3.8/3.3 04/92/9.0/9.1/9.8 14/43/10.1/94/9.8
Admix 46/73/6.7/58/5.6 0.7/10.6/11.3/109/11.1 47/73/11.6/12.5/11.9
MI-TI-DI 1.8/102/11.7/11.9/11.8 0.0/10.8/14.6/15.7/16.7 1.8/9.5/20.2/21.6/22.9
MI-TI-DI-SI 8.8/30.1/31.6/30.3/31.0 3.2/30.8/32.5/335/353 9.0/29.5/36.9/38.5/38.7

MI-TI-DI-Admix

15.2/34.6/35.1/36.6/36.2

5.4/34.7/37.3/38.1/39.0

15.3/355/43.2/429/43.1

VGG-16 — DenseNet-121

Baseline +RAP +RAP-LS
I 0.1/02/04/70.3/0.2 0.0/0.7/1.1/0.7/1.4 0.1/03/12/15/1.7
MI 0.3/0.8/0.6/0.6/0.5 00/1.1/14/2.1/23 0.3/0.6/24/32/3.0
TI 0.1/06/1.1/1.0/0.8 0.0/09/1.7/1.6/1.7 0.1/09/25/27/29
DI 0.2/38/48/4.1/3.8 0.0/50/7.6/7.8/8.4 02/37/11.9/12.2/12.7
SI 1.3/9.0/89/77/17.2 0.3/14.0/15.6/16.4/16.8 1.3/82/17.0/17.4/17.8
Admix 49/143/134/13.2/13.0 0.7/17.9/20.5/20.2/20.2 4.9/14.0/23.9/24.2/23.6
MI-TI-DI 1.5/12.1/13.4/139/13.7 0.1/9.7/157/17.4/19.4 1.6/12.1/24.4/263/27.4
MI-TI-DI-SI 13.0/38.9/41.5/42.8/41.7 3.8/37.8/42.0/43.8/44.4 12.8/37.3/48.6/49.8/49.6

MI-TI-DI-Admix

19.0/45.5/47.0/47.7/48.0

6.8/41.3/452/44.8/45.1

19.1/45.3/52.9/549/55.2

Inc-v3 — ResNet-50

Baseline +RAP +RAP-LS
I 0.2/04/0.3/0.1/0.2 0.0/02/0.7/0.6/0.9 0.2/04/1.0/0.7/0.5
MI 0.1/03/0.3/0.2/0.2 0.0/06/14/15/1.7 0.1/03/0.8/1.6/1.5
TI 0.2/03/0.2/0.2/0.2 0.0/02/0.6/09/0.5 0.2/03/1.0/0.7/0.7
DI 02/15/14/19/1.6 0.1/25/43/43/4.6 02/15/50/5.1/6.4
SI 0.3/0.3/0.3/0.6/0.6 04/19/2.6/26/2.9 03/03/24/28/25
Admix 12/19/22/19/1.5 0.6/50/49/52/4.9 1.2/19/57/57/5.2
MI-TI-DI 0.6/16/2.0/24/1.8 00/42/63/7.7/83 0.6/1.7/62/7.0/17.5
MI-TI-DI-SI 1.5/47/55/58/56 0.7/8.6/103/11.1/11.9 1.5/5.0/10.0/9.6/10.7
MI-TI-DI-Admix | 2.8/89/9.5/9.6/9.6 14/12.6/14.0/13.6/13.6 28/8.6/14.5/15.1/16.7
Inc-v3 — DenseNet-121
Baseline +RAP +RAP-LS
1 0.0/0.0/0.2/0.0/0.2 0.0/0.2/0.4/0.6/0.6 0.0/0.0/0.2/04/0.3
MI 0.0/0.1/0.2/0.1/0.1 0.1/0.7/1.0/1.1/1.6 0.0/0.1/1.0/1.1/1.5
TI 0.0/0.3/0.2/0.0/0.1 0.0/0.3/0.3/03/0.7 0.0/0.3/0.9/0.9/0.6
DI 0.1/13/25/3.0/2.8 0.0/27/44/54/5.8 01/13/59/7.0/17.5
SI 0.2/0.7/0.9/0.8/0.9 0.0/24/33/29/2.7 0.2/0.7/3.2/3.1/3.2
Admix 1.1/2.6/25/23/2.0 05/727177/7.0/6.9 1.1/2.6/82/73/175
MI-TI-DI 0.5/3.1/3.8/45/4.1 0.2/54/10.8/12.6/14.8 0.5/33/10.6/11.8/13.4
MI-TI-DI-SI 1.9/9.0/9.4/9.5/10.4 1.1/155/19.8/19.8/21.2 1.9/9.0/19.1/20.2/20.9
MI-TI-DI-Admix | 4.6/15.7/16.8/17.4/17.9 2.4/232/245/26.6/275 4.6/15.0/29.1/30.2/31.6

Baseline

Inc-v3 — VGG-16
+RAP

+RAP-LS

MI-TI-DI-SI

MI-TI-DI-Admix

0.0/03/0.1/0.1/0.1
0.1/0.1/02/0.2/0.2
0.1/02/02/0.1/0.2
03/2.0/28/23/2.6
0.0/0.7/0.6/0.4/0.5
05/16/10/1.0/1.3
03/20/24/2.7/2.9
07/3.7/3.6/4.1/4.2
23/69/83/8.6/84

0.0/0.2/0.8/0.6/0.5
0.1/04/08/1.2/1.3
0.1/04/05/0.6/0.8
0.1/18/43/52/6.3
02/20/15/15/15
04/32/3.8/4.1/3.3
0.1/3.8/65/73/8.0
05/76/75/85/8.9
1.3/10.5/12.5/12.0/12.0

0.0/0.3/02/0.5/0.5
0.1/0.1/0.4/0.8/1.0
0.1/02/0.6/0.6/0.6
03/20/68/7.3/8.1
00/0.7/1.6/23/23
05/16/45/3.8/44
03/2.0/80/79/98
0.7/32/6.7/8.1/8.6
23/7.0/11.9/12.8/12.1
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Table 18: The untargeted attack success rate (%) of all baseline attacks with RAP. The results with
CFE loss and 10/100/200/300/400 iterations are reported. We highlight the results with K = 400 in

bold.
ResNet-50 — Inception-v3
Baseline +RAP +RAP-LS
I 259/35.5/353/347/34.6 12.3/483/54.1/555/57.0 25.7/36.0/54.1/56.5/57.2
MI 53.2/50.7/51.0/50.6/50.3 26.2/58.7/689/73.4/75.9 53.2/50.7/64.3/73.6/77.4
TI 30.0/453/44.0/453/455 164/579/639/64.6/66.1 30.0/45.1/62.3/65.3/67.0
DI 46.0/60.5/59.5/59.4/57.7 27.3/80.7/82.8/83.4/82.9 46.0/61.0/86.0/85.7/85.0
SI 50.1/66.0/65.6/66.0/65.9 60.6/80.5/80.9/80.9/79.7 49.9/66.6/85.2/85.0/84.4
Admix 66.6/78.7/79.2/78.0/77.7 73.9/87.6/87.0/86.8/874 67.6/79.4/91.8/92.3/92.6
MI-TI-DI 82.1/85.8/86.4/859/857 61.9/93.9/953/95.6/96.0 82.1/85.8/95.9/96.4/96.9
MI-TI-DI-SI 94.2/96.8/97.2/97.0/97.0 92.3/98.9/98.9/99.0/99.1 94.2/96.7/99.0/99.3/99.1

MI-TI-DI-Admix

97.3/98.6/98.5/98.5/98.3

95.1/99.4/99.4/99.3/99.2

97.3/98.5/99.8/99.8/99.8

Baseline

ResNet-50 — DenseNet-121
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

67.4/79.9/79.1/79.0/79.2
87.3/85.4/86.4/85.9/85.8
73.2/83.0/82.2/81.6/82.0
92.8/98.9/99.2/99.0/99.0
89.1/95.7/95.6/95.3/94.9
96.6/98.9/98.5/98.1/97.9
98.2/99.7/99.8/99.8/99.8
99.8/100/100/100 /100
99.9/100/100/100 /100

26.7/84.8/91.1/90.8/91.5
45.2/85.3/91.3/93.9/95.0
30.9/87.3/91.5/93.3/94.1
52.6/99.0/99.6/99.7/99.6
91.3/98.9/99.0/99.2/98.9
96.2/99.6/99.6/99.6/99.6
86.4/99.9/100/100/100
98.8/100/100/100 /100
99.5/100/100/100 /100

67.8/80.1/89.8/91.3/91.9
87.3/85.4/90.8/95.0/96.1
72.9/82.4/90.9/94.2/95.1
92.8/99.0/99.6/99.7/99.7
89.1/95.7/99.7/99.77199.7
96.4/98.5/99.9/99.9/99.9
98.2/99.7/99.9/100/100
99.8/100/ 100/ 100 /100
99.9/100/100/ 100/ 100

ResNet-50 — VGG-16

Baseline +RAP +RAP-LS
I 682/774/78.1/774/78.0 36.2/84.6/89.2/90.7/91.1 68.4/77.3/87.1/90.9/92.9
MI 82.5/82.8/829/82.7/82.4 53.1/855/922/93.1/93.9 82.5/82.8/89.3/93.7/94.5
TI 70.6/80.5/79.8/80.8/81.0 39.3/86.9/90.6/92.5/93.1 71.1/80.0/89.0/91.9/93.3
DI 923/99.1/99.1/99.0/99.0 64.4/99.4/99.7/99.7/99.6 92.3/99.1/99.8/99.9/99.7
SI 82.2/90.0/88.9/89.6/88.6 81.3/95.7/958/95.7/9577 82.1/89.3/97.7/97.8/97.2
Admix 923/954/96.0/95.6/95.8 91.6/97.9/98.4/97.8/97.7 92.7/95.9/98.9/99.0/99.0
MI-TI-DI 97.9/99.7/99.7/99.8/99.8  859/99.5/100/100/100  97.9/99.7/99.9/99.9/99.9
MI-TI-DI-SI 99.1/99.8/99.8/99.7/99.7 97.4/99.7/99.9/99.9/99.9 99.1/99.8/99.8/99.8/99.8
MI-TI-DI-Admix | 99.2/99.8/99.8/99.8/99.8 98.5/99.7/99.9/99.9/99.9 99.2/99.8/99.9/99.9/99.9

DenseNet-121 — Inception-v3
Baseline +RAP +RAP-LS

MI-TI-DI
MI-TI-DI-SI
MI-TI-DI-Admix

31.2/48.5/46.9/46.3/46.5
56.8/58.8/59.3/60.6/59.3
37.7/54.0/55.1/54.6/54.2
51.0/67.9/68.3/66.7/67.6
54.7/71.5/71.6/70.3/71.6
72.5/82.0/82.6/82.2/82.0
81.5/89.7/89.8/89.4/89.1
92.3/952/949/95.1/95.1
95.8/97.7/97.2/97.3/97.9

18.0/54.9/58.1/59.8/60.2
32.2/65.6/74.1/78.9/80.4
20.4/61.0/64.7/67.3/66.7
31.4/84.0/86.8/86.7/86.6
61.1/82.9/83.1/83.5/83.2
73.0/89.9/90.3/89.5/89.8
62.5/94.8/96.8/97.1/97.1
88.6/97.7/98.0/98.0/98.3
93.2/98.6/98.6/99.0/98.8

31.6/46.9/589/61.0/61.1
56.8/58.8/74.6/80.0/82.8
38.2/54.5/65.4/67.6/70.0
51.0/68.0/89.0/88.8/86.9
539/71.0/86.4/87.0/87.4
71.7/82.8/93.9/93.2/93.8
81.5/89.6/96.1/96.9/97.1
92.4/95.2/97.8/98.5/98.4
95.4/97.6/99.0/98.9/98.9

Baseline

DenseNet-121 — ResNet-50
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

76.1/88.0/87.5/87.1/87.4
87.7/90.5/91.2/90.8/90.3
79.2/90.4/90.0/89.9/89.6
91.1/98.0/98.3/98.2/98.2
89.6/95.2/94.8/95.3/95.1
96.3/97.6/97.7/97.7/97.0
96.3/99.3/99.5/99.4/99.4
98.3/99.7/99.8/99.8/99.8
99.2/99.7/99.8/99.8/99.8

35.7/90.1/93.5/93.2/94.2
55.6/91.1/96.2/96.9/97.6
36.9/90.1/93.2/95.0/94.2
57.0/98.6/99.3/99.7/99.6
83.0/96.5/96.7/96.3/96.9
90.9/98.8/98.8/99.0/99.0
84.4/99.2/99.8/99.8/99.8
95.8/99.7/99.9/99.9/99.9
97.9/99.9/99.8/99.8/99.8

76.1/88.0/91.2/92.9/94.3
87.7/90.5/95.4/97.2/197.9
79.0/89.8/92.7/94.3/94.8
91.1/98.0/99.5/99.6/99.7
89.4/95.0/98.7/98.8/98.8
95.7/97.9/99.3/99.2/99.2
96.3/99.2/99.8/99.9/100
98.3/99.7/99.9/99.9/99.9
99.0/99.7/99.9/99.9/99.9
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Baseline

DenseNet-121 — VGG-16
+RAP

+RAP-LS

75.1/84.7/852/84.9/85.1

42.2/87.5/90.7/91.2/91.7

75.1/84.6/89.2/91.7/92.8

MI 85.1/87.2/88.6/87.9/87.5 58.4/90.2/93.7/95.1/96.0 85.1/87.2/94.2/97.0/97.6
TI 74.4/863/86.4/87.3/87.0 442/87.8/89.6/91.0/921 74.5/85.8/90.3/92.2/93.3
DI 90.8/98.0/98.4/98.1/98.1 63.3/98.6/99.2/99.6/99.4 90.8/97.9/99.4/99.2/99.4
SI 84.2/91.5/91.4/91.4/91.9 785/93.9/945/952/95.0 83.9/91.6/96.9/97.1/97.5
Admix 93.5/95.7/96.0/96.1/95.6 87.8/97.4/97.5/97.6/97.7 92.0/96.1/98.9/98.7/98.6
MI-TI-DI 95.1/99.0/99.2/99.2/99.2 84.2/99.1/99.4/99.5/99.5 95.1/99.0/99.9/100/100
MI-TI-DI-SI 97.9/99.5/99.4/99.4/99.2 93.3/99.0/99.2/99.3/99.3 97.9/99.4/99.7/99.7/99.7
MI-TI-DI-Admix | 98.4/99.4/99.4/99.5/99.4 96.1/99.7/99.7/99.6/99.6 98.3/99.4/99.8/99.7/99.8
VGG-16 — Inception-v3
Baseline +RAP +RAP-LS
1 143/222/22.0/222/22.0 9.4/238/26.1/23.7/24.7 14.4/21.8/24.1/25.4/24.9
Ml 32.3/31.3/31.0/30.1/30.0 16.4/30.4/369/42.0/42.7 32.4/30.7/35.0/39.2/42.2
TI 18.7/30.2/29.6/29.7/29.1 11.9/32.1/35.7/34.9/36.2 18.3/29.3/34.2/36.0/37.1
DI 18.1/29.7/299/30.4/29.9 142/43.6/46.1/46.5/46.6 18.0/29.2/50.1/51.5/51.6
SI 31.0/45.1/46.1/45.1/458 46.7/709/72.0/73.4/74.0 31.0/44.6/73.0/74.3/74.7
Admix 40.2/54.9/555/549/555 57.0/78.0/77.6/77.9/77.6 41.4/56.0/80.0/79.9/80.8
MI-TI-DI 50.7/559/572/56.7/56.8 419/74.0/79.0/81.5/82.6 50.7/56.4/77.8/80.0/81.4
MI-TI-DI-SI 77.6/853/85.7/85.0/85.0 855/93.1/93.7/94.2/94.1 78.0/85.0/94.4/94.6/95.2
MI-TI-DI-Admix | 84.7/89.4/89.2/89.9/89.3 88.4/949/95.1/952/95.0 85.8/90.1/94.8/95.4/95.5
VGG-16 — ResNet-50
Baseline +RAP +RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

37.2/52.0/53.4/53.1/53.7
60.2/64.3/63.5/62.0/62.5
45.3/62.7/63.6/62.5/62.8
51.5/72.9/73.2/72.5/172.2
64.6/81.0/80.2/80.5/80.0
76.8/87.5/88.2/88.0/87.3
81.1/89.9/89.8/90.3/90.0
95.1/97.6/98.0/97.9/97.6
97.2/98.1/98.0/98.1/97.8

17.8/48.5/53.9/53.7/53.0
329/57.1/167.6/73.1/76.2
19.4/56.6/63.0/65.6/64.8
29.6/80.9/85.0/86.4/86.0
68.1/91.9/92.3/92.4/92.7
79.4/93.8/94.4/95.2/94.6
66.7/94.6/96.3/96.9/97.2
94.7/98.4/98.8/98.9/98.8
96.1/99.1/99.2/99.3/99.2

38.1/53.0/52.4/54.8/54.2
60.4/62.0/66.3/73.2/76.4
46.0/62.9/63.5/65.8/65.8
51.4/73.8/88.9/89.2/88.8
64.9/80.6/95.1/95.3/94.7
77.6/88.3/96.6/96.8/96.8
81.4/88.5/96.5/97.3/97.7
95.2/97.5/99.3/99.4/99.4
97.3/98.6/99.5/99.6/99.6

Baseline

VGG-16 — DenseNet-121
+RAP

+RAP-LS

MI-TI-DI
MI-TI-DI-SI
MI-TI-DI-Admix

35.4/50.4/49.8/48.4/49.1
62.1/63.8/62.8/61.7/60.5
43.5/58.6/58.7/57.2/55.9
48.1/70.2/68.9/70.0/68.8
65.3/82.3/82.4/82.0/82.1
79.6/89.4/88.6/88.4/88.2
80.3/87.0/88.7/89.3/88.8
95.3/98.2/98.4/98.4/98.1
97.1/98.6/98.8/99.1/98.9

15.4/46.0/49.6/50.5/50.6
26.6/51.1/63.4/70.0/73.0
19.4/55.8/62.7/63.0/63.7
26.5/79.9/82.3/84.2/85.0
71.3/93.3/93.7/94.4/94.8
83.5/96.1/95.9/96.2/96.4
62.9/94.0/959/96.4/97.0
959/99.2/99.2/99.2/99.2
97.4/99.4/99.6/99.6/99.5

35.2/50.3/49.7/52.9/51.4
61.6/62.5/62.7/70.5/73.9
44.3/58.3/60.3/63.8/62.1
479/70.5/85.1/87.2/87.2
65.5/82.2/95.2/95.4/95.7
79.2/88.9/97.4/97.4/97.2
80.4/86.8/96.8/97.2/97.3
95.4/98.2/99.5/99.5/99.4
97.3/98.5/99.5/99.5/99.6

Baseline

Inc-v3 — ResNet-50
+RAP

+RAP-LS

MI-TI-DI-SI
MI-TI-DI-Admix

34.0/48.4/51.2/50.1/51.5
58.5/59.1/60.4/60.3/62.0
33.6/46.9/48.7/48.5/49.3
48.4/65.8/67.2/68.4/68.4
43.7/61.9/63.9/65.1/66.2
56.1/73.0/759/76.9/175.9
722/79.5/81.9/81.9/82.9
82.9/88.3/88.3/88.4/89.0
89.8/91.6/91.3/91.4/91.5

22.7/58.6/60.9/61.1/62.1
43.8/77.0/81.7/84.0/85.8
21.8/58.9/60.2/61.7/63.4
33.3/78.8/81.4/81.4/81.7
45.8/67.0/69.4/69.5/69.8
57.0/77.5/79.8/80.3/80.2
61.2/88.1/90.8/91.9/91.8
83.5/90.8/91.2/90.6/91.2
89.0/93.9/94.0/94.0/94.1

34.5/49.0/60.2/60.5/62.0
58.5/59.1/80.0/82.6/84.8
33.1/47.2/59.5/61.5/61.6
48.3/65.7/80.7/82.3/81.8
43.6/62.3/72.5/73.4/72.8
56.3/73.4/82.9/84.0/84.9
72.2/79.4/89.9/91.5/90.6
82.8/88.1/91.9/92.6/92.3
89.6/92.3/94.1/94.8/94.7
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Inc-v3 — DenseNet-121

Baseline +RAP +RAP-LS
1 352/472/473/46.8/48.7 21.4/543/57.2/59.4/60.8 34.9/47.5/58.7/58.8/60.0
MI 57.4/56.2/56.5/56.8/56.7 429/74.0/80.1/82.5/84.6 57.4/56.2/77.4/81.9/84.6
TI 35.8/48.6/47.8/489/49.4 22.1/59.6/63.3/65.7/63.4 355/48.7/61.6/64.2/63.8
DI 53.2/72.1/71.8/71.5/71.9 357/81.9/83.7/85.1/85.0 53.2/71.8/84.1/85.2/84.0
SI 46.6/63.7/65.1/659/65.9 52.6/72.4/73.5/745/74.9 46.6/63.0/77.7/779/77.2
Admix 60.5/76.7/78.0/79.3/78.5 63.9/83.2/83.4/84.1/83.7 61.9/769/87.7/87.3/87.4
MI-TI-DI 76.7/84.7/85.7/85.7/85.7 65.1/91.5/92.8/94.0/94.2 76.7/84.6/92.6/92.9/93.3
MI-TI-DI-SI 89.0/91.9/91.7/91.8/92.0 89.0/94.7/95.6/952/952 89.0/91.4/95.1/95.4/95.6

MI-TI-DI-Admix

93.5/95.5/959/95.1/95.4

93.3/96.8/96.9/96.4/96.2

94.1/95.5/97.2/97.5/197.6

Inc-v3 — VGG-16

Baseline +RAP +RAP-LS
I 39.9/53.1/54.1/53.7/551 29.1/63.0/65.8/669/65.9 39.7/52.6/65.6/68.3/68.0
MI 60.7/62.2/63.8/62.1/63.1 50.7/76.1/81.0/83.6/84.9 60.7/62.2/79.8/84.0/84.6
TI 41.6/55.1/552/553/58.1 31.1/659/67.1/68.2/68.6 41.5/55.1/66.3/68.0/69.5
DI 549/73.4/745/76.0/76.1 44.4/83.4/84.7/85.0/85.2 549/73.0/85.7/87.2/86.4
NI 46.7/62.4/64.4/65.7/66.0 47.4/67.6/69.2/68.6/69.2 46.3/64.1/72.4/72.1/73.0
Admix 57.3/73.2/72.8/74.0/745 573/754/759/77.5/77.2 553/73.4/82.6/82.2/83.5
MI-TI-DI 74.7/82.7/84.7/84.6/851 67.7/90.0/91.9/92.3/92.7 74.7/82.5/90.4/90.8/91.0
MI-TI-DI-SI 79.8/88.0/87.6/87.5/87.6 81.6/89.0/89.4/89.4/90.3 79.7/87.8/92.4/92.5/92.9

MI-TI-DI-Admix

87.9/89.7/90.7/91.4/91.4

87.0/92.2/92.3/92.5/93.2

87.7/91.7/94.5/94.6/94.1
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