
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTER: TOWARD POWERFUL AND EFFICIENT AU-
TOREGRESSIVE VISION–LANGUAGE–ACTION MOD-
ELS WITH LEARNABLE ACTION TOKENIZER AND
BLOCK-WISE DECODING

Anonymous authors
Paper under double-blind review

Adaptation
Reconstruction

Zero-shot

Generalization

Multiple Embodiments

Data in the Wild

CompressionUniversal

FASTer
Learn

Transfer

Im
pr
ov
e

Control Frequency(Hz)

Performance(%)

Figure 1: We introduce FASTer, a novel action tokenizer that achieves superior performance and
efficiency. Based on this tokenizer, FASTerVLA achieves new state-of-the-art results in both overall
performance and inference speed across diverse benchmarks and different embodiments.

ABSTRACT

Autoregressive vision-language-action (VLA) models have shown strong capabil-
ities in robotic manipulation. However, their core component—action tokeniza-
tion—often suffers from a trade-off between reconstruction accuracy and infer-
ence efficiency. We present Flexible Action Sequence Tokenization for efficient
inference (FASTer), a vector-quantization-based learnable tokenizer framework.
FASTer represents action chunks as single-channel images to capture global
spatio-temporal relationships. Combining a transformer backbone with residual
vector quantization, it models cross-dimensional dependencies and regulates code
length, thereby preserving structured action dependencies while enabling flexible
code organization for downstream VLA models. Building on FASTer, we propose
FASTerVLA, which integrates a block-wise autoregressive decoding paradigm
and an autoregressive action expert to fully exploit the strengths of autoregres-
sive VLAs. FASTerVLA surpasses existing state-of-the-art VLA models in both
performance and inference speed. We construct a systematic evaluation frame-
work for action tokenization and, through comprehensive analysis, demonstrate
the performance, efficiency, and flexibility of FASTer across models, tasks, and
embodiments. Furthermore, extensive experiments show that FASTerVLA fur-
ther enhances overall capability, surpassing previous state-of-the-art VLA models
in both inference speed and task performance across diverse simulated and real-
world settings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION
Vision-Language-Action (VLA) models represent a paradigm shift in robotics, embodying gener-
alist robot policies trained on increasingly large-scale robotic datasets (Chenjia Bai, 2024). These
models are categorized primarily by their method of robot action prediction, with the most promi-
nent approaches being diffusion-based (Team et al., 2024; Black et al., 2024) and autoregressive
VLA (Belkhale & Sadigh, 2024; Kim et al., 2024; Pertsch et al., 2025) models. While diffusion-
based models have demonstrated superior precision in manipulation tasks, they often exhibit a no-
table deficiency in leveraging critical visual and linguistic cues (Pertsch et al., 2025; Dong et al.,
2025). In contrast, recent research indicates that a carefully designed autoregressive VLA model
can increasingly bridge the performance gap with its diffusion-based counterparts, while simultane-
ously offering enhanced instruction-following capabilities (Pertsch et al., 2025; Intelligence et al.,
2025), superior scene generalization (Pertsch et al., 2025), and effective transfer of common-sense
knowledge (Brohan et al., 2023). Most importantly, autoregressive VLA models share the most
architectural similarity to the highly successful Vision-Language Models (VLMs), suggesting sig-
nificant potential for future advancements.

A pivotal challenge within autoregressive VLA models is the development of an appropriate to-
kenization scheme to discretize continuous robot actions into action tokens (Wang et al., 2025c;
Pertsch et al., 2025). Numerous sequence modeling studies, including LLMs and SpeechLLMs,
have demonstrated that tokenizer quality directly determines model performance (Radford et al.,
2019; Zhang et al., 2023; Gong et al., 2025). A further challenge for autoregressive VLA mod-
els is their inference efficiency, as they are considerably slower than diffusion-based counterparts
(Kim et al., 2024; Intelligence et al., 2025). From this perspective, an effective action tokeniza-
tion method must fulfill four key requirements: i) High compression efficiency: It must generate
a minimal number of tokens for long sequences to ensure efficient and fast inference. ii) Robust
reconstruction quality: As fewer tokens reduce the available information space, it is essential to
guarantee high reconstruction fidelity rather than pursuing compression at the expense of accuracy.
iii) 2D structural modeling: To achieve a favorable trade-off between efficiency and accuracy, the
tokenizer must account for the two-dimensional characteristics of action sequences and capture their
intrinsic spatio-temporal structure. iv) Flexibility: The tokenizer should enable out-of-the-box ap-
plicability across different backbones, tasks, and embodiments, thereby serving as a measure of its
generalization ability. However, preliminary experimental results, as illustrated in Figure 1, indicate
that existing tokenization methods fail to comprehensively satisfy these principles.

To address these challenges, we introduce Flexible Action Sequence Tokenization for efficient
inference (FASTer), which fulfills the aforementioned expectations. FASTer first non-uniformly
groups the action sequence into patches based on their semantic properties, which effectively miti-
gates the negative impact of imbalanced data distribution across different action dimensions. Subse-
quently, we employ a hybrid transformer architecture to perform residual vector quantization (RVQ)
(Parker et al., 2025; Lee et al., 2022), enabling a superior and flexible trade-off between reconstruc-
tion accuracy and the token budget. The tokenizer’s design is further optimized by simultaneously
reconstructing the action sequence in both the time and frequency domains, ensuring it can capture
both fine-grained local details and overall global trends. Through pre-training on a large-scale robot
learning dataset, FASTer demonstrates exceptional generalization capabilities, enabling its flexible
application across diverse backbones, tasks, and embodiments. For high-dimensional action se-
quences, such as those for whole-body control, it achieves extremely high compression rates while
maintaining a high degree of reconstruction accuracy. Building upon FASTer, our autoregressive
VLA model not only consistently outperforms prior state-of-the-art approaches across multiple tasks
but also achieves substantial inference speedups through a mixture of experts design and block-wise
decoding techniques. We summarize our contributions as:

• We propose FASTerVQ, a compact, high-compression-ratio action compression module. It com-
bines transformer-based RVQ with a lightweight mixture mechanism to jointly compress action
sequences into a unified discrete codebook while preserving control-relevant structure.

• We introduce block-wise decoding for action-token modeling and an autoregressive action expert
to better leverage autoregressive VLAs. These innovations, for the first time, enable an autoregres-
sive VLA to surpass non-autoregressive counterparts in inference speed while preserving accuracy.

• We establish a comprehensive benchmark spanning four real robots and four diverse simulators,
enabling the first systematic analysis of action tokenization for VLAs. This study shows that
FASTerVQ achieves superior trade-offs between reconstruction fidelity and code length, and fur-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ther empowers FASTerVLA to deliver consistent state-of-the-art performance across embodi-
ments, tasks, and VLM backbones in both real and simulated settings.

2 RELATED WORK

Vision-Language-Action models. With advances in LLMs and multimodal systems (Sun et al.,
2024; Achiam et al., 2023; Bai et al., 2023; Dubey et al., 2024), Vision-Language-Action (VLA)
models have become a promising approach for universal manipulation, leveraging the scalability of
pre-trained VLMs (Brohan et al., 2023; Driess et al., 2023; Kim et al., 2024; Black et al., 2024;
Pertsch et al., 2025; Intelligence et al., 2025). Since robotic actions are continuous, two main
paradigms have emerged: diffusion-based continuous modeling (Bjorck et al., 2025; Black et al.,
2024; Kim et al., 2025) and autoregressive generation of discretized tokens (Brohan et al., 2023;
Kim et al., 2024; Pertsch et al., 2025). While autoregressive VLAs improve language understand-
ing and generalization, their inference is still much slower than non-autoregressive models (Brohan
et al., 2023; Pertsch et al., 2025; Black et al., 2024), restricting deployment to low-frequency tasks.

Action sequence and tokenization. Autoregressive architectures require converting continuous
robot actions into discrete tokens. Some methods serialize individual action dimensions directly
as targets (Brohan et al., 2023; Kim et al., 2024), but this yields low information density. More
commonly, entire action chunks are flattened into one-dimensional sequences (Zhao et al., 2023;
Chi et al., 2024; Pertsch et al., 2025; Belkhale & Sadigh, 2024), either as relative (Black et al.,
2024; Intelligence et al., 2025) or delta actions (Pertsch et al., 2025). Tokenization strategies include
binning (Brohan et al., 2023; Kim et al., 2024), which lacks compression, and DCT+BPE (Pertsch
et al., 2025), which reduces redundancy but introduces variable sequence lengths and slow inference.
VQ-based tokenizers (Belkhale & Sadigh, 2024; Wang et al., 2025c) offer another direction, yet—as
shown in Section 4—they suffer from poor reconstruction quality and degrade VLA performance.

VQ Tokenizer. VQ tokenization is widely used for modal compression across images (Yu et al.,
2024; Sargent et al., 2025; Tian et al., 2024; Bao et al., 2022), video (Yu et al., 2023; Tang et al.,
2024; Zhao et al., 2024; Wang et al., 2024a), audio (Casanova et al., 2024; Parker et al., 2025;
Zhang et al., 2023; Lahrichi et al., 2025), graphs (Wang et al., 2025a; Zeng et al., 2025; Nguyen
et al., 2024), and multimodal fusion (Sadok et al., 2025; Liu et al., 2025; Wang et al., 2024b). Audio
codecs and action tokenizers share key traits: both process continuous time-series with short-term
fluctuations, long-term trends, and periodic patterns (Parker et al., 2025; Zhai et al., 2025); both face
non-uniform information density (Parker et al., 2025; Zhang et al., 2023); and both require strong
temporal causality to ensure sequence coherence (Lahrichi et al., 2025). These parallels suggest that
techniques from audio codecs can inform the design of effective action tokenizers.
3 METHOD

Problem Formulation We consider the problem of learning a VLA policy that maps multimodal
observations to sequences of robot actions. At each time step, the policy receives three inputs: an
RGB image It ∈ RH×W×3, a proprioceptive state st ∈ Rds , and a language instruction l ∈ L. The
output is an action sequence of horizon length H , denoted as At:t+H = (at, at+1, . . . , at+H−1).
Instead of predicting continuous actions directly, we represent each action chunk as a sequence of
discrete codes (z1, . . . , zN) obtained via a VQ tokenizer. The policy is then trained in an autore-
gressive manner to generate these codes conditioned on (It, st, l). The VQ tokenizer subsequently
decodes the generated codes back into continuous actions.

A key bottleneck of autoregressive VLA models lies in the token sequence length. Since tokens
are generated sequentially, each requiring a full forward pass through a large transformer, inference
latency grows at quadratically due to attention complexity—with sequence length. Moreover, correct
decoding requires all tokens to be predicted accurately, making the model brittle when token lengths
vary. This issue is particularly acute in whole-body control, where high degrees of freedom lead to
long action sequences. For example, the FAST tokenizer requires 150–200 tokens to represent a 2-
second motion, which corresponds to an inference delay of roughly three seconds. Our experiments
with policies initialized from multiple VLMs further confirm that training a VLA on variable-length
codes is substantially more challenging than on fixed-length representations.

We address these issues from three complementary perspectives: (1) We propose FASTerVQ, a
RVQ-based tokenizer to produce more compact and data-driven action representations. (2) We pro-
pose block-wise autoregressive decoding, which allows the model to generate multiple tokens in
parallel, improving both action modeling and inference efficiency. (3) We introduce a multi-expert

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pa
tc

hf
y

&
Fl

at
te

n

Tr
an

sf
or

m
er

 E
nc

od
er

RVQ

Li
ne

ar

Li
ne

ar

U
np

at
ch

fy
&

U
nf

la
tte

n

Tr
an

sf
or

m
er

 D
ec

od
er

Time domain L1 loss

Freq. domain L1 lossDCT DCT

Raw Action

Latent token

Action Codes

Horizon 𝐻

Ac
tio

n
D

im
 D

Bimanual
Action

𝐶!
Action Codes

Residual Vector Quantization

𝐶" ∗ 𝐶! ∗ 𝒛

𝑁#×𝐶!×𝐶"

(a) Action Patchifier (b)Action Tokenization Pipeline

𝐶$ 𝑁#

Single-Arm
Action

Pa
tc

hi
fy

Bimanual
Action

Horizon

Ac
tio

n
D

im

Whole-body
Action

Arm Gripper Torso Chassis

Pa
tc

hi
fy

Pa
tc

hi
fy

Horizon 𝐻

Ac
tio

n
D

im
 D

Bimanual
Action

𝜙%&#

𝑧'	

𝑐)	

𝑐*!
	

𝜙+%#

Figure 2: FASTerVQ overview. (a) The raw action sequence is patchified into compact tokens,
reducing horizon redundancy and avoiding long inputs to the downstream model. (b) In the tok-
enization pipeline, FASTerVQ applies DCT and L1 reconstruction losses and adopts RVQ, encod-
ing actions into Nc code levels; each level can be reshaped into a Ch × Ca tensor. When used with
FASTerVLA, these structures are flattened into a single token sequence.

structure, where a lightweight expert module specializes in action decoding on top of the VLM
backbone, enabling efficient learning of action-specific information.

3.1 FASTERVQ

Our action tokenizer architecture comprises two main components: an action patchifier and a
transformer-based residual vector quantization (VQ) model. This design leverages the unique char-
acteristics of robotic action sequences to enhance tokenization efficiency and fidelity.

Action Patchifier. Although robot action sequences could be fed directly into a transformer as a
sequential vector, a preliminary patching step proves to be more effective due to two key properties
of these sequences. First, robot actions often exhibit smoothness and temporal redundancy, which
can be addressed by chunk-wise grouping. This approach increases both the compression rate and
the information density per token. Second, the different dimensions of an action vector correspond
to distinct physical quantities with highly non-uniform data distributions. For instance, a robot’s
gripper state is often binary (open or closed), and the base movement is typically zero during arm
manipulation. This distributional imbalance can pose training challenges. Grouping similar physical
quantities a priori effectively mitigates this issue. Specifically, for an action sequence At:t+H =
(at,at+1, . . . ,at+H−1), where at ∈ RD, we perform a two-dimensional partitioning. The temporal
dimension is uniformly divided into m groups of length h. And the action dimensions are non-
uniformly partitioned into n groups based on their physical characteristic (e.g., end-effector position,
orientation, and gripper state are grouped separately). Each group is then padded to the largest group,
d. This process yields a structured tensor of shape (m · h)× (n · d), which is subsequently flattened
into a set of patches, aPt:t+H ∈ R(m·n)×(h·d). This procedure can be conceptualized as a form of
non-overlapping convolution, a method widely adopted for early data processing in various domains
due to its proven efficacy (Yu et al., 2023; Liu et al., 2023b).

Residual VQ Action Tokenizer. Inspired by the success of Residual Vector Quantization (RVQ)
and transformer-based codecs (Parker et al., 2024), we design a transformer-based hybrid en-
coder–decoder architecture named Transformer Action AutoEncoder (TAAE). It combines the adap-
tive global receptive field of a transformer and the local relation modeling and downsampling capac-
ity of convolutions, forming an effective information bottleneck. Moreover, RVQ naturally imparts
a coarse-to-fine structure: early stages capture low-frequency components, while later stages re-
fine high-frequency residuals. This property not only improves representational efficiency but also
stabilizes both the training and inference of downstream VLA models. For an input action patch
aPt:t+H , the encoder ϕenc downsamples it into a latent embedding z ∈ RCh×Ca . We then apply RVQ
with Nc quantization levels, decomposing z into residuals as r1 = z, ri+1 = ri − Qi(ri), and the
quantized latent embedding is zq =

∑Nc

i=1 Qi(ri). Each quantizer Qi selects its nearest codebook
entry ek with index k = argminj ∥ri − ej∥2. Collecting these indices yields a discrete code tensor
C ∈ {1, . . . , |Z|}Nc×Ch×Ca , where each element ci,h,a denotes the index of the chosen codebook
vector at stage i and location (h, a). This tensor C serves as the action tokens for the downstream

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Vision Tower

Multi-view images Instruction State Actions

Stacking Cube

Action Expert
(Sharing the VLM structure)

VQ Decoder

<BoBlk>

<BoBlk>

Image Token Text Token State Token Action Token Special Token

<EoBlk>

Horizon1 Horizon2

Codebook1

Action Token

Decode Order

Any
Transformer-based VLM

Instruction:
Stacking Cube

State: Joint
Angular / EEF

Pose

(b) Decoding Order

(c) Attention Mask(a)Overview of FASTerVLA

One Decoding Step

Figure 3: FASTerVLA. (a) Overview. The model takes RGB images, proprioceptive states, and
a language instruction as input to a transformer–based VLM. An Action Expert autoregressively
generates discrete action tokens, which a VQ decoder maps into the final action sequence. (b)
Decoding order. Codes are generated codebook–wise before moving along the temporal horizon,
yielding greater stability than horizon–first decoding. (c) Block–wise causal mask. During training,
tokens in each block attend only to preceding tokens and tokens within the same block.

policy. The quantized embedding zq is then passed through the decoder ϕdec via a straight-through
estimator (STE) (Van Den Oord et al., 2017) to reconstruct the action patch âPt:t+H .

Training Objective. The action tokenizer is trained by minimizing the reconstruction loss Lrec and
the commitment loss Lcommit. The reconstruction loss Lrec is composed of two components: an ℓ1
loss on the temporal action signal aPt:t+H for step-wise action reconstruction, and an ℓ1 loss on the
Discrete Cosine Transform (DCT) of the signal, DCT(aPt:t+H), to capture the overall trend. We
select the ℓ1 loss due to its robustness against the extreme value noise often present in real-world
robot action data, which contributes to training stability:

L =
∥∥aP

t:t+H − âP
t:t+H

∥∥
1
+
∥∥DCT(aP

t:t+H)− DCT(âP
t:t+H)

∥∥
1
+ λ · ∥z − sg(zq)∥22 , (1)

where sg denotes the stop-gradient operation, and λ balances the loss components. The RVQ code-
books are updated using an exponential moving average (EMA) with dead codes reinitializing.

3.2 FASTERVLA
Architecture. As shown in Figure 3 (a), we follow mainstream VLM structure—a vision tower,
a projection layer, and a transformer-based language backbone—and keep this layout for VLA to
ensure compatibility with standard pretrained checkpoints. Visual inputs are encoded by the vision
tower and projected into the model dimension; language tokens follow the usual text pipeline. Ac-
tion embeddings.Action embeddings. We resize the original embedding table to include |C| new
slots for action codes, which are freshly initialized rather than reusing rarely used text embeddings.
Proprioception encoding. Proprioceptive states are discretized into integers and tokenized as text,
enabling direct use within the transformer without extra encoders. Positional encoding and spacing
augmentation. We use rotary position embeddings (RoPE) for all token streams. Because actions
are encoded at a fixed sequence length, naively predicting a fixed-length target can lead to position
overfitting. To mitigate this, we apply spacing augmentation: during training, the relative offset be-
tween adjacent action tokens is jittered around unit spacing, i.e., if pi denotes the position of token
i, we set pi = pi−1 + 1 + ϵi with small integer jitter ϵi sampled symmetrically (order preserved).
At inference, we revert to fixed unit spacing. This encourages the model to rely on content rather
than absolute positions within the horizon. Lightweight action expert. Inspired by PI0 (Black et al.,
2024), we add a lightweight transformer head (the action expert) sharing the backbone architecture
but with far fewer parameters. The backbone encodes the multimodal context once, while the ex-
pert autoregressively decodes action tokens from these features. This design (i) reduces interference
with pretrained VLM weights during full finetuning, and (ii) enables efficient decoding and easy
block-wise AR adaptation without repeatedly invoking the full backbone.

Block-wise Autoregressive (BAR). Let an action chunk be encoded by the VQ tokenizer as a se-
quence of N = Nc×Ch×Ca discrete codes C = (c1, . . . , cN). We train the policy autoregressively
with next-token prediction under teacher forcing: LAR = −

∑N
i=1 log pθ

(
ci
∣∣ c<i, It, st, x

)
. At infer-

ence, the model predicts tokens sequentially until the <eos> symbol is produced, and the resulting
code sequence is decoded by the VQ decoder into a continuous trajectory At:t+H . A key inefficiency

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of vanilla AR arises because many action codes are only weakly coupled across dimensions: dis-
tinct action dimensions often carry independent physical semantics and heterogeneous distributions.
To address this, we adopt a block-wise objective that predicts the next block of tokens in a single
forward pass. Specifically, partition C into J contiguous blocks of size B: C = {C1, . . . , CJ} with
Cj = (cj,1, . . . , cj,B) and N = JB. The BAR loss is defined as

LBAR = −
J∑

j=1

B∑
i=1

log pθ
(
zj,i

∣∣Z<j , It, st, x
)
, (2)

where training still uses teacher forcing. The causal mask is replaced by a block-wise causal mask
that permits intra-block attention (Fig. 3c). Moreover, to integrate text and action generation, BAR
employs two special tokens, ⟨BoBlk⟩ and ⟨EoBlk⟩, which toggle between block-wise prediction and
standard AR, enabling seamless switching within a single sequence.

Decoding order. Unlike standard AR, BAR organizes decoding hierarchically across both the code-
book and horizon dimensions (Fig. 3b). The model first completes all codes within one codebook,
decoding horizon 0, 1, . . . ,H − 1, before moving to the next codebook. This ordering follows the
residual quantization pipeline, where earlier codebooks capture coarse, low-frequency components
and later codebooks refine higher-frequency residuals. As a result, decoding naturally progresses
in a coarse-to-fine manner, which not only improves representational efficiency but also stabilizes
both training and inference of VLA models. Since each block is predicted in parallel, BAR reduces
forward passes from N to roughly N/B. Shown in our Table 5, J is small (e.g., 3 on LIBERO),
leading to up to a 3× reduction in inference latency compared to PI0 (Black et al., 2024).

Asynchronous inference for FASTerVLA. Inspiring by RTC (Black et al., 2025), We overlap exe-
cution with prediction to mitigate latency, formulating the problem as conditional generation where
the policy autoregressively predicts future actions conditioned on past action tokens. This asyn-
chronous scheme reduces wall-clock task time on long-horizon benchmarks without degrading suc-
cess rates. the detial experiments and implementation choice is in appendix A.4.

4 EXPERIMENTS

We first conduct in-depth experiments and analyses on FASTerVQ to investigate its properties as
an action tokenizer in Section 4.2; we then extend our study to FASTerVLA, conducting extensive
benchmark experiments to validate its overall performance in Section 4.2. With these comprehensive
experiments, we seek to address the following research questions:
1) How well does FASTer balance accuracy and efficiency in modeling action chunks?
2) How flexible is FASTer in adapting across tasks, embodiments, and model backbones?
3) How strong are the performance and generalization ability of the VLAs built upon FASTer?
4) How do tokenizers’ performance and vocabulary distribution affect the performance of VLA?

4.1 EXPERIMENT SETUPS

Benchmarks. We evaluate across nine benchmarks spanning six distinct embodiments in both sim-
ulated and real-world settings, assessing multiple capability dimensions as illustrated in Figure 9.
These tasks include deformable manipulation, whole-body control, language-conditioned follow-
ing, and long-horizon decision-making. Details of the benchmarks and the setup of each task are
provided in Appendix A.1.

Baselines. We begin by evaluating FASTerVLA on the most widely used public benchmark, com-
paring it against prior state-of-the-art models spanning both non-autoregressive (top) and autore-
gressive (mid) architectures in Table 1. As other downstream or generalization tasks baselines,
we include π0 (Black et al., 2024), a non-autoregressive VLA with flow matching, and π0-FAST
(Pertsch et al., 2025), the state-of-the-art autoregressive VLA built on the Fast tokenizer.

Training. All fine-tuning experiments are initialized from pretrained VLA checkpoints, with
FASTerVLA initialized from π0-FAST weights. In experiments such as Simpler and Droid, all
VLA models are instead initialized from VLM weights and pretrained on the same dataset to ensure
consistency. The detailed training settings are reported in Appendix A.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model LIBERO Simpler-Bridge
Spatial Object Goal Long Average Spoon Carrot Block Eggplant Average

Diffusion Policy (Chi et al., 2023) 78.3 92.5 68.3 50.5 72.4 - - - - -
Octo-Base (Team et al., 2024) 78.9 85.7 84.6 51.1 75.1 12.5 8.3 0.0 43.1 16.0
SpatialVLA (Qu et al., 2025) 88.2 89.9 78.6 55.5 78.1 16.7 25.0 29.2 100.0 42.7
π0 (Black et al., 2024) 96.8 98.8 95.8 85.2 94.2 66.7 58.3 58.3 88.3 66.7
OpenVLA-OFT (Kim et al., 2025) 96.2 98.2 95.6 92.0 95.5 12.5 4.2 8.3 0.0 6.25
UniVLA (Bu et al., 2025) 96.5 96.8 95.6 92.0 95.2 54.2 66.7 50.0 4.2 43.8

OpenVLA (Kim et al., 2024) 84.7 88.4 79.2 53.7 76.5 32.0 30.0 18.0 38.0 29.5
Palligemma + Naive Tokenizer 55.8 64.8 64.4 31.2 54.1 66.7 29.2 12.5 54.2 40.9
MiniVLA (Belkhale & Sadigh, 2024) - - - 77.0 - 68.0 44.0 70.0 14.0 49.0
VQ-VLA (Wang et al., 2025c) - - 75.2 60.0 - 12.5 8.0 6.0 0.0 6.3
π0 FAST-R 1(Pertsch et al., 2025) 96.4 96.8 88.6 60.2 85.5 29.1 21.9 10.8 66.6 32.1
π0 FAST-D (Pertsch et al., 2025) 96.6 97.2 96.0 86.8 94.2 77.5 88.3 68.3 71.7 76.5

Ours(Normal) 99.4 98.8 94.8 88.6 95.4 97.5 83.3 65.0 78.3 81.0
Ours(BAR) 98.0 99.4 98.6 95.4 97.9 91.7 93.3 67.5 99.2 87.9

Table 1: Policy Performance on Libero and Simpler-Bridge Benchmark

Figure 4: Policy performance across embodiments and environments. Results are reported in the in-
distribution setting, covering two real-world embodiments and three simulated setups.

(a) VRR of diffenrent tokenizers,σ = 10-2 (b) VRR of FASTer with different scale data,σ = 10-3 (c) Tokenizer compression rate comparison.

Figure 5: Performance and efficiency trade-off of FASTer. In subfigure (a) and subfigure (b), ID
refers to in-distribution, OOD refers to out-of-distribution.

4.2 RESULTS AND ANALYSIS

FASTerVQ Combines Compactness and Fidelity As introduced in Section 1, an effective ac-
tion tokenizer should combine high reconstruction quality and high compression rate. Figure 5 and
Figure 5 compares FASTer against Fast and other VQ tokenizers regarding compression rate and
reconstruction quality. We find that, during training, the reconstruction of action chunks may fail
to accurately indicate the overall reconstruction quality, as shown in Figure 1. Therefore, we pro-
pose the Valid Reconstruction Rate (VRR) to quantify the reconstruction performance of an action
tokenizer on a specific dataset.

VRR =
Nvalid

Ntotal
, Nvalid =

Ntotal∑
i=1

1
(∥∥arecon

i − agt
i

∥∥
1
< σ

)
, (3)

where Ntotal is the total number of actions, Nvalid counts the actions whose ℓ1 distance between
reconstructed and ground-truth actions is below σ, arecon

i and agt
i are the reconstructed and ground-

truth actions, 1(·) is the indicator function, and σ is a hyperparameter controlling the reconstruction
tolerance, with a default value of 10−2, corresponding to an allowed error of approximately 1cm.
Although the baseline VQ methods perform well in terms of compression ratio, they exhibit signifi-
cant shortcomings in reconstruction accuracy, even on in-distribution datasets. As a result, the LLM

1π0 FAST-D: delta action chunks; π0 FAST-R: relative action chunks. All results use π0 FAST-D unless
otherwise noted.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: FASTer consistently outperforms
FAST across various backbones on Libero.

Action chunk type σ
VRR(%)

Left-Arm Right-Arm
Absolute Joint Position

10−2 100.0 100.0
Delta Joint Position 100.0 100.0

Absolute Joint Position
10−3 19.41 23.57

Delta Joint Position 66.1 77.05

Table 2: FASTer fits the untrained embodiments
well.

backbone learns an inherently erroneous action vocabulary, which constrains overall performance,
especially in high-precision tasks. In contrast, FASTer achieves a balance between compression
ratio and performance by preserving reconstruction accuracy while using as few tokens as possible.

The Generalization and Flexibility of FASTerVQ A competent action tokenizer should effec-
tively leverage large-scale training data and remain applicable to new tasks and novel embodiments
out of the box.To evaluate this property, we trained two versions of FASTer on different amounts of
single-arm data: FASTer(S) and FASTer(L). The detailed data mixture can be found in Appendix
A.2. In Figure 5, FASTer demonstrates nearly lossless reconstruction of out-of-distribution action
chunks when σ = 10−2. Therefore, we computed the VRR under a more stringent tolerance. To
our surprise, we found that as the amount of data used for tokenizer pre-training increases, the tok-
enizer achieves better reconstruction accuracy for both in-distribution and out-of-distribution data,
as shown in Figure 5. Widow (cross-task) and Xarm (cross-embodiment, single-arm) preliminar-
ily demonstrate the flexibility of FASTer across different tasks and embodiments. We investigate
whether a tokenizer trained with end-effector (EEF) on single-arm data can generalize to different
robot configurations, such as dual-arm systems. Using FASTer(L), we modeled the two arms of Ag-
ilex separately and evaluated VRR on 400 real-world tasks (Table 2). Despite being trained only on
single-arm delta EEF data, the tokenizer achieved strong reconstruction for both absolute and delta
joint positions (see Appendix A.6). These results suggest that action chunks from different embod-
iments follow a shared distribution in the normalization space, implying that tokenization inherits
scaling behaviors similar to multimodal LLMs (Figure 5).

Performance of FASTerVLA. We first evaluate the performance of FASTerVLA and several SOTA
baselines in an in-distribution (ID) setting. This setting is characterized by using the same tasks
and scenes as in the training set, but with randomized object layouts to ensure robustness. The
evaluation is conducted across a comprehensive set of task suites, including three simulation envi-
ronments: LIBERO, VLABench, and GalaxeaManisim (Section 4, Figure 1), and three real-world
robotic platforms: xArm, and the bimanual and whole-body control modes of the R1Lite (Figure 1).
Our results demonstrate that FASTerVLA holds a consistent performance advantage over the SOTA
baselines across all benchmarks, except for VLABench, where its performance is marginally below
that of PI0. Critically, the integration of our FASTerVQ action tokenizer allows the autoregressive
VLA to surpass diffusion-based VLA models, establishing a new SOTA benchmark.

Generalization Ability of FASTerVLA. To evaluate the generalization and robustness of FASTer-
VLA, we conduct tests in an out-of-distribution (OOD) setting where the training and test tasks are
distinct. This evaluation utilizes a task suite comprising the VLABench simulation environment
and two real-world robotic platforms: WidowX, for which VLAs are pre-trained on BridgeData
(Walke et al., 2023), and Franka, pre-trained on DROID (Khazatsky et al., 2024). In the simula-
tion tasks, FASTerVLA achieves the highest overall success rate while also exhibiting the lowest
relative performance drop of 29% compared to its in-distribution baseline (Figure 7). On the real-
world robotic platforms, FASTerVLA demonstrates a consistent performance advantage (Figure 8).
Furthermore, FASTerVLA and FAST+ significantly outperform FAST and π0. To further under-
stand the underlying mechanisms, we conduct an in-depth analysis of the vocabulary distributions
of different tokenizers on BridgeData, as shown in Table 3. An immediate observation is that the
effective codebook size of Fast+ (2048 × 57%) and FASTer (4096 × 100%) is larger than that of
Fast (2048 × 48%). Examining the maximum token frequency Fmax, we find that FAST exhibits
a token with an occurrence rate as high as 10%. To gain a more holistic view of token utilization,
we further analyze the overall token distribution and compute normalized entropy. The results show
that FASTer and Fast+ achieve entropy values closer to 1, reflecting a more balanced vocabulary dis-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In-distribution
0

10%10%10%10%10%10%10%10%10%10%10%10%10%10%10%10%10%10%

% Success Rate

Cross-Category

-42%

-46%

-17%-42%

-46%

-17%-42%

-46%

-17%

Common-Sense

-74%

-44%

-25%-74%

-44%

-25%-74%

-44%

-25%

Semantic

-73%

-39%

-39%-73%

-39%

-39%-73%

-39%

-39%

Texture Disturbance

-25%

-55%
-66%

-25%

-55%
-66%

-25%

-55%
-66%

Average

-43%

-37%

-29%
-43%

-37%

-29%
-43%

-37%

-29%

% Success Rate

Pi0 Fast+ FASTer

Figure 7: Evaluation results of generalization ability on VLABench. The evaluation dimensions
cover generalization of language, vision, and goal and knowledge transfer.

Widow
0

20

40

% Task Progress

Droid

% Task Progress

AVERAGE

% Task Progress

Pi0 Fast Fast+ FASTer

Figure 8: Zero-shot performance.

Metric Fast Fast+ FASTer

Nvocab ↑ 2048 2048 4096
Usage [%] ↑ 48.39 57.37 100.0
Nactive(σ = 10−2) ↓ 8 16 3
Fmax [%] ↓ 9.63 1.82 1.35
Entropynorm ↑ 0.69 0.77 0.91

Table 3: Token distribution.

tribution. Taken together, these findings suggest that balanced token distributions are more suitable
for unleashing the generalization capacity of autoregressive models.

Cross-backbone ablity of FASTer Beyond cross-task and cross-embodiment generalization,
FASTer framework can also adapt to different backbones. We evaluated FASTerVLA with Pal-
ligemma2 (Steiner et al., 2024), Qwen2.5 (Yang et al., 2025; Gao et al., 2025), and InternVL3.5
(Wang et al., 2025b) on the Libero benchmark (Figure 6). FASTer consistently improved perfor-
mance, most notably raising InternVL3.5-2B’s success rate by 17.3% to 96.65%, turning it from
the weakest with FAST into the strongest overall. This gain stems from FASTer’s concise, regular-
ized, and data-driven representation, which better matches instruction distributions and avoids the
inefficiencies of variable-length tokens in FAST. Additional results are reported in Appendix A.5.

Inference Efficiency of FASTer. We benchmark FASTerVLA against π0 and π0-FAST with a
shared PaliGemma backbone (Beyer et al., 2024) on an RTX 4090 across Libero and R1Lite-WBC
(Jiang et al., 2025). FASTerVLA runs about 10× faster than π0-FAST, while approaching π0 when
feature extraction dominates. On Libero, runtimes are 140 ms for FASTerVLA, 200 ms for π0, and
224–628 ms for π0-FAST. The gain over π0 is modest (≈40 ms) since encoding alone costs ∼150
ms. On R1Lite-WBC, with higher action dimensions and absolute joint control, FASTerVLA and
π0 both run at ≈290–300 ms, while π0-FAST lags at 1,100–3,000 ms.

4.3 ABLATION STUDY

We systematically ablate key design choices of FASTerVQ (tokenizer, codebook size, and residual
depth) and FASTerVLA (action expert and block-wise decoding). The results confirm that our final
configuration achieves the best balance of accuracy, efficiency, and stability. Detailed results and
analysis are provided in Appendix A.3.

5 CONCLUSION
We propose an efficient autoregressive VLA framework that couples a flexible vector quantization
module with a efficient VLA training inference setting. It delivers strong task performance with
low-latency inference and generalizes across backbones, as the pretrained VQ can be reused in
downstream tasks without retraining. The success stems from three key ideas: a codec-inspired
RVQ balancing accuracy, diversity, and code length; block-wise autoregressive decoding for faster,
expressive inference; and a lightweight mixture-of-experts VLA for action tokens. These results
show that autoregressive modeling can be fast, transferable, and scalable for multimodal generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

The authors have adhered to the ICLR Code of Ethics. This work does not involve human subjects,
sensitive data, or raise any direct ethical concerns. All datasets used are publicly available.

7 REPRODICIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our source code will be made
public upon publication. Detailed descriptions of our methods and model architectures are available
in the section 3. All experimental settings, including datasets, training hyperparameters, evaluation
settings are specified in the section 4 and Appendix.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transform-
ers. In International Conference on Learning Representations, ICLR, 2022.

Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla with a smaller footprint, 2024. URL
https://github.com/Stanford-ILIAD/openvla-mini.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Kevin Black, Manuel Y Galliker, and Sergey Levine. Real-time execution of action chunking flow
policies. arXiv preprint arXiv:2506.07339, 2025.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
and Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions. arXiv
preprint arXiv:2505.06111, 2025.

Edresson Casanova, Ryan Langman, Paarth Neekhara, Shehzeen Hussain, Jason Li, Subhankar
Ghosh, Ante Jukić, and Sang gil Lee. Low frame-rate speech codec: a codec designed for fast
high-quality speech llm training and inference. arXiv preprint arXiv:2409.12117, 2024.

10

https://github.com/Stanford-ILIAD/openvla-mini

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuelong Li Chenjia Bai, Huazhe Xu. Embodied-ai with large models: research and challenges.
SCIENTIA SINICA Informationis, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching with-
out in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

Zibin Dong, Yicheng Liu, Yinchuan Li, Hang Zhao, and Jianye Hao. Conditioning matters: Training
diffusion policies is faster than you think. In The Thirty-ninth Annual Conference on Neural
Information Processing Systems, NeurIPS, 2025.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Chongkai Gao, Zixuan Liu, Zhenghao Chi, Junshan Huang, Xin Fei, Yiwen Hou, Yuxuan Zhang,
Yudi Lin, Zhirui Fang, Zeyu Jiang, and Lin Shao. Vla-os: Structuring and dissecting planning rep-
resentations and paradigms in vision-language-action models. arXiv preprint arXiv:2506.17561,
2025. URL https://arxiv.org/abs/2506.17561.

Yitian Gong, Luozhijie Jin, Ruifan Deng, Dong Zhang, Xin Zhang, Qinyuan Cheng, Zhaoye Fei,
Shimin Li, and Xipeng Qiu. Xy-tokenizer: Mitigating the semantic-acoustic conflict in low-bitrate
speech codecs. arXiv preprint arXiv:2506.23325, 2025.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. pi0.5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Tao Jiang, Tianyuan Yuan, Yicheng Liu, Chenhao Lu, Jianning Cui, Xiao Liu, Shuiqi Cheng, Jiyang
Gao, Huazhe Xu, and Hang Zhao. Galaxea open-world dataset and g0 dual-system vla model.
arXiv preprint arXiv:2509.00576, 2025.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–
673. PMLR, 2018.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Zineb Lahrichi, Gaëtan Hadjeres, Gael Richard, and Geoffroy Peeters. Qincodec: Neural audio
compression with implicit neural codebooks. arXiv preprint arXiv:2503.19597, 2025.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2022.

11

https://arxiv.org/abs/2506.17561

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
arXiv preprint arXiv:2405.05941, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Tommi Kärkkäinen,
Mykola Pechenizkiy, Decebal Constantin Mocanu, and Zhangyang Wang. More convnets in the
2020s: Scaling up kernels beyond 51x51 using sparsity. In The Eleventh International Conference
on Learning Representations, ICLR, 2023b.

Tao Liu, Ziyang Ma, Qi Chen, Feilong Chen, Shuai Fan, Xie Chen, and Kai Yu. Vqtalker: Towards
multilingual talking avatars through facial motion tokenization. In Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI, 2025.

Van Khoa Nguyen, Yoann Boget, Frantzeska Lavda, and Alexandros Kalousis. GLAD: Improv-
ing latent graph generative modeling with simple quantization. In ICML 2024 Workshop on
Structured Probabilistic Inference and Generative Modeling, ICML, 2024.

Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and
Xubo Liu. Scaling transformers for low-bitrate high-quality speech coding. arXiv preprint
arXiv:2411.19842, 2024.

Julian D Parker, Anton Smirnov, Jordi Pons, CJ Carr, Zack Zukowski, Zach Evans, and Xubo Liu.
Scaling transformers for low-bitrate high-quality speech coding. In The Thirteenth International
Conference on Learning Representations, ICLR, 2025.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Samir Sadok, Simon Leglaive, and Renaud Séguier. A vector quantized masked autoencoder for
audiovisual speech emotion recognition. Computer Vision and Image Understanding, 2025.

Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode:
Mode-seeking diffusion autoencoders for state-of-the-art image tokenization. In arXiv preprint
arXiv:2503.11056, 2025.

Andreas Steiner, André Susano Pinto, Michael Tschannen, Daniel Keysers, Xiao Wang, Yonatan
Bitton, Alexey Gritsenko, Matthias Minderer, Anthony Sherbondy, Shangbang Long, et al.
Paligemma 2: A family of versatile vlms for transfer. arXiv preprint arXiv:2412.03555, 2024.

Tianxiang Sun, Xiaotian Zhang, Zhengfu He, Peng Li, Qinyuan Cheng, Xiangyang Liu, Hang
Yan, Yunfan Shao, Qiong Tang, Shiduo Zhang, Xingjian Zhao, Ke Chen, Yining Zheng, Zhejian
Zhou, Ruixiao Li, Jun Zhan, Yunhua Zhou, Linyang Li, Xiaogui Yang, Lingling Wu, Zhangyue
Yin, Xuanjing Huang, Yu-Gang Jiang, and Xipeng Qiu. Moss: An open conversational large
language model. Machine Intelligence Research, 2024. ISSN 2731-5398. doi: 10.1007/
s11633-024-1502-8. URL https://doi.org/10.1007/s11633-024-1502-8.

Anni Tang, Tianyu He, Junliang Guo, Xinle Cheng, Li Song, and Jiang Bian. Vidtok: A versatile
and open-source video tokenizer. In arXiv preprint arXiv:2412.13061, 2024.

12

https://doi.org/10.1007/s11633-024-1502-8

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Galaxea Team. Galaxea manipulation simulator. 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, BINGYUE PENG, and Liwei Wang. Visual autoregressive
modeling: Scalable image generation via next-scale prediction. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, NeurIPS, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Junke Wang, Yi Jiang, Zehuan Yuan, BINGYUE PENG, Zuxuan Wu, and Yu-Gang Jiang. Om-
nitokenizer: A joint image-video tokenizer for visual generation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, NeurIPS, 2024a.

Limei Wang, Kaveh Hassani, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua,
Hao Wu, Ning Yao, and Bo Long. Learning graph quantized tokenizers. In ICLR, 2025a.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025b.

Xiaofeng Wang, Zheng Zhu, Guan Huang, Boyuan Wang, Xinze Chen, and Jiwen Lu. World-
dreamer: Towards general world models for video generation via predicting masked tokens. arXiv
preprint arXiv:2401.09985, 2024b.

Yating Wang, Haoyi Zhu, Mingyu Liu, Jiange Yang, Hao-Shu Fang, and Tong He. Vq-vla: Improv-
ing vision-language-action models via scaling vector-quantized action tokenizers. arXiv preprint
arXiv:2507.01016, 2025c.

Qwen Team: An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao,
Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115, 2025.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. MAGVIT: Masked gen-
erative video transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2023.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, NeurIPS, 2024.

Long Zeng, Jianxiang Yu, Jiapeng Zhu, Qingsong Zhong, and Xiang Li. Hierarchical vector quan-
tized graph autoencoder with annealing-based code selection. In THE WEB CONFERENCE
2025, WWW, 2025.

Linwei Zhai, Han Ding, Cui Zhao, fei wang, Ge Wang, Wang Zhi, and Wei Xi. L3ac: Towards a
lightweight and lossless audio codec. arXiv preprint arXiv:2504.04949, 2025.

Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin,
Zuxuan Wu, Yu-Gang Jiang, et al. Vlabench: A large-scale benchmark for language-conditioned
robotics manipulation with long-horizon reasoning tasks. arXiv preprint arXiv:2412.18194, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
speech tokenizer for speech large language models. arXiv preprint arXiv:2308.16692, 2023.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. arXiv preprint arXiv:2406.07548, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DETAILED EVALUATION SETUPS.

Bimanual Mobile Manipulation TasksAdaptability Evaluation

R1Lite Suite🔧

Generalization Ability Evaluation

VLABench🌍

Pretraining Evaluation

Simpler-Widow🚀

Bimanual Manipulation Tasks

GalaxeaManipSim🔧

Single Arm Tasks

Libero 🔧

Zero-shot Task Evaluation

Droid🌍🚀Xarm Suite 🔧

Si
m
ul
at
io
n

R
ea
l-W

or
ld

Bridge🚀

🚀: Pretraining effectiveness; 🔧: Fitting and adaptation ability; 🌍: Generalization ability

Figure 9: Experiment setups. Diverse embodiments, scenes, and tasks for assessing multiple capa-
bility dimensions (marked by emojis).

Benchmarks We evaluate FASTerVLA across multiple dimensions, including out-of-the-box per-
formance after pre-training, adaptability through fine-tuning on downstream tasks, and generaliza-
tion ability under visual and language perturbations as well as in zero-shot settings. We adopt a
variety of benchmark suites with distinct focuses, encompassing diverse robot embodiments and
task distributions:

• Libero (Liu et al., 2024) includes four task suites—Spatial, Object, Goal, and Long—with a total
of 40 tasks, each containing 50 examples. This benchmark is particularly suitable for assessing
both the models’ capacity to fit the data and their adaptability to downstream tasks. To further
compare the advantages of different model architectures, we evaluate two settings: models pre-
trained and then fine-tuned on Libero, and models trained directly on Libero via imitation learning
from scratch. The results are reported in Table 1 and Figure 4, respectively.

• Simpler (Li et al., 2024) serves as a benchmark for assessing the pre-training performance of
VLAs. Table 1 reports the evaluation results of models trained from scratch on Bridge dataset
(Walke et al., 2023).

• VLABench (Zhang et al., 2024) is a benchmark focusing on the generalization capabilities of
VLAs. We finetune our models on 10 tasks from VLABench, with a total of 5,000 examples.
VLABench offers rigorously controlled evaluations across multiple dimensions, including com-
plex instruction following, visual disturbances, language grounding, and commonsense transfer.
We fine-tune the pretrained models—π0, π0-FAST, and FasterVLA—on 5,000 diverse episodes
covering 10 tasks from VLABench.

• GalaxeaManipSim (Team, 2025) Using this simulator, we evaluated the model on seven dual-
arm tasks—BlockHammerBeat, BlocksStackEasy, ContainerPlace, DiverseBottlesPick, DualBot-
tlesPickHard, EmptyCupPlace, and ShoePlace, with a total of 7,000 examples.

• Xarm Suite features an XArm dataset covering six tasks, with 500 real-world episodes. These
tasks involve flexible object manipulation, multi-goal selection, and long-horizon planning.

• R1Lite Suite includes three real-world tasks to evaluate our system: two desktop-level tasks—
picking cubes and table bussing—and one whole-body control task, making the bed. The dataset
sizes are 200 demonstrations for picking cubes, 200 demonstrations for desk organization, and
1000 demonstrations for bed making.

• Bridge (Walke et al., 2023) is a large-scale manipulation dataset with over 60k trajectories. Fol-
lowing its hardware setup, we use Widow250s for zero-shot evaluation after pre-training.

• Droid (Khazatsky et al., 2024) contains over 90k real-world robotics trajectories. To ensure con-
sistent evaluation, we follow its hardware setup and evaluate models in a zero-shot setting after
pre-training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Overview of data mixtures used for training FASTerVQ.

Mixture Name Datasets Ratio Application

Galaxea Galaxea Open Dataset (Jiang et al., 2025) 1.0 Used for R1Lite Evaluation.

Libero-Bridge Libero (Liu et al., 2024) 1.0 Faster(S): Used for libero, simpler and widow evaluation.
Bridge (Walke et al., 2023) 1.0

Single-Arm

Libero (Liu et al., 2024) 1.0 Faster(L): Used for Xarm–suite, and tokenizer analysis.
Bridge (Liu et al., 2024) 1.0

Kuka (Kalashnikov et al., 2018) 1.0
Fractal (Brohan et al., 2023) 1.0

Droid(EEF) (Khazatsky et al., 2024) 1.0

Droid Mixture Droid(Joint Velocity) (Khazatsky et al., 2024) 1.0 Used for Droid evaluation.

Table 5: Ablation on FASTERVQ and inference latency. Left: policy success rate in libero sim-
ulator (SR, %) and ℓ1 loss (lower is better);. Right: latency measured on RTX 4090 with PyTorch.

(a) Tokenizer (b) Codebook Size (c) Residual

Arch. SR ℓ1 Size SR utilization #Res. SR

CNN 96.2 0.0027 512 95.4 100 1 93.4
Transf. 95.3 0.0036 1024 93.2 100 2 95.5
TAAE 97.9 0.0021 4096 97.9 99.6 3 97.9
– – – 8192 96.3 95.1 8 96.6

FASTer pi0 FAST

LIBERO (ms) 140 200 224–628
R1Lite-WBC (ms) 290 290–300 1,100–3,000

A.2 IMPLEMENTATION DETAILS

Data Mixture In the experiments of Section 4, we trained FASTerVQ with different data mixtures.
We report the detailed mixtures in Table 4.

FASTerVQ We train all policies using AdamW with learning rate 1 × 10−4, weight decay 0.1,
and (β1, β2) = (0.9, 0.95). The learning rate follows a cosine decay schedule with 1,000 warmup
steps. Gradients are clipped at norm 1.0, and training uses mixed precision (bfloat16). The single-
arm policy (8M parameters) is trained with batch size 512 sequences of length 21 tokens, while the
full-body policy (13M parameters) uses batch size 2048 sequences of the same length. All models
are trained on 8× H20 GPUs. Training converges within 300k steps. We set the codebook size to
K = 4096, latent dimension d = 128, and commitment cost β = 0.25.

FASTerVLA We train the VLA with AdamW using a learning rate of 2.5× 10−5 and weight decay
1×10−10. The learning rate follows a cosine decay schedule with 1,000 warmup steps. Training uses
mixed precision (bfloat16). The attention dropout is set to 0.0. We train with per-device batch size
4 and gradient accumulation step 1 across 8× H20 GPUs, for a total of 60k steps. Discrete actions
are modeled via a residual VQ tokenizer with 3 codebooks (each of size 4096, code dimension 8).
We set the conditioning window to 1 step and the planning horizon to 20 steps and final actions are
clipped to [−1, 1]. For inference, we use top-k sampling (k = 5) with temperature 0.8. We perform
block-wise autoregressive decoding with block size 8 for WBC and bimanual task, and 7 for single
arm setting.

A.3 ABLATION STUDY

FASTerVQ Ablations. We ablate along three dimensions: tokenizer, codebook size, and residual
depth. (a) The hybrid TAAE tokenizer achieves the lowest ℓ1 loss and highest SR, showing clear
gains over CNN or Transformer alone. (b) Codebook size critically affects stability: small code-
books restrict representation power, while very large ones collapse; 4096 entries provide the best
trade-off with near-perfect utilization. (c) Residual quantization is most effective with 2–3 layers,
which capture fine-grained details without introducing instability. These results motivate our fi-
nal design: TAAE with a 4096-size codebook and three residual codebooks, yielding the strongest
balance of reconstruction quality and downstream SR.

FASTerVLA Ablations. We ablate two core components of VLA: the action expert (AE) for action
tokenization and the block-wise autoregression (bar) decoding. Table 6 shows that on libero, AE
consistently improves SR over the no-AE baseline, with pretraining providing the largest gain (97.9

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Left: ablation study of action expert (AE) on libero; Middle: AE on simpler-widow; Right:
bar decoding.

libero (AE) simpler-widow (AE) bar decoding

Variant SR ↑ Variant SR ↑ Decoding strategy SR ↑ Latency (ms)↓

No AE 95.5 No AE 75.6 Token-wise 95.5 323
AE (no pretrain) 94.8 AE (no pretrain) 23.6 Block-wise 96.7 140
AE (with pretrain) 97.9 AE (with pretrain) 87.9 Block-wise + AE 97.7 140

vs. 95.5). On simpler-widow, AE without pretraining collapses (23.6), underscoring that gradients
from the VLM are insufficient for training AE from scratch. Pretraining is thus essential, raising SR
to 87.9. These findings motivate a two-stage schedule: pretrain AE within the VLM, then fine-tune
jointly with partial freezing, which accelerates convergence and stabilizes training. For decoding,
bar markedly improves both accuracy and efficiency: SR rises from 95.5 to 96.7 while latency is
reduced by over 2× (323,ms to 140,ms). Combining bar with AE further boosts SR to 97.7 at the
same low latency, yielding the best trade-off between accuracy and efficiency.

A.4 ASYNCHRONOUS INFERENCE: ADDITIONAL ANALYSIS

Inference Latency

Inference Latency

Inference Latency

Action Executed

Action Planed

Action Planed

Action Planed

Action Planed

Action Resolution

Inference Step = 1

Inference Step = 2

Inference Step = 3

Inference Step = 4

Figure 10: Overview of FASTerVLA’s Asynchronous
Inference

Figure 10 illustrates the temporal overlap be-
tween action execution. At each step, the pol-
icy conditions on previously predicted action
tokens while anticipating future ones. Because
of actuation and sensing delays, the action be-
ing physically executed often corresponds to
an earlier prediction, whereas inference has al-
ready advanced to generating the next plan.
This temporal offset makes conditioning solely
on the immediately preceding action fragile:
the observed proprioceptive state may align
with either the previous or the next frame rel-
ative to the prediction stream. To address this,
we introduce stochasticity during training by
randomly substituting the learning target with either the previous or next action chunk. This aug-
mentation improves robustness to temporal misalignment, mitigating premature <eos> generation
and stabilizing asynchronous inference.

We validate this approach in the making bed task within the R1Lite Suite. Directly reusing past
predicted actions as conditioning occasionally caused early termination, consistent with our hypoth-
esis that the slow control response in R1Lite produces out-of-distribution (OOD) states. With the
proposed stochastic training and additional logit ensembling over multiple candidate predictions, the
policy becomes more stable. Empirically, asynchronous inference reduces average completion time
by roughly 20% without lowering success rates. Table 7 summarizes the results.

Table 7: Effect of asynchronous inference on the making bed task in R1Lite Suite.

Method Avg. Completion Time (s) Task progress (%)
Without Asynchronous Inference 335.0 71
With Asynchronous Inference 262.0 70

These findings demonstrate that modest training augmentations, together with candidate aggrega-
tion, are sufficient to stabilize asynchronous inference in long-horizon tasks, yielding measurable ef-
ficiency gains without compromising robustness. In asynchronous inference experiments, the block
size is 8, and temporal shift probability pshift = 0.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 DETAILED RESULTS OF DIFFERENT VLM BACKBONES

To evaluate the effectiveness and adaptability of our framework, we conducted comprehensive ex-
periments on the Libero benchmark. We selected several popular VLM backbones: Paligemma-3B
(Steiner et al., 2024), InternVL3.5-2B (Wang et al., 2025b), and various sizes of Qwen2.5 (0.5B,
1.5B, 3B) (Yang et al., 2025). For Paligemma and InternVL, we utilized their original VLM check-
points. For the Qwen2.5 models, we adopted the VLM checkpoints provided by (Gao et al., 2025),
which fine-tuned the base LLM with a vision tower and projector on the LLaVa v1.5 dataset (Liu
et al., 2023a). All these backbones were subsequently trained from scratch on the Libero benchmark.
We compared their performance against the baseline FAST tokenizer.

The detailed results in Table 8 demonstrate that our framework achieves consistent and significant
performance improvements across all tested model architectures and parameter scales. Notably,
while Paligemma-3B delivered the strongest performance among all models using the FAST tok-
enizer (93.50 Average), our framework was able to unlock the latent potential of other VLMs. For
instance, InternVL3.5-2B, which had the weakest performance with the FAST tokenizer (79.35 Av-
erage), was elevated to become the top-performing model overall (96.65 Average) when paired with
our tokenizer. This is particularly significant given that InternVL 3.5 is inherently competitive on
embodied benchmarks, indicating that our method successfully unleashes its latent potential for ac-
tion generation. This remarkable turnaround not only proves the effectiveness of our framework but
also highlights its broad adaptability and its ability to fully harness the capabilities of diverse VLM
backbones.

Table 8: Detailed performance of different VLM backbones on Libero

Model Tokenizer Spatial Object Goal Long Average

Qwen2.5-0.5B FAST 92.60 95.80 70.00 78.20 84.15
Ours 90.40 99.00 71.60 87.00 87.00 (↑ 2.85)

Qwen2.5-1.5B FAST 96.00 92.80 87.20 85.80 90.45
Ours 94.40 97.80 92.00 84.80 92.25 (↑ 1.80)

Qwen2.5-3B FAST 97.80 93.80 90.20 83.40 91.30
Ours 96.40 99.40 92.00 94.00 95.45 (↑ 4.15)

InternVL3.5-2B FAST 92.60 95.20 77.20 52.40 79.35
Ours 97.80 98.60 97.20 93.00 96.65 (↑ 17.30)

Paligemma2-3B FAST 93.40 98.80 95.00 86.80 93.50
Ours 96.60 98.00 95.20 89.40 94.80 (↑ 1.30)

A.6 QUALITY ANALYSIS OF THE TOKENIZER

To evaluate the effectiveness of different action tokenizers, we conduct a qualitative and quantitative
analysis covering reconstruction fidelity, token utilization, and generalization across datasets and
embodiments.

VQ Settings The following VQ tokenizer configurations are used in our reconstruction visualiza-
tions and token usage analyses, covering prior baselines and our proposed model.

• MiniVLA’s VQ (Belkhale & Sadigh, 2024) uses residual vector quantization to encode action
chunks into sequences of codeword indices, with optional extra tokens in the vocabulary. For our
experiments, we use the official VQ weights released by the authors: one trained on Libero and
the other on Bridge V2 Dataset.

• VQ-VLA’s VQ (Wang et al., 2025c) replaces OpenVLA’s simple binning with a residual VQ to-
kenizer that encodes action sequences into discrete codeword indices using hierarchical quantiza-
tion. In our experiments, we pretrain the VQ from scratch using the VQ-VLA training framework
and code, on a 1:1 mixture of LIBERO and BRIDGE with a single H200 GPU (batch size 1024,
800k steps, learning rate 5e-5).

• Fast+ (Pertsch et al., 2025)is the universal action tokenizer of Fast, trained on one million real-
world robot trajectories.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Token activation statistics on Bridge and XArm-mixture. Columns show codebook size,
active tokens, and counts of tokens exceeding the 10−3 and 2× 10−2 thresholds.

Tokenizer Bridge XArm
CB Act. > 1e−3 > 2e−2 CB Act. > 1e−3 > 2e−2

VQ-VLA-vq (800k) 256 256 – 1 256 256 – 1
MiniVLA-vq-bridge 256 256 – 1 256 256 – 1
Fast+ 2048 1175 200 – 2048 1067 216 –
FasterVQ 4096 4096 162 – 4096 4096 38 –

• FasterVQ is our proposed VQ, with the training data mixtures summarized in Table 4.

Action Reconstruction Visualization We qualitatively assess the learned VQ models by visualizing
normalized action sequence reconstructions from Libero, Bridge, XArm, and Widow (Figure 12),
comparing MiniVLA, VQ-VLA, Fast+, and Faster in terms of fidelity and generalization. In each
plot, the red line denotes the ground-truth trajectory, the green line denotes the reconstruction, and
the shaded red region denotes the error band with a tolerance of 0.01. Note that the green horizontal
line in the figure appears due to clipping in the normalization at the 99th percentile bound.

On in-domain datasets such as Libero and Bridge, most predicted chunks remain within the 0.01
error band, indicating reasonable fidelity. However, their performance degrades notably on out-
of-domain datasets like XArm and Widow, where a larger fraction of predictions exceed the toler-
ance. Reconstructions from MiniVLA and VQ-VLA exhibit more frequent spiky artifacts. Fast+
and FasterVQ preserve stable reconstructions across both seen and unseen domains, with most
chunks remaining within the error band and some trajectories exhibiting nearly exact overlap with
the ground truth.

Token Activation Statistics

Table 9 compares codebook size, active tokens, and usage frequency across VQ tokenizers. Small
codebooks (VQ-VLA, MiniVLA) are fully activated. Fast+ under-utilizes its larger vocabulary. In
contrast, FasterVQ effectively harnesses a much larger codebook, activating thousands of tokens
with a meaningful subset above frequency thresholds. This avoids token collapse and provides
richer, more fine-grained representations.

A.7 USE OF LLM

We utilized LLMs as a writing assistance tool during the preparation of this manuscript. The use of
LLMs was strictly limited to polishing the text, which included improving grammar, refining sen-
tence structure, and enhancing overall clarity and readability. The core research concepts, method-
ologies, and conclusions were developed entirely by the authors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

MiniVLA's VQ VQ-VLA's VQ Fast+ Faster

Li
be

ro
Br

id
ge

XA
rm

W
id

ow

Figure 11: Visualization of action reconstruction results from MiniVLA, VQ-VLA, Fast+, and
FasterVQ on representative trajectories from the Libero, Bridge, XArm, and Widow datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 12: Visualization of our evaluation tasks.

21

	Introduction
	Related Work
	Method
	FASTerVQ
	FASTerVLA

	Experiments
	Experiment Setups
	Results and Analysis
	Ablation Study

	Conclusion
	Ethics statement
	Reprodicibility statement
	Appendix
	Detailed Evaluation Setups.
	implementation Details
	Ablation study
	Asynchronous Inference: Additional Analysis
	Detailed results of different VLM backbones
	Quality Analysis of the Tokenizer
	Use of LLM

