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In this supplementary material, we provide the proofs of convergence analysis in Section 1, 1-vs-1
transformation employed in the classification and semantic segmentation tasks in Section 2, the
coordinate-wise and the preprocessing method of the LSTM teacher in Section 3, the loss functions
of YOLO-v3 in Section 4, more experiments of image classification in Section 5, and the inferences
of semantic segmentation in Section 6.

1 Convergence analysis

1.1 Preliminaries

Definition 1. A differentiable function e(·) is L-smooth with gradient Lipschitz constant C (uniformly
Lipschitz continuous), if ∥ ▽ e(x)−▽e(y)∥ ≤ C∥x− y∥,∀x, y. The function is called block-wise
smooth with gradient Lipschitz Ci, if

∥ ▽i e(x−i, xi)−▽ie(x−i, x
′
i)∥ ≤ Ci∥xi − x′

i∥,∀x, x′ (1)

or with gradient Lipschitz constants {C̃i}, if

∥ ▽i e(x−i, xi)−▽ie(x
′
−i, xi)∥ ≤ C̃i∥x−i − x′

−i∥,∀x, x′ (2)

Further, Let Gmax ≜ max{Ci, C̃i,∀k} ≤ C.

Definition 2. For a differentiable function e(·), if ∥ ▽ e(x)∥ = 0, then x is a first-order stationary
solution (SS1). If ∥ ▽ e(x)∥ ≤ ϵ, then x is an ϵ-first-order stationary point.

Definition 3. For a differentiable function e(·), if x is a SS1, and there exists ϵ > 0 so that for any y
in the ϵ-neighborhood of x, we have e(x) ≤ e(y), then x is a local minimum. A saddle point x is an
SS1 that is not a local minimum. If λmin(▽2e(x)) < 0, x is a strict (non-degenerate) saddle point.

Definition 4. A twice-differentiable function e(·) is ρ-Hessian Lipschitz if

∥ ▽2 e(x)−▽2e(y)∥ ≤ ρ∥x− y∥,∀x, y (3)

Definition 5. For a ρ-Hessian Lipschitz function e(·), x is a second-order stationary solution (SS2) if
∥ ▽ e(x)∥ = 0 and λmin(▽2e(x)) ≥ 0. If the following holds

∥ ▽ e(x)∥ ≤ ϵ, and λmin(▽2e(x)) ≥ −γ (4)

where ϵ, γ > 0, then x is a (ϵ, γ) SS2.

Condition 1. An ϵ−second order stationary point ṽk satisfies the following conditions:
2∑

i=1

∥ ▽i e(h̃
k
−i, ṽ

k
i )∥2 ≤ g2th and λmin(▽2e(ṽk)) ≤ −γ (5)
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where gth ≜ G
2K . G denotes the size of the gradient, K ≜ Cmax

γ ≥ 1.

Based on the ρ-Hessian Lipschitz property, we can quantify ∥ △k ∥ that is upper bounded by the
difference of iterates. By exploiting the negative curvature of the Hessian matrix at saddle point v∗, we
can project the iterate onto the direction d⃗ where the eigenvalue of I−ηH is greater than 1. This leads
to the fact that the norm of the iterates projected along direction d⃗ will be increasing exponentially as
the algorithm proceeds around point v∗, implying the sequence generated by Gradient Descent is
escaping from the saddle point. The details of characterizing the convergence rate have been analyzed
previously in [9].

1.2 Main proofs

Conclusion 1. Let H ≜ ▽2e(v∗) denote the Hessian matrix at an ϵ−second-order stationary solution
(SS2) v∗ where λmin(H) ≤ −γ and γ > 0. We have

λmax(M
−1G) > 1 +

ηγ

1 + C/Cmax
. (6)

The proof of Conclusion 1 contains the following steps:

Step 1. (Lemma 1 [14]) Giving a generic sequence u generated by Alternating Gradient Descent
(vk ∈ u). As long as the initial point of uk is close to saddle point ṽk, the distance between uk and
ṽk can be upper bounded by using the ρ−Hessian Lipschitz continuity property.

Step 2. Leveraging the negative curvature around the strict saddle point, we can project the uk onto
the two subspaces, where the first subspace is spanned by the eigenvector of M−1G and the other
one is spanned by the remaining eigenvectors. We use two steps to show λmax(M

−1G) > 1: 1) we
show that all eigenvalues of Q(λ) = [G− λM ] are real; 2) ∃λ > 1, det(Q(λ)) = 0.

For step 1, we provide the lemma 1 and the corresponding proof.

Lemma 1 Consider ṽk that satisfies Condition 1 and a generic sequence uk generated by AGD. For
any constant ĉ ≥ 2, δ ∈ (0, dK

e , when initial point u0 satisfies

∥u0 − ṽk∥ ≤ 2r, r ≜
ηCmaxS

Klog(dKδ )P1

(7)

where P1 = (1+ C
Cmax

). With G ≜ min{inf
k
{k|êu0(uk)−e(u0) ≤ −3F}, ĉT }, where F accounts

for the objective value, and T for the number of iterations, there exists constants c1max, ĉ such that
for any η ≤ c1max/Cmax, the iterates generated by L2T-DLN satisfy ∥uk − ṽk∥ ≤ 5ĉS,∀t < G.

Proof. Without loss of generality, let u0 be the origin, i.e., u0 = 0. According to the AGD update
rules, we have

uk+1 = uk − η

[
▽1e(u

k
1 , u

k
2)

▽2e(u
k+1
1 , uk

2)

]
. (8)

Then, we introduce the AGD update rules, we have

∥uk∥, ∀k < K. (9)
When k = 0, we have u0 = 0, Eq. (9) is true. Suppose Eq. (9) is true for the case where t ≤ k. We
will show that Eq. (9) is also true for the case where t = k + 1.

First, we show the upper bound of ∥uk+1 − uk∥. According to the Taylor expansion and ρ-Hessian
Lipschitz continuity, we have

f(uk) ≤ f(u0)+▽f(u0)T (uk−u0)+
1

2
(u0−uk)T ▽2 f(u0)(u0−ut)+

ρ

6
∥uk−u0∥3. (10)

Comparing with the definition of f̂u0(uk), we have

|f(uk)− f̂u0(uk)| ≤ 1

2
(u0 − uk)T (▽2f(u0)−H)(u0 − uk) +

ρ

6
∥uk − u0∥3

≤ ρ

2
∥u0 − ṽk∥∥uk − u0∥2 + ρ

6
∥uk − u0∥3.
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According to the definition of G, we have f(u0)− f̂u0(uk) ≤ 3F for all k < K, which implies that

f(u0)− f(uk) ≤ |f(u0)− f̂u0(uk)|+ |f̂u0(uk)− f(uk)|

≤ 3F +
ρ

2
∥ṽk − u0∥∥uk − u0∥2 + ρ

6
∥uk − u0∥3

≤ 3F +
ρ

2

ηLmaxS
Klog(dKδ )P1

(5ĉS)2 + ρ

6
(5ĉS)3

≤ 3F + ((5ĉ)2/4 + (5ĉ)3/6)ρS3

≤ 3F + ηLmax(5ĉ)
3FP−1

2 ≤ 4F (11)

where d denotes the dimension of parameters. We use cmax = P2/(5ĉ)
3 and η ≤ cmax/Lmax.

Given

f(uk+1) ≤ f(uk)− η

2
(∥ ▽1 f(u

k
1 , u

k
2))∥2 + ∥ ▽2 f(u

k+1
1 , uk

2))∥2), ∀k < K. (12)

For simplification of experession, we define zk−1 ≜ uk
2 and zk−2 ≜ uk+1

1 , where k < K. For
t = 0, · · · , k, we have

f(uk) ≤ f(u0)−
k−1∑
t=0

2∑
i=1

η

2
∥ ▽i e(z

t
−i, u

t
i)∥2. (13)

According Eq. (11) and Eq. (13), we know that
k−1∑
t=0

2∑
i=1

η

2
∥ ▽i e(z

t
−i, u

t
i)∥2 ≤ 4F , (14)

or

max
t

2∑
i=1

∥ ▽i f(z
t
−i, u

t
i)∥2 ≤ 4F , t ≤ k − 1. (15)

According to Eq. (8), we have
∥uk+1 − uk∥2

= η2
2∑

i=1

∥ ▽i e(z
k
−i, u

k
i )∥2

= 2η2
2∑

i=1

∥ ▽i e(z
k
−i, u

k
i )−▽ie(z

k−1
−i , uk−1

i )∥2 + 2η2
2∑

i=1

∥ ▽i e(z
k−1
−i , uk−1

i )∥2

= 2η2(2

2∑
i=1

∥ ▽i e(z
k
−i, u

k
i )−▽ie(z

k−1
−i , uk

i )∥2 + 2

2∑
i=1

∥ ▽i e(z
k−1
−i , uk

i )−▽ie(z
k−1
−i , uk−1

i )∥2)

+ 2η2
2∑

i=1

∥ ▽i e(z
k−1
−i , uk−1

i )∥2

≤
(a)

8η2L2
max∥uk+1 − uk∥2 + 4η2L2

max∥uk − uk−1∥2 + 16ηF ,

where in (a), we utilize Lipschitz continuity. Then, we obtain

∥uk+1 − uk∥2 ≤ 4η2L2
max

1− 8η2L2
max

∥uk − uk−1∥2 + 16ηF
1− 8η2L2

max

, (16)

Considering w ≜ 4η2L2
max

1−8η2L2
max

, we have

∥uk+1 − uk∥2 ≤ w∥uk − uk−1∥2 + 16ηF
1− 8η2L2

max

= wk∥u1 − u0∥2 +
k−1∑
t=0

wt 16ηF
1− 8η2L2

max

≤
(a)

1− wt

1− w

16ηF
1− 8η2L2

max

≤ 1

1− w

16ηF
1− 8η2L2

max

< 1.14 ∗ 16ηF < 18.2ηF ,
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where (a) is true because we have ∥u1 − u0∥2 ≤ 16ηF since k < K and Eq. (15), and we use
η ≤ c

′

max/Lmax where c
′

max = 0.1 such that w ≈ 0.0435 < 1. Then we obtain

∥uk+1 − uk∥ ≤ 4.3
√

ηF ≤ 4.3ηG
K

. (17)

Then, we get the upper bound of the sum of ∥uk+1 − uk∥, ∀k < K as follows,

k+1∑
t=1

∥ut − ut−1∥ ≤

√√√√k

k+1∑
t=1

∥ut − ut−1∥2 ≤ K
4.3ηG
K

≤ ĉT 4.3ηG
K

≤ 4.3ĉS, (18)

which implies

∥uk+1∥ ≤
(a)

k+1∑
t=1

∥ut − ut−1∥+ ∥u0∥ ≤ 4.3ĉS, (19)

where in (a) we use the triangle inequality and u0 = 0. Due to the following

∥uk+1−ṽk∥ = ∥uk+1−u0+u0−ṽk∥ ≤ ∥uk+1−u0∥+∥u0−ṽk∥ ≤ 4.3ĉS+S/(2Klog(
dK
δ

)), (20)

we have ∥uk+1 − ṽk∥ ≤ 5ĉS since ĉ ≥ 2. Therefore, we know that there exits c1max =

min{cmax, c
′

max} such that ∥uk − ṽk∥ ≤ 5ĉS, ∀k < K when η ≤ c1max/Lmax. The proof is
finished.

For step 2, we provide the following proof.

Proof. Given ṽk as an ϵ-second order stationary point.

Hu ≜

[
▽2

11e(ṽ
k) ▽2

12e(ṽ
k)

0 ▽2
22e(ṽ

k)

]
Hl ≜

[
0 0

▽2
21e(ṽ

k) 0

]
, (21)

Conclusion 1 is showing that the maximum eigenvalue of M−1G is greater than 1 so that we can
project iterates vk to two subspaces. The first is spanned by the eigenvector of M−1G whose
eigenvalue is greater than 1 and the other subspace is spanned by the remaining eigenvectors.
Considering det(M) = 1, det(M−1G − λI) = det(G − λM), where λ is the eigenvalue. The
determinant of G− λM is shown as

det[G− λM ] = det[I − ηHu − λ(I + ηHl)]

= det

[
(1− λ)I − η ▽2

11 e(ṽ
k) −η ▽2

12 e(ṽ
k)

−λη ▽2
21 e(ṽ

k) (1− λ)I − η ▽2
22 e(ṽ

k)

]
.

To simplify, Q(λ) ≜

[
(1− λ)I − η ▽2

11 e(ṽ
k) −η ▽2

12 e(ṽ
k)

−λη ▽2
21 e(ṽ

k) (1− λ)I − η ▽2
22 e(ṽ

k)

]
. To illustrate the estab-

lishment of λmax(M
−1G) > 1, we need to prove two condition: 1) All eigenvalues of Q(λ) are real.

2) det(Q(λ)) = 0,∃λ > 1.

Given a δ > 0,

Q(1 + δ) = −(ηH+ δ(I + ηHl)) ≜ −F (δ) (22)

F (δ) can be expended to

F (δ) = δI + η

[
▽2

11e(ṽ
k) ▽2

12e(ṽ
k)

(1 + δ)▽2
21 e(ṽ

k) ▽2
22e(ṽ

k)

]
=

[
I √

1 + δ

] [
δI + η ▽2

11 e(ṽ
k) η

√
1 + δ ▽2

12 e(ṽ
k)

η
√
1 + δ ▽2

21 e(ṽ
k) δI + η ▽2

22 e(ṽ
k)

] [
I

1√
1+δ

]
.

To simplify, O(δ) ≜

[
δI + η ▽2

11 e(ṽ
k) η

√
1 + δ ▽2

12 e(ṽ
k)

η
√
1 + δ ▽2

21 e(ṽ
k) δI + η ▽2

22 e(ṽ
k)

]
. Since F (δ) is similar to O(δ),

F (δ) has the same eigenvalues of O(δ). Since H and O(δ) are diagonalizable (normal matrices),
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then according to [7, 17], the result of quantifying the difference of the eigenvalues of the two normal
matrices

max
1≤i≤d

|λi(ηH)− λi(O(δ))| ≤ ∥ηH−O(δ)∥ (23)

where λi(H) and λi(O(δ)) denote the i-th eigenvalue of H and O(δ), which are listed in a decreasing
order. We expand Eq. (23) as

∥ηH−O(δ)∥

= ∥δI +
[

0 (
√
1 + δ − 1)η ▽2

12 e(ṽ
k)

(
√
1 + δ − 1)η ▽2

21 e(ṽ
k) 0

]
∥

≤ δ + (
√
1 + δ − 1)η∥H∥+ (

√
1 + δ − 1)η

[
▽2

11e(ṽ
k) 0

0 ▽2
22e(ṽ

k)

]
≤ δ + (

√
1 + δ − 1)(

C

Cmax
+ 1) (24)

When η ≤ cmax/Cmax, Eq. (24) is true according to ∥H∥ ≤ C and ∥Hd∥ ≤ Cmax. Specifically,
when δ = 0, matrix O(δ) is reduced to ηH. If η = 1/C, ∥ηH−O(δ)∥ ≤ δ + 2(

√
1 + δ − 1).

Since the minimum eigenvalue of ηH is −ηγ and the maximum difference of the eigenvalues between
ηH and O(δ) is upper bounded by Eq. (24). We need to set a δ to satisfy δ+(

√
1 + δ−1)(C/Cmax+

1) ≤ ηγ. It means that O(δ) has a negative eigenvalue if δ is sufficiently small.

Therefore, if δ∗ = ηγ/(1+C/Cmax), O(δ∗) has a negative eigenvalue which is less than −ηγ+δ∗ =
−ηγ/(1+Cmax/L). In the following, we need to check that δ+(

√
1 + δ− 1)(C/Cmax +1) ≤ ηγ

holds when δ∗ = ηγ/(1 + C/Cmax).

Since C/Cmax ≥ 1, we get ηγ/(1 + C/Cmax) ≤ ηγ/2. Accordingly, we need to check

(
√
1 + δ − 1)(

C

Cmax
+ 1) <

ηγ

2

=⇒
√
1 + δ(

C

Cmax
+ 1) <

ηγ

2
+ (

C

Cmax
+ 1)

=⇒ (1 + δ)(
C

Cmax
+ 1)2 < (

ηγ

2
+ (

C

Cmax
+ 1))2 (25)

Then we take δ∗ into Eq. (25)

(1 +
ηγ

1 + C
Cmax

)(
C

Cmax
+ 1)2 ≤ (

C

Cmax
+ 1)2 + (

C

Cmax
+ 1)2ηγ

< (
C

Cmax
+ 1)2 + (

C

Cmax
+ 1)2ηγ +

η2γ2

4
(26)

Specifically, (ηγ2 + ( C
Cmax

+ 1))2 = ( C
Cmax

+ 1)2 + ( C
Cmax

+ 1)2ηγ + η2γ2

4 . Therefore, Q(1 + δ∗)

has a negative eigenvalue. Similarly, when δ is large, Q(1 + δ∗) has a positive eigenvalue, since
term δ2I dominates the spectrum of matrix Q(1 + δ) in Eq. (22). We can conclude there exists
a largest δ̃, making Q(1 + δ̃) has a zero eigenvalue because the eigenvalue is continuous w.r.t δ.
det(Q(1 + δ̃)) = 0, 1 + δ̃ > 1 + δ∗ > 1. Therefore, there exists a largest real eigenvalue of M−1G
greater than 1. The proof is finished.

2 1-vs-1 transformation

To achieve DLN reusability, we convert multi-category classification into binary classification using
the 1-vs-1 approach. To illustrate this process, we consider a three-category problem. The classifier
output, denoted as fθ(x) = (p0, p1, p2), shows the predictions for each category. We combine the
prediction for the correct category along with predictions for each incorrect category. This process
enables us to change the three-category classification into two binary classification tasks: (p0, p1),
and (p0, p2). We use the sigmoid function to normalize the output of the student model.

5



For semantic segmentation, e.g., VOC [2], each pixel is classified among 21 classes. The PSPNet [18]
output dimension is [1, 21, 380, 380], meaning each sample contains 380× 380 pixels classified into
one of the 21 classes. First, we adjust the output dimension to [1, 380× 380, 21]. Then, we use the
1-vs-1 method to convert the 380× 380 tasks of 21 classes into 380× 380× 20 binary classification
tasks.

3 Coordinate-wise and preprocessing

The teacher model encounters two challenges. First, optimizing a fully connected LSTM with
numerous parameters is unfeasible since it demands a large hidden state and an excessive amount of
parameters. Second, the magnitudes of inputs and outputs may vary significantly, depending on the
function class under optimization. Nonetheless, neural networks work best when handling inputs and
outputs that are neither very small nor very large. We adopt the approach described in Andrychowicz
et al. [1] to address these difficulties.

To tackle the first challenge, the teacher model executes coordinate-wise operations on the DLN
parameters, reminiscent of Adam [10] and RMSProp [5]’s update policies. As a result, we can employ
a concise model by specifying the teacher model only, while using shared parameters for multiple
DLN components. Each DLN parameter is assigned separate activations to ensure distinct behavior
for different coordinates. This configuration induces teacher model invariance to the DLN parameters
sequence.

Andrychowicz et al. [1] tackled the second challenge by introducing a pre-processing technique that
enables gradient scaling adjustment by separating its information in terms of magnitude and sign.
The method explained in Eq (27), presents two distinct cases. The first is when the input |x| is greater
than or equal to e−p, whereas the second is when it is less than e−p. Here e denotes the Euler number.
To keep it consistent with our experiment settings, we set p as a constant equal to 10.

x →

(
log(|x|)

p
, sgn(x)), if |x| ≥ e−p,

(−1, epx), otherwise.

(27)

4 The loss functions of YOLO-v3

The loss functions of YOLO-v3 [15] are comprised of three parts: 1) bounding box prediction ℓloc,
2) class prediction ℓcls, and 3) confidence level of the bounding box containing objects ℓconf . In
experiments using COCO dataset [13], YOLO-v3 predicts 3 boxes at each scale, resulting in a tensor
of [416, 416, 3 ∗ (4+ 1+80)] for the 4 bounding box offsets, 1 objectiveness prediction, and 80 class
predictions.

ℓloc is calculated as following

ℓloc =
V 2∑
i=0

2∑
j=0

1obji,j (2−q2,iq3,i)[(q0,i− q̃0,i)
2+(q1,i− q̃1,i)

2+(q2,i− q̃2,i)
2+(q3,i− q̃3,i)

2], (28)

where V denotes the grid size, 1obji,j denotes whether there is object contained in (i, j) (if so, 1obji,j = 1,
otherwise 1obji,j = 0). Here q0, q1, q2 and q3 represent the label of the 4 bounding box offsets, and q̃0,
q̃1, q̃2 and q̃3 represent the prediction of 4 bounding box offsets.

ℓcls is calculated as following

ℓcls =

V 2∑
i=0

2∑
j=0

1obji,j BCELoss(pi, p̃i), (29)

where BCELoss stands for the binary cross entropy loss. p denotes the class predictions, and p̃
denotes the labels.

Finally, ℓconf is calculated as following

ℓconf =

V 2∑
i=0

2∑
j=0

1obji,j (oi − õi)
2 +

V 2∑
i=0

2∑
j=0

1noobji,j (oi − õi)
2, (30)
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Table 1: Results on datasets CIFAR-10 [11], CIFAR-100 [12] with noisy label for the classification
task. All experiments are implemented with the same settings. The best results are highlighted in
bold.

Method CIFAR-10 CIFAR-100
p=20% p=40% p=20% p=40%

Baseline 76.83 70.77 50.86 43.01
MentorNet [8] 86.36 81.76 61.97 52.66
Meta-Weight-Net [16] 90.33 87.54 64.22 58.64
L2R [4] 91.05 88.71 66.08 60.51
Ours 92.11±0.27 89.39± 1.20 70.05± 0.23 61.27± 0.51

where 1noobji,j indicates whether cell (i, j) contains object or not (if so, 1obji,j = 0, otherwise 1obji,j = 1),
and o represents the objectiveness prediction.

5 More experiments of image classification

We utilize a straightforward data reweighting method in both clean-label and noisy-label classification
tasks. We determine the appropriate weight for each training data using the student model’s embedding
space to calculate the importance of each training data. To evaluate the importance of training data,
we consider the validation data as the student model’s unseen data. The more uniform the distribution
of validation data, the more critical the significance of training data. We measure the importance
of each training data by how comparable they are to the corresponding validation class center.
To maintain student learning consistency, we need to normalize the weights within a minibatch.
For training data xi, i = {1, · · · , batchsize}, after calculating the weight w̃i, we normalize it to
wi = w̃i/

∑batchsize
i=1 w̃t to ensure that the sum of weights is always equal to 1.

5.1 Noisy-label classification

Datasets. For the Noisy-label classification, We use two datasets: CIFAR-10 [11], CIFAR-100 [12].
Cifar-10 and Cifar-100 contain 50000 training and 10000 testing images and with 10-class and
100-class separately. We modify their labels by randomly flipping them to two inherently similar
classes with an equal probability, as per the protocol of Shu et al. [16]. The flipping is conducted
with an independent probability of p for each of all images. In our experiments, we adopt ResNet32
as the student model and varied p between 20% and 40%. Following the experimental settings of the
L2R [4], both the validation and test sets are clean.

Evaluation metrics. In the classification, we use the accuracy on the testing set of each dataset [8,
16, 4].

Baseline methods. We employ several popular methods, including Cross Entropy loss (CE), the
MentorNet [8], the Meta-Weight-Net [16], and the L2R [4].

Implementation details. For all our experiments, we utilize the standard stochastic gradient descent
(SGD) to optimize student models with a learning rate of 0.1, while employing Adam with a learning
rate of 0.001 for the teacher model. The learning rate of DLN is set to 0.001. The teacher model is
trained for 10 epochs, with redividing the training and validation data after each epoch. The validation
errors in each task are explicitly reported. For the teacher model, we employ a four-layer LSTM [6]
with 64 neurons in the first three layers and 1 neuron in the last layer. We use 1-vs-1 to process the
output of the student model in classification. To ensure a reliable evaluation, we conduct 5 random
restarts and use the average results for comprehensive comparisons.

Results. For the DLN, we perform a five-layer fully connected network, which contains 40 neurons
in each hidden layer and 1 neuron in the output layer, as the DLN. The activation function for each
hidden layer is set to Leaky-ReLU. The validation error is computed by CE. The results are presented
in Table 1. Our study has demonstrated that the combined strategy of data reweighing and dynamic
loss function resulted in better outcomes than previous works such as MentorNet [8], MetaWeight-
Net [16], and L2R [3]. More precisely, in CIFAR-10 and CIFAR-100 datasets, the L2T-DLN method
outperformed L2R by 1.06% and 3.97% (p = 20%) and 0.68% and 0.76% (p = 40%) respectively.
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Figure 1: Illustration of the sum of gradients provided to the student model by L2T-DLN (blue) and
CE (yellow). (a) and (b) indicate that: 1) DLN initially generates a steep gradient; 2) with the training
of the teacher model and student model, the gradient of the DLN becomes smoother than CE; 3) the
teacher model and student model in CIFAR-100 converge more slowly than that in the CIFAR-10
task. We conclude that our L2T-DLN is smoother and more robust for student learning than CE.

To compare L2T-DLN and CE, we illustrate the sum of gradients provided to the student model at
each iteration when p = 20% using Figure 1. The results indicate that DLN initially generates a
sharp gradient, but during the training of both the teacher and student models, the gradient becomes
smoother than CE. Furthermore, Figure 1 shows that the teacher and student models in CIFAR-100
tend to converge more slowly than those in CIFAR-10. In summary, our L2T-DLN approach is
smoother and has more robust learning for student models compared to CE.

5.2 Ablations

In this subsection, we conduct ablation studies on CIFAR-10 [11] using ResNet8 to analyze the
impact of different Similarity metrics, the influence of the LSTM teacher and data reweighting, and
the influence of wrong learning rate settings for students.

Similarity metrics. Since the data reweighting requires calculating similarity, we discuss the
influence of different similarity metrics. We compare the performance of four similarity metrics
(cosine, dot product, Minkowski distance, and signal-to-noise ratio(SNR)).

The formula of cosine is shown as:

cos(⃗a, b⃗) =
a · b

∥ a ∥∥ b ∥
=

∑n
i=1 ai × bi√∑n

i=1(ai)
2 ×

√∑n
i=1(bi)

2
(31)

The formula of dot product is shown as:

dot(⃗a, b⃗) =

n∑
i=1

ai × bi (32)

The formula of Minkowski distance is shown as:

Lp(⃗a, b⃗) = (

n∑
i=1

|ai − bi|p)
1
p , p ≥ 1 (33)

Specifically, We set p = 2.

The formula of SNR is shown as:

SNR(⃗a, b⃗) = 10log(PS/PN), PS = σ(⃗a), PN = σ(⃗a− b⃗) (34)
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Table 2: Results on different metrics including cosine, dot product, Minkowski distance, and signal-
to-noise ratio(SNR) to show the impact of metrics.

similarity cosine Dot Product Lp SNR

accuracy 89.20 89.27 89.32 90.70

σ(⃗a) means the variance of a⃗. Table 2 summarizes the results of the ablation study. Cosine, dot
product, and Minkowski distance all impose strict constraints on embedding space for the student
model. These metrics do not account for the distribution of data points, making them deterministic in
nature. In contrast, SNR is a soft constraint that considers only the amount of information present
in each data point and disregards its distribution. Based on the features of similar measures and the
outcomes of the ablation study, we infer that SNR can aid the student model in achieving better
performance.

LSTM and data reweighting. In this section, we examine the effect of data reweighting (DR) on
clean-label CIFAR-10 tasks using ResNet8. We initially optimized the student model with LDN as a
loss function utilizing Adam to adjust its parameters. We then analyzed the effect of each element by
conducting DLN+LSTM, DLN+DR, and DLN+DR+LSTM. The results are summarized in Table
3. Our analysis revealed that the performance of DLN improved by 0.23 when DR was used and
0.48 when LSTM was incorporated. Moreover, the LSTM teacher’s influence was found to be more
significant.

Table 3: Results on different learning elements to show the impact of the LSTM teacher and the data
reweighting.

DLN DR LSTM ResNet8

✓ 90.17

✓ ✓ 90.65

✓ ✓ 90.40

✓ ✓ ✓ 90.70

Learning Rate (LR) settings. In this ablation study, we examine the impact of ‘wrong’ learning
rates on the performance of L2T with dynamic loss. We employ varying learning rates (0.2, 0.3, 0.4,
and 0.5) for the student model, subsequently analyzing the disparities in performance between our
DLN and other L2T baseline methods, e.g., SLF, within the context of the CIFAR10-ResNet8 task.
The results are presented in Table 4. In comparison to SLF, our proposed method has achieved a
relatively higher accuracy even with a ‘wrong’ learning rate. The above comparison indicates that
our method outperforms the previous state-of-the-art SLF under the wrong learning rate (0.4/0.5)
setting. Compared with SLF, our method is less sensitive to the ‘wrong’ learning rate.

Table 4: Results on wrong learning rates ranging from 0.2 to 0.5 to show the impact of different
learning rates.

LR 0.2 0.3 0.4 0.5

SLF 89.2 87.5 66.0 13.5
ours 89.7 88.1 70.4 49.0

6 Inferences of semantic segmentation

The semantic segmentation results are presented in Figure 2. Compared to the origin PSPNet [18],
the advantages of our L2T-DLN are summarised as follows: 1) accurately segment subtle foreground;
2) focusing on the reasoning of the occluded foreground. For instance, in the second line, our model
segments the horse’s front legs more accurately than PSPNet and focus on the unoccluded part of the

9



hind legs. Similarly, in the fourth line, our model clearly shows that one leg of the cyclist is occluded
by the bicycle, whereas the original PSPNet misclassifies it as the cyclist.

(a) (b) (c)

Figure 2: Illustration of results of the semantic segmentation. (a) are original images; (b) are results
of original PSPNet; (c) are results of PSPNet-ours. As shown in the first and third lines, when the
foreground is uncovered, our segmentation results are similar to the original PSPNet. The second
and fourth lines show the advantages of our L2T-DLN as follows: 1) accurately segment subtle
foreground; 2) focus on the reasoning of the occluded foreground. In the second line, we segment the
horse’s front legs more accurately than PSPNet and focus on the unoccluded part of the hind legs.
Similarly, in the fourth line, our model clearly shows that one leg of the cyclist is occluded by the
bicycle, whereas the original PSPNet misclassifies it as the cyclist.
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