
Appendices:
Elucidating the Design Space of Diffusion-Based

Generative Models

A Additional results

Figure 6 presents generated images for class-conditional ImageNet-64 [3] using the pre-trained
ADM model by Dhariwal and Nichol [4]. The original DDIM [14] and iDDPM [13] samplers are
compared to ours in both deterministic and stochastic settings (Sections 3 and 4). Figure 7 shows the
corresponding results that we obtain by training the model from scratch using our improved training
configuration (Section 5).

The original samplers and training configurations by Song et al. [15] are compared to ours in
Figures 8 and 9 (unconditional CIFAR-10 [12]), Figure 10 (class-conditional CIFAR-10), and
Figure 11 (FFHQ [11] and AFHQv2 [2]). For ease of comparison, the same latent codes x0 are used
for each dataset/scenario across different training configurations and ODE choices. Figure 12 shows
generated image quality with various NFE when using deterministic sampling.

Tables 3 and 4 summarize the numerical results on deterministic and stochastic sampling methods in
various datasets, previously shown as functions of NFE in Figures 2 and 4.

B Derivation of formulas

B.1 Original ODE / SDE formulation from previous work

Song et al. [15] define their forward SDE (Eq. 5 in [15]) as
dx = f(x, t) dt+ g(t) dωt, (9)

where ωt is the standard Wiener process and f(·, t) : Rd → Rd and g(·) : R→ R are the drift and
diffusion coefficients, respectively, where d is the dimensionality of the dataset. These coefficients
are selected differently for the variance preserving (VP) and variance exploding (VE) formulations,
and f(·) is always of the form f(x, t) = f(t) x, where f(·) : R → R. Thus, the SDE can be
equivalently written as

dx = f(t) x dt+ g(t) dωt. (10)

The perturbation kernels of this SDE (Eq. 29 in [15]) have the general form
p0t
(
x(t) | x(0)

)
= N

(
x(t); s(t) x(0), s(t)2 σ(t)2 I

)
, (11)

where N (x;µ,Σ) denotes the probability density function of N (µ,Σ) evaluated at x,

s(t) = exp

(∫ t

0

f(ξ) dξ

)
, and σ(t) =

√∫ t

0

g(ξ)2

s(ξ)2
dξ. (12)

The marginal distribution pt(x) is obtained by integrating the perturbation kernels over x(0):

pt(x) =

∫
Rd

p0t(x | x0) pdata(x0) dx0. (13)

Song et al. [15] define the probability flow ODE (Eq. 13 in [15]) so that it obeys this same pt(x):
dx =

[
f(t) x− 1

2 g(t)2 ∇x log pt(x)
]
dt. (14)

Deterministic, Original sampler (DDIM) Deterministic, Our sampler (Alg. 1)

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

FID 2.91 NFE 250 FID 2.66 NFE 79

Stochastic, Original sampler (iDDPM) Stochastic, Our sampler (Alg. 2)

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

FID 2.01 NFE 512 FID 1.55 NFE 1023

Figure 6: Results for different samplers on class-conditional ImageNet [3] at 64×64 resolution, using
the pre-trained model by Dhariwal and Nichol [4]. The cases correspond to dots in Figures 2c and 4c.

2

Deterministic, Our sampler & training configuration

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

FID 2.23 NFE 79

Stochastic, Our sampler & training configuration

A
ga

ri
c

D
ai

sy
V

al
le

y
Pi

zz
a

B
al

lo
on

B
ea

gl
e

O
st

ri
ch

FID 1.36 NFE 511

Figure 7: Results for our training configuration on class-conditional ImageNet [3] at 64×64 resolution,
using our deterministic and stochastic samplers.

3

Deterministic, Original sampler (p.flow), VP Deterministic, Original sampler (p.flow), VE

FID 2.94 NFE 256 FID 5.45 NFE 8192

Deterministic, Our sampler (Alg. 1), VP Deterministic, Our sampler (Alg. 1), VE

FID 3.01 NFE 35 FID 3.82 NFE 27

Stochastic, Original sampler (E–M), VP Stochastic, Original sampler (P–C), VE

FID 2.55 NFE 1024 FID 2.46 NFE 2048

Stochastic, Our sampler (Alg. 2), VP Stochastic, Our sampler (Alg. 2), VE

FID 2.27 NFE 511 FID 2.23 NFE 2047

Figure 8: Results for different samplers on unconditional CIFAR-10 [12] at 32×32 resolution, using
the pre-trained models by Song et al. [15]. The cases correspond to dots in Figures 2a,b and 4a,b.

4

Original training (config A), VP Original training (config A), VE

FID 3.01 NFE 35 FID 3.77 NFE 35

Our training (config F), VP Our training (config F), VE

FID 1.97 NFE 35 FID 1.98 NFE 35

Figure 9: Results for different training configurations on unconditional CIFAR-10 [12] at 32×32
resolution, using our deterministic sampler with the same set of latent codes (x0) in each case.

5

Original training (config A), VP Original training (config A), VE
Tr

uc
k

Sh
ip

H
or

se
Fr

og
D

og
D

ee
r

C
at

B
ir

d
C

ar
Pl

an
e

Tr
uc

k
Sh

ip
H

or
se

Fr
og

D
og

D
ee

r
C

at
B

ir
d

C
ar

Pl
an

e

FID 2.48 NFE 35 FID 3.11 NFE 35

Our training (config F), VP Our training (config F), VE

Tr
uc

k
Sh

ip
H

or
se

Fr
og

D
og

D
ee

r
C

at
B

ir
d

C
ar

Pl
an

e

Tr
uc

k
Sh

ip
H

or
se

Fr
og

D
og

D
ee

r
C

at
B

ir
d

C
ar

Pl
an

e

FID 1.79 NFE 35 FID 1.79 NFE 35

Figure 10: Results for different training configurations on class-conditional CIFAR-10 [12] at 32×32
resolution, using our deterministic sampler with the same set of latent codes (x0) in each case.

6

FFHQ, Original training (config A), VP FFHQ, Original training (config A), VE

FID 3.39 NFE 79 FID 25.95 NFE 79

FFHQ, Our training (config F), VP FFHQ, Our training (config F), VE

FID 2.39 NFE 79 FID 2.53 NFE 79

AFHQv2, Original training (config A), VP AFHQv2, Original training (config A), VE

FID 2.58 NFE 79 FID 18.52 NFE 79

AFHQv2, Our training (config F), VP AFHQv2, Our training (config F), VE

FID 1.96 NFE 79 FID 2.16 NFE 79

Figure 11: Results for different training configurations on FFHQ [11] and AFHQv2 [2] at 64×64
resolution, using our deterministic sampler with the same set of latent codes (x0) in each case.

7

Class-conditional ImageNet-64, Pre-trained Class-conditional CIFAR-10, Our training, VP

FID 87.16 12.39 3.56 2.66 85.46 35.47 14.32 6.72 4.22 2.48 1.86 1.79
NFE 7 11 19 79 7 9 11 13 15 19 27 35

Unconditional FFHQ, Our training, VP Unconditional AFHQv2, Our Training, VP

FID 142.34 29.22 5.13 2.39 61.57 13.68 3.00 1.96
NFE 7 11 19 79 7 11 19 79

Figure 12: Image quality and FID as a function of NFE using our deterministic sampler. At 32×32
resolution, reasonable image quality is reached around NFE = 13, but FID keeps improving until
NFE = 35. At 64×64 resolution, reasonable image quality is reached around NFE = 19, but FID
keeps improving until NFE = 79.

8

Table 3: Evaluation of our improvements to deterministic sampling. The values correspond to the
curves shown in Figure 2. We summarize each curve with two key values: the lowest observed FID
for any NFE (“FID”), and the lowest NFE whose FID is within 3% of the lowest FID (“NFE”). The
values marked with “–” are identical to the ones above them, because our sampler uses the same σ(t)
and s(t) as DDIM.

Unconditional CIFAR-10 at 32×32 Class-conditional
VP VE ImageNet-64

Sampling method FID ↓ NFE ↓ FID ↓ NFE ↓ FID ↓ NFE ↓
Original sampler [15, 4] 2.85 256 5.45 8192 2.85 250
Our Algorithm 1 2.79 512 4.78 8192 2.73 384
+ Heun & our ti 2.88 255 4.23 191 2.64 79
+ Our σ(t) & s(t) 2.93 35 3.73 27 – –
Black-box RK45 2.94 115 3.69 93 2.66 131

Table 4: Evaluation and ablations of our improvements to stochastic sampling. The values correspond
to the curves shown in Figure 4.

Unconditional CIFAR-10 at 32×32 Class-conditional
VP VE ImageNet-64

Sampling method FID ↓ NFE ↓ FID ↓ NFE ↓ FID ↓ NFE ↓
Deterministic baseline (Alg. 1) 2.93 35 3.73 27 2.64 79
Alg. 2, Stmin,tmax = [0,∞], Snoise = 1 2.69 95 2.97 383 1.86 383
Alg. 2, Stmin,tmax = [0,∞] 2.54 127 2.51 511 1.63 767
Alg. 2, Snoise = 1 2.52 95 2.84 191 1.84 255
Alg. 2, Optimal settings 2.27 383 2.23 767 1.55 511
Previous work [15, 4] 2.55 768 2.46 1024 2.01 384

B.2 Our ODE formulation (Eq. 1 and Eq. 4)

The original ODE formulation (Eq. 14) is built around the functions f and g that correspond directly
to specific terms that appear in the formula; the properties of the marginal distribution (Eq. 12) can
only be derived indirectly based on these functions. However, f and g are of little practical interest
in themselves, whereas the marginal distributions are of utmost importance in terms of training the
model in the first place, bootstrapping the sampling process, and understanding how the ODE behaves
in practice. Given that the idea of the probability flow ODE is to match a particular set of marginal
distributions, it makes sense to treat the marginal distributions as first-class citizens and define the
ODE directly based on σ(t) and s(t), eliminating the need for f(t) and g(t).

Let us start by expressing the marginal distribution of Eq. 13 in closed form:

pt(x) =

∫
Rd

p0t(x | x0) pdata(x0) dx0 (15)

=

∫
Rd

pdata(x0)
[
N
(
x; s(t) x0, s(t)

2 σ(t)2 I
)]

dx0 (16)

=

∫
Rd

pdata(x0)
[
s(t)−d N

(
x/s(t); x0, σ(t)

2 I
)]

dx0 (17)

= s(t)−d

∫
Rd

pdata(x0) N
(
x/s(t); x0, σ(t)

2 I
)
dx0 (18)

= s(t)−d
[
pdata ∗ N

(
0, σ(t)2 I

)](
x/s(t)

)
, (19)

where pa ∗ pb denotes the convolution of probability density functions pa and pb. The expression
inside the brackets corresponds to a mollified version of pdata obtained by adding i.i.d. Gaussian noise
to the samples. Let us denote this distribution by p(x;σ):

p(x;σ) = pdata ∗ N
(
0, σ(t)2 I

)
and pt(x) = s(t)−d p

(
x/s(t);σ(t)

)
. (20)

9

We can now express the probability flow ODE (Eq. 14) using p(x;σ) instead of pt(x):

dx =
[
f(t)x− 1

2 g(t)2 ∇x log
[
pt(x)

]]
dt (21)

=
[
f(t)x− 1

2 g(t)2 ∇x log
[
s(t)−d p

(
x/s(t);σ(t)

)]]
dt (22)

=
[
f(t)x− 1

2 g(t)2
[
∇x log s(t)−d +∇x log p

(
x/s(t);σ(t)

)]]
dt (23)

=
[
f(t)x− 1

2 g(t)2 ∇x log p
(
x/s(t);σ(t)

)]
dt. (24)

Next, let us rewrite f(t) in terms of s(t) based on Eq. 12:

exp

(∫ t

0

f(ξ) dξ

)
= s(t) (25)∫ t

0

f(ξ) dξ = log s(t) (26)

d

[∫ t

0

f(ξ) dξ

]/
dt = d

[
log s(t)

]
/dt (27)

f(t) = ṡ(t)/s(t). (28)

Similarly, we can also rewrite g(t) in terms of σ(t):√∫ t

0

g(ξ)2

s(ξ)2
dξ = σ(t) (29)∫ t

0

g(ξ)2

s(ξ)2
dξ = σ(t)2 (30)

d

[∫ t

0

g(ξ)2

s(ξ)2
dξ

]/
dt = d

[
σ(t)2

]
/dt (31)

g(t)2/s(t)2 = 2 σ̇(t) σ(t) (32)

g(t)/s(t) =
√

2 σ̇(t) σ(t) (33)

g(t) = s(t)
√

2 σ̇(t) σ(t). (34)

Finally, substitute f (Eq. 28) and g (Eq. 34) into the ODE of Eq. 24:

dx =
[
[f(t)] x− 1

2 [g(t)]2 ∇x log p
(
x/s(t);σ(t)

)]
dt (35)

=

[[
ṡ(t)/s(t)

]
x− 1

2

[
s(t)

√
2 σ̇(t) σ(t)

]2
∇x log p

(
x/s(t);σ(t)

)]
dt (36)

=

[[
ṡ(t)/s(t)

]
x− 1

2

[
2 s(t)2 σ̇(t) σ(t)

]
∇x log p

(
x/s(t);σ(t)

)]
dt (37)

=

[
ṡ(t)

s(t)
x− s(t)2 σ̇(t) σ(t)∇x log p

(
x

s(t)
;σ(t)

)]
dt. (38)

Thus we have obtained Eq. 4 in the main paper, and Eq. 1 is recovered by setting s(t) = 1:

dx = −σ̇(t) σ(t)∇x log p
(
x;σ(t)

)
dt. (39)

Our formulation (Eq. 4) highlights the fact that every realization of the probability flow ODE is simply
a reparameterization of the same canonical ODE; changing σ(t) corresponds to reparameterizing t,
whereas changing s(t) corresponds to reparameterizing x.

B.3 Denoising score matching (Eq. 2 and Eq. 3)

For the sake of completeness, we derive the connection between score matching and denoising for a
finite dataset. For a more general treatment and further background on the topic, see Hyvärinen [7]
and Vincent [19].

10

Let us assume that our training set consists of a finite number of samples {y1, . . . ,yY }. This implies
pdata(x) is represented by a mixture of Dirac delta distributions:

pdata(x) =
1

Y

Y∑
i=1

δ
(
x− yi

)
, (40)

which allows us to also express p(x;σ) in closed form based on Eq. 20:

p(x;σ) = pdata ∗ N
(
0, σ(t)2 I

)
(41)

=

∫
Rd

pdata(x0) N
(
x; x0, σ

2 I
)
dx0 (42)

=

∫
Rd

[
1

Y

Y∑
i=1

δ
(
x0 − yi

)]
N
(
x; x0, σ

2 I
)
dx0 (43)

=
1

Y

Y∑
i=1

∫
Rd

N
(
x; x0, σ

2 I
)
δ
(
x0 − yi

)
dx0 (44)

=
1

Y

Y∑
i=1

N
(
x; yi, σ

2 I
)
. (45)

Let us now consider the denoising score matching loss of Eq. 2. By expanding the expectations, we
can rewrite the formula as an integral over the noisy samples x:

L(D;σ) = Ey∼pdata En∼N (0,σ2I)

∥∥D(y + n;σ)− y
∥∥2
2

(46)

= Ey∼pdata Ex∼N (y,σ2I)

∥∥D(x;σ)− y
∥∥2
2

(47)

= Ey∼pdata

∫
Rd

N (x; y, σ2 I)
∥∥D(x;σ)− y

∥∥2
2
dx (48)

=
1

Y

Y∑
i=1

∫
Rd

N (x; yi, σ
2 I)

∥∥D(x;σ)− yi

∥∥2
2
dx (49)

=

∫
Rd

1

Y

Y∑
i=1

N (x; yi, σ
2 I)

∥∥D(x;σ)− yi

∥∥2
2︸ ︷︷ ︸

=: L(D;x,σ)

dx. (50)

Eq. 50 means that we can minimize L(D;σ) by minimizing L(D;x, σ) independently for each x:
D(x;σ) = argminD(x;σ) L(D;x, σ). (51)

This is a convex optimization problem; its solution is uniquely identified by setting the gradient w.r.t.
D(x;σ) to zero:

0 = ∇D(x;σ)

[
L(D;x, σ)

]
(52)

0 = ∇D(x;σ)

[
1

Y

Y∑
i=1

N (x; yi, σ
2 I)

∥∥D(x;σ)− yi

∥∥2
2

]
(53)

0 =

Y∑
i=1

N (x; yi, σ
2 I)∇D(x;σ)

[∥∥D(x;σ)− yi

∥∥2
2

]
(54)

0 =

Y∑
i=1

N (x; yi, σ
2 I)

[
2 D(x;σ)− 2 yi

]
(55)

0 =

[
Y∑
i=1

N (x; yi, σ
2 I)

]
D(x;σ)−

Y∑
i=1

N (x; yi, σ
2 I) yi (56)

D(x;σ) =

∑
iN (x; yi, σ

2 I) yi∑
iN (x; yi, σ

2 I)
, (57)

11

which gives a closed-form solution for the ideal denoiser D(x;σ). Note that Eq. 57 is feasible to
compute in practice for small datasets — we show the results for CIFAR-10 in Figure 1b.

Next, let us consider the score of the distribution p(x;σ) defined in Eq. 45:

∇x log p(x;σ) =
∇xp(x;σ)

p(x;σ)
(58)

=
∇x

[
1
Y

∑
iN
(
x; yi, σ

2 I
)][

1
Y

∑
iN
(
x; yi, σ

2 I
)] (59)

=

∑
i∇xN

(
x; yi, σ

2 I
)∑

iN
(
x; yi, σ

2 I
) . (60)

We can simplify the numerator of Eq. 60 further:

∇xN
(
x; yi, σ

2 I
)

= ∇x

[(
2πσ2

)− d
2 exp

∥x− yi∥22
−2 σ2

]
(61)

=
(
2πσ2

)− d
2 ∇x

[
exp
∥x− yi∥22
−2 σ2

]
(62)

=

[(
2πσ2

)− d
2 exp

∥x− yi∥22
−2 σ2

]
∇x

[
∥x− yi∥22
−2 σ2

]
(63)

= N
(
x; yi, σ

2 I
)
∇x

[
∥x− yi∥22
−2 σ2

]
(64)

= N
(
x; yi, σ

2 I
)[yi − x

σ2

]
. (65)

Let us substitute the result back to Eq. 60:

∇x log p(x;σ) =

∑
i∇xN

(
x; yi, σ

2 I
)∑

iN
(
x; yi, σ

2 I
) (66)

=

∑
iN
(
x; yi, σ

2 I
)[yi−x

σ2

]
∑

iN
(
x; yi, σ

2 I
) (67)

=

(∑
iN
(
x; yi, σ

2 I
)
yi∑

iN
(
x; yi, σ

2 I
) − x

)/
σ2. (68)

Notice that the fraction in Eq. 68 is identical to Eq. 57. We can thus equivalently write Eq. 68 as

∇x log p(x;σ) =
(
D(x; σ)− x

)
/σ2, (69)

which matches Eq. 3 in the main paper.

B.4 Evaluating our ODE in practice (Algorithm 1)

Let us consider x to be a scaled version of an original, non-scaled variable x̂ and substitute x = s(t) x̂
into the score term that appears in our scaled ODE (Eq. 4):

∇x log p
(
x/s(t);σ(t)

)
(70)

= ∇[s(t)x̂] log p
(
[s(t) x̂]/s(t);σ(t)

)
(71)

= ∇s(t)x̂ log p
(
x̂;σ(t)

)
(72)

= 1
s(t)∇x̂ log p

(
x̂;σ(t)

)
. (73)

12

We can further rewrite this with respect to D(·) using Eq. 3:

∇x log p
(
x/s(t);σ(t)

)
= 1

s(t)σ(t)2

(
D
(
x̂;σ(t)

)
− x̂

)
. (74)

Let us now substitute Eq. 74 into Eq. 4, approximating the ideal denoiser D(·) with our trained model
Dθ(·):

dx =
[
ṡ(t) x/s(t)− s(t)2 σ̇(t) σ(t)

[
1

s(t)σ(t)2

(
Dθ

(
x̂;σ(t)

)
− x̂

)]]
dt (75)

=
[
ṡ(t)
s(t) x−

σ̇(t)s(t)
σ(t)

(
Dθ

(
x̂;σ(t)

)
− x̂

)]
dt. (76)

Finally, backsubstitute x̂ = x/s(t):

dx =
[
ṡ(t)
s(t) x−

σ̇(t)s(t)
σ(t)

(
Dθ

(
[x̂];σ(t)

)
− [x̂]

)]
dt (77)

=
[
ṡ(t)
s(t) x−

σ̇(t)s(t)
σ(t)

(
Dθ

(
[x/s(t)];σ(t)

)
− [x/s(t)]

)]
dt (78)

=
[
ṡ(t)
s(t) x−

σ̇(t)s(t)
σ(t) Dθ

(
x/s(t);σ(t)

)
+ σ̇(t)

σ(t) x
]
dt (79)

=
[(

σ̇(t)
σ(t) +

ṡ(t)
s(t)

)
x− σ̇(t)s(t)

σ(t) Dθ

(
x/s(t);σ(t)

)]
dt. (80)

We can equivalenty write Eq. 80 as

dx/dt =

(
σ̇(t)

σ(t)
+

ṡ(t)

s(t)

)
x− σ̇(t)s(t)

σ(t)
Dθ

(
x

s(t)
;σ(t)

)
, (81)

matching lines 4 and 7 of Algorithm 1.

B.5 Our SDE formulation (Eq. 6)

We derive the SDE of Eq. 6 by the following strategy:

• The desired marginal densities p
(
x;σ(t)

)
are convolutions of the data density pdata and an

isotropic Gaussian density with standard deviation σ(t) (see Eq. 20). Hence, considered
as a function of the time t, the density evolves according to a heat diffusion PDE with
time-varying diffusivity. As a first step, we find this PDE.

• We then use the Fokker–Planck equation to recover a family of SDEs for which the density
evolves according to this PDE. Eq. 6 is obtained from a suitable parametrization of this
family.

B.5.1 Generating the marginals by heat diffusion

We consider the time evolution of a probability density q(x, t). Our goal is to find a PDE whose
solution with the initial value q(x, 0) := pdata(x) is q(x, t) = p

(
x, σ(t)

)
. That is, the PDE should

reproduce the marginals we postulate in Eq. 20.

The desired marginals are convolutions of pdata with isotropic normal distributions of time-varying
standard deviation σ(t), and as such, can be generated by the heat equation with time-varying
diffusivity κ(t). The situation is most conveniently analyzed in the Fourier domain, where the
marginal densities are simply pointwise products of a Gaussian function and the transformed data
density. To find the diffusivity that induces the correct standard deviations, we first write down the
heat equation PDE:

∂q(x, t)

∂t
= κ(t)∆xq(x, t). (82)

The Fourier transformed counterpart of Eq. 82, where the transform is taken along the x-dimension,
is given by

∂q̂(ν, t)

∂t
= −κ(t)|ν|2q̂(ν, t). (83)

13

The target solution q(x, t) and its Fourier transform q̂(ν, t) are given by Eq. 20:

q(x, t) = p
(
x;σ(t)

)
= pdata(x) ∗ N

(
0, σ(t)2 I

)
(84)

q̂(ν, t) = p̂data(ν) exp
(
− 1

2 |ν|
2 σ(t)2

)
. (85)

Differentiating the target solution along the time axis, we have
∂q̂(ν, t)

∂t
= −σ̇(t)σ(t) |ν|2 p̂data(ν) exp

(
− 1

2 |ν|
2 σ(t)2

)
(86)

= −σ̇(t)σ(t) |ν|2 q̂(ν, t). (87)

Eqs. 83 and 87 share the same left hand side. Equating them allows us to solve for κ(t) that generates
the desired evolution:

−κ(t)|ν|2q̂(ν, t) = −σ̇(t)σ(t) |ν|2 q̂(ν, t) (88)
κ(t) = σ̇(t)σ(t). (89)

To summarize, the desired marginal densities corresponding to noise levels σ(t) are generated by the
PDE

∂q(x, t)

∂t
= σ̇(t)σ(t)∆xq(x, t) (90)

from the initial density q(x, 0) = pdata(x).

B.5.2 Derivation of our SDE

Given an SDE
dx = f(x, t) dt + g(x, t) dωt, (91)

the Fokker–Planck PDE describes the time evolution of its solution probability density r(x, t) as
∂r(x, t)

∂t
= −∇x ·

(
f(x, t) r(x, t)

)
+ 1

2∇x∇x :
(
D(x, t) r(x, t)

)
, (92)

where Dij =
∑

k gikgjk is the diffusion tensor. We consider the special case g(x, t) = g(t) I of
x-independent white noise addition, whereby the equation simplifies to

∂r(x, t)

∂t
= −∇x ·

(
f(x, t) r(x, t)

)
+ 1

2 g(t)2 ∆xr(x, t). (93)

We are seeking an SDE whose solution density is described by the PDE in Eq. 90. Setting r(x, t) =
q(x, t) and equating Eqs. 93 and 90, we find the sufficient condition that the SDE must satisfy

−∇x ·
(
f(x, t) q(x, t)

)
+ 1

2 g(t)2 ∆xq(x, t) = σ̇(t) σ(t) ∆xq(x, t) (94)

∇x ·
(
f(x, t) q(x, t)

)
=

(
1
2 g(t)2 − σ̇(t) σ(t)

)
∆xq(x, t). (95)

Any choice of functions f(x, t) and g(t) satisfying this equation constitute a sought after SDE. Let
us now find a specific family of such solutions. The key idea is given by the identity∇x · ∇x = ∆x.
Indeed, if we set f(x, t) q(x, t) = υ(t)∇xq(x, t) for any choice of υ(t), the term ∆xq(x, t) appears
on both sides and cancels out:

∇x ·
(
υ(t)∇xq(x, t)

)
=

(
1
2 g(t)2 − σ̇(t) σ(t)

)
∆xq(x, t) (96)

υ(t) ∆xq(x, t) =
(

1
2 g(t)2 − σ̇(t) σ(t)

)
∆xq(x, t) (97)

υ(t) = 1
2 g(t)2 − σ̇(t) σ(t). (98)

The stated f(x, t) is in fact proportional to the score function, as the formula matches the gradient of
the logarithm of the density:

f(x, t) = υ(t)
∇xq(x, t)

q(x, t)
(99)

= υ(t)∇x log q(x, t) (100)

=
(

1
2 g(t)2 − σ̇(t) σ(t)

)
∇x log q(x, t). (101)

14

Substituting this back into Eq. 91 and writing p(x;σ(t)) in place of q(x, t), we recover a family of
SDEs whose solution densities have the desired marginals with noise levels σ(t) for any choice of
g(t):

dx =
(

1
2 g(t)2 − σ̇(t) σ(t)

)
∇x log p

(
x;σ(t)

)
dt + g(t) dωt. (102)

The free parameter g(t) effectively specifies the rate of noise replacement at any given time instance.
The special case choice of g(t) = 0 corresponds to the probability flow ODE. The parametrization
by g(t) is not particularly intuitive, however. To obtain a more interpretable parametrization, we set
g(t) =

√
2 β(t) σ(t), which yields the (forward) SDE of Eq. 6 in the main paper:

dx+ = −σ̇(t)σ(t)∇x log p
(
x;σ(t)

)
dt + β(t)σ(t)2∇x log p

(
x;σ(t)

)
dt+

√
2β(t)σ(t) dωt.

(103)

The noise replacement is now proportional to the standard deviation σ(t) of the noise, with the
proportionality factor β(t). Indeed, expanding the score function in the middle term according
to Eq. 3 yields β(t)

[
D
(
x;σ(t)

)
− x

]
dt, which changes x proportionally to the negative noise

component; the stochastic term injects new noise at the same rate. Intuitively, scaling the magnitude
of Langevin exploration according to the current noise standard deviation is a reasonable baseline, as
the data manifold is effectively “spread out” by this amount due to the blurring of the density.

The reverse SDE used in denoising diffusion is simply obtained by applying the time reversal formula
of Anderson [1] (as stated in Eq. 6 of Song et al. [15]) on Eq. 103; the entire effect of the reversal is a
change of sign in the middle term.

The scaled generalization of the SDE can be derived using a similar approach as with the ODE
previously. As such, the derivation is omitted here.

B.6 Our preconditioning and training (Eq. 8)

Following Eq. 2, the denoising score matching loss for a given denoiser Dθ on a given noise level σ
is given by

L(Dθ;σ) = Ey∼pdata En∼N (0,σ2I)

∥∥Dθ(y + n;σ)− y
∥∥2
2
. (104)

We obtain overall training loss by taking a weighted expectation of L(Dθ;σ) over the noise levels:

L(Dθ) = Eσ∼ptrain

[
λ(σ) L(Dθ;σ)

]
(105)

= Eσ∼ptrain

[
λ(σ) Ey∼pdata En∼N (0,σ2I)

∥∥Dθ(y + n;σ)− y
∥∥2
2

]
(106)

= Eσ∼ptrain Ey∼pdata En∼N (0,σ2I)

[
λ(σ)

∥∥Dθ(y + n;σ)− y
∥∥2
2

]
(107)

= Eσ,y,n

[
λ(σ)

∥∥Dθ(y + n;σ)− y
∥∥2
2

]
, (108)

where the noise levels are distributed according to σ ∼ ptrain and weighted by λ(σ).

Using our definition of Dθ(·) from Eq. 7, we can further rewrite L(Dθ) as

Eσ,y,n

[
λ(σ)

∥∥cskip(σ)(y+n) + cout(σ)Fθ

(
cin(σ)(y+n); cnoise(σ)

)
− y

∥∥2
2

]
(109)

= Eσ,y,n

[
λ(σ)

∥∥cout(σ)Fθ

(
cin(σ)(y+n); cnoise(σ)

)
−
(
y − cskip(σ)(y + n)

)∥∥2
2

]
(110)

= Eσ,y,n

[
λ(σ)cout(σ)

2
∥∥Fθ

(
cin(σ)(y+n); cnoise(σ)

)
− 1

cout(σ)

(
y − cskip(σ)(y+n)

)∥∥2
2

]
(111)

= Eσ,y,n

[
w(σ)

∥∥Fθ

(
cin(σ)(y+n); cnoise(σ)

)
− Ftarget(y,n;σ)

∥∥2
2

]
, (112)

which matches Eq. 8 and corresponds to traditional supervised training of Fθ using standard L2 loss
with effective weight w(·) and target Ftarget(·) given by

w(σ) = λ(σ) cout(σ)
2 and Ftarget(y,n;σ) =

1
cout(σ)

(
y − cskip(σ)(y + n)

)
, (113)

We can now derive formulas for cin(σ), cout(σ), cskip(σ), and λ(σ) from first principles, shown in the
“Ours” column of Table 1.

15

First, we require the training inputs of Fθ(·) to have unit variance:

Vary,n
[
cin(σ)(y + n)

]
= 1 (114)

cin(σ)
2 Vary,n

[
y + n

]
= 1 (115)

cin(σ)
2
(
σ2

data + σ2
)

= 1 (116)

cin(σ) = 1
/√

σ2 + σ2
data. (117)

Second, we require the effective training target Ftarget to have unit variance:

Vary,n
[
Ftarget(y,n;σ)

]
= 1 (118)

Vary,n

[
1

cout(σ)

(
y − cskip(σ)(y + n)

)]
= 1 (119)

1
cout(σ)2

Vary,n
[
y − cskip(σ)(y + n)

]
= 1 (120)

cout(σ)
2 = Vary,n

[
y − cskip(σ)(y + n)

]
(121)

cout(σ)
2 = Vary,n

[(
1− cskip(σ)

)
y − cskip(σ) n

]
(122)

cout(σ)
2 =

(
1− cskip(σ)

)2
σ2

data + cskip(σ)
2 σ2. (123)

Third, we select cskip(σ) to minimize cout(σ), so that the errors of Fθ are amplified as little as possible:

cskip(σ) = argmincskip(σ) cout(σ). (124)

Since cout(σ) ≥ 0, we can equivalently write

cskip(σ) = argmincskip(σ) cout(σ)
2. (125)

This is a convex optimization problem; its solution is uniquely identified by setting the derivative
w.r.t. cskip(σ) to zero:

0 = d
[
cout(σ)

2
]
/dcskip(σ) (126)

0 = d
[(
1− cskip(σ)

)2
σ2

data + cskip(σ)
2 σ2

]
/dcskip(σ) (127)

0 = σ2
data d

[(
1− cskip(σ)

)2]
/dcskip(σ) + σ2 d

[
cskip(σ)

2
]
/dcskip(σ) (128)

0 = σ2
data

[
2 cskip(σ)− 2

]
+ σ2

[
2 cskip(σ)

]
(129)

0 =
(
σ2 + σ2

data

)
cskip(σ)− σ2

data (130)

cskip(σ) = σ2
data/

(
σ2 + σ2

data

)
. (131)

We can now substitute Eq. 131 into Eq. 123 to complete the formula for cout(σ):

cout(σ)
2 =

(
1−

[
cskip(σ)

])2
σ2

data +
[
cskip(σ)

]2
σ2 (132)

cout(σ)
2 =

(
1−

[
σ2

data

σ2 + σ2
data

])2

σ2
data +

[
σ2

data

σ2 + σ2
data

]2
σ2 (133)

cout(σ)
2 =

[
σ2 σdata

σ2 + σ2
data

]2
+

[
σ2

data σ

σ2 + σ2
data

]2
(134)

cout(σ)
2 =

(
σ2 σdata

)2
+
(
σ2

data σ
)2(

σ2 + σ2
data

)2 (135)

cout(σ)
2 =

(σ · σdata)
2
(
σ2 + σ2

data

)(
σ2 + σ2

data

)2 (136)

cout(σ)
2 =

(σ · σdata)
2

σ2 + σ2
data

(137)

cout(σ) = σ · σdata
/√

σ2 + σ2
data. (138)

16

Fourth, we require the effective weight w(σ) to be uniform across noise levels:

w(σ) = 1 (139)

λ(σ) cout(σ)
2 = 1 (140)

λ(σ) = 1/cout(σ)
2 (141)

λ(σ) = 1
/[σ · σdata√

σ2 + σ2
data

]2
(142)

λ(σ) = 1
/[(σ · σdata)

2

σ2 + σ2
data

]
(143)

λ(σ) =
(
σ2 + σ2

data

)
/(σ · σdata)

2. (144)

We follow previous work and initialize the output layer weights to zero. Consequently, upon
initialization Fθ(·) = 0 and the expected value of the loss at each noise level is 1. This can be seen
by substituting the choices of λ(σ) and cskip(σ) into Eq. 109, considered at a fixed σ:

Ey,n

[
λ(σ)

∥∥cskip(σ)(y+n) + cout(σ)Fθ

(
cin(σ)(y+n); cnoise(σ)

)
− y

∥∥2
2

]
(145)

= Ey,n

[
σ2 + σ2

data

(σ · σdata)2

∥∥∥∥ σ2
data

σ2 + σ2
data

(y+n)− y

∥∥∥∥2
2

]
(146)

= Ey,n

[
σ2 + σ2

data

(σ · σdata)2

∥∥∥∥σ2
datan− σ2y

σ2 + σ2
data

∥∥∥∥2
2

]
(147)

= Ey,n

[
1

σ2 + σ2
data

∥∥∥∥σdata

σ
n− σ

σdata
y

∥∥∥∥2
2

]
(148)

=
1

σ2 + σ2
data

Ey,n

[
σ2

data

σ2
⟨n,n⟩+ σ2

σ2
data
⟨y,y⟩ − 2⟨y,n⟩

]
(149)

=
1

σ2 + σ2
data

[
σ2

data

σ2
Var(n)︸ ︷︷ ︸

=σ2

+
σ2

σ2
data

Var(y)︸ ︷︷ ︸
=σ2

data

−2Cov(y,n)︸ ︷︷ ︸
=0

]
(150)

= 1 (151)

C Reframing previous methods in our framework

In this section, we derive the formulas shown in Table 1 for previous methods, discuss the corre-
sponding original samplers and pre-trained models, and detail the practical considerations associated
with using them in our framework.

In practice, the original implementations of these methods differ considerably in terms of the
definitions of model inputs and outputs, dynamic range of image data, scaling of x, and interpretation
of σ. We eliminate this variation by standardizing on a unified setup where the model always matches
our definition of Fθ, image data is always represented in the continuous range [−1, 1], and the details
of x and σ are always in agreement with Eq. 4.

We minimize the accumulation of floating point round-off errors by always executing Algorithms 1
and 2 at double precision (float64). However, we still execute the network Fθ(·) at single precision
(float32) to minimize runtime and remain faithful to previous work in terms of network architecture.

C.1 Variance preserving formulation

C.1.1 VP sampling

Song et al. [15] define the VP SDE (Eq. 32 in [15]) as

dx = − 1
2

(
βmin + t

(
βmax − βmin

))
x dt+

√
βmin + t

(
βmax − βmin

)
dωt, (152)

17

which matches Eq. 10 with the following choices for f and g:

f(t) = − 1
2 β(t), g(t) =

√
β(t), and β(t) =

(
βmax − βmin

)
t+ βmin. (153)

Let α(t) denote the integral of β(t):

α(t) =

∫ t

0

β(ξ) dξ (154)

=

∫ t

0

[(
βmax − βmin

)
ξ + βmin

]
dξ (155)

= 1
2

(
βmax − βmin

)
t2 + βmin t (156)

= 1
2 βd t

2 + βmin t, (157)

where βd = βmax − βmin. We can now obtain the formula for σ(t) by substituting Eq. 153 into Eq. 12:

σ(t) =

√√√√∫ t

0

[
g(ξ)

]2[
s(ξ)

]2 dξ (158)

=

√√√√∫ t

0

[√
β(ξ)

]2[
1/
√
eα(ξ)

]2 dξ (159)

=

√∫ t

0

β(ξ)

1/eα(ξ)
dξ (160)

=

√∫ t

0

α̇(ξ) eα(ξ) dξ (161)

=
√
eα(t) − eα(0) (162)

=

√
e

1
2βdt2+βmint − 1, (163)

which matches the “Schedule” row of Table 1. Similarly for s(t):

s(t) = exp

(∫ t

0

[
f(ξ)

]
dξ

)
(164)

= exp

(∫ t

0

[
− 1

2 β(ξ)
]
dξ

)
(165)

= exp

(
− 1

2

[∫ t

0

β(ξ) dξ

])
(166)

= exp
(
− 1

2 α(t)
)

(167)

= 1/
√
eα(t) (168)

= 1/
√
e

1
2βdt2+βmint, (169)

which matches the “Scaling” row of Table 1. We can equivalently write Eq. 169 in a slightly simpler
form by utilizing Eq. 163:

s(t) = 1/
√
σ(t)2 + 1. (170)

Song et al. [15] choose to distribute the sampling time steps {t0, . . . , tN−1} at uniform intervals
within [ϵs, 1]. This corresponds to setting

ti<N = 1 + i
N−1 (ϵs − 1), (171)

which matches the “Time steps” row of Table 1.

Finally, Song et al. [15] set βmin = 0.1, βmax = 20, and ϵs = 10−3 (Appendix C in [15]), and choose
to represent images in the range [−1, 1]. These choices are readily compatible with our formulation
and are reflected by the “Parameters” section of Table 1.

18

C.1.2 VP preconditioning

In the VP case, Song et al. [15] approximate the score of pt(x) of Eq. 13 as1

∇x log pt(x) ≈ − 1
σ̄(t) Fθ

(
x; (M−1)t

)︸ ︷︷ ︸
score(x;Fθ,t)

, (172)

where M = 1000, Fθ denotes the network, and σ̄(t) corresponds to the standard deviation of the
perturbation kernel of Eq. 11.

Let us expand the definitions of pt(x) and σ̄(t) from Eqs. 20 and 11, respectively, and substitute
x = s(t)x̂ to obtain the corresponding formula with respect to the non-scaled variable x̂:

∇x log
[
p
(
x/s(t);σ(t)

)]
≈ − 1

[s(t)σ(t)] Fθ

(
x; (M−1)t

)
(173)

∇[s(t)x̂] log p
(
[s(t) x̂]/s(t);σ(t)

)
≈ − 1

s(t)σ(t) Fθ

(
[s(t) x̂]; (M−1)t

)
(174)

1
s(t)∇x̂ log p

(
x̂;σ(t)

)
≈ − 1

s(t)σ(t) Fθ

(
s(t) x̂; (M−1)t

)
(175)

∇x̂ log p
(
x̂;σ(t)

)
≈ − 1

σ(t) Fθ

(
s(t) x̂; (M−1)t

)
. (176)

We can now replace the left-hand side with Eq. 3 and expand the definition of s(t) from Eq. 170:[(
D
(
x̂;σ(t)

)
− x̂

)
/σ(t)2

]
≈ − 1

σ(t) Fθ

(
s(t) x̂; (M−1)t

)
(177)

D
(
x̂;σ(t)

)
≈ x̂− σ(t) Fθ

(
s(t) x̂; (M−1)t

)
(178)

D
(
x̂;σ(t)

)
≈ x̂− σ(t) Fθ

([
1√

σ(t)2+1

]
x̂; (M−1)t

)
, (179)

which can be further expressed in terms of σ by replacing σ(t)→ σ and t→ σ−1(σ):

D(x̂;σ) ≈ x̂− σ Fθ

(
1√

σ2+1
x̂; (M−1) σ−1(σ)

)
. (180)

We adopt the right-hand side of Eq. 180 as the definition of Dθ, obtaining

Dθ(x̂;σ) = 1 ·︸︷︷︸
cskip

x̂ − σ︸︷︷︸
cout

· Fθ

(
1√

σ2+1︸ ︷︷ ︸
cin

· x̂; (M−1) σ−1(σ)︸ ︷︷ ︸
cnoise

)
, (181)

where cskip, cout, cin, and cnoise match the “Network and preconditioning” section of Table 1.

C.1.3 VP training

Song et al. [15] define their training loss as2

Et∼U(ϵt,1),y∼pdata,n̄∼N (0,I)

[∥∥σ̄(t) score
(
s(t) y + σ̄(t) n̄; Fθ, t

)
+ n̄

∥∥2
2

]
, (182)

where the definition of score(·) is the same as in Eq. 172. Let us simplify the formula by substituting
σ̄(t) = s(t)σ(t) and n̄ = n/σ(t), where n ∼ N (0, σ(t)2I):

Et,y,n̄

[∥∥s(t)σ(t) score
(
s(t) y + [s(t)σ(t)] n̄; Fθ, t

)
+ n̄

∥∥2
2

]
(183)

= Et,y,n

[∥∥s(t)σ(t) score
(
s(t) y + s(t)σ(t) [n/σ(t)]; Fθ, t

)
+ [n/σ(t)]

∥∥2
2

]
(184)

= Et,y,n

[∥∥s(t)σ(t) score
(
s(t) (y + n); Fθ, t

)
+ n/σ(t)

∥∥2
2

]
. (185)

We can express score(·) in terms of Dθ(·) by combining Eqs. 172, 170, and 74:

score
(
s(t) x;Fθ, t

)
= 1

s(t)σ(t)2

(
Dθ

(
x;σ(t)

)
− x

)
. (186)

1
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/utils.py#L144

2
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/losses.py#L73

19

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/utils.py#L144
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/losses.py#L73

Substituting this back into Eq. 185 gives

Et,y,n

[∥∥s(t)σ(t) [1
s(t)σ(t)2

(
Dθ

(
y + n;σ(t)

)
− (y + n)

)]
+ 1

σ(t) n
∥∥2
2

]
(187)

= Et,y,n

[∥∥ 1
σ(t)

(
Dθ

(
y + n;σ(t)

)
− (y + n)

)
+ 1

σ(t) n
∥∥2
2

]
(188)

= Et,y,n

[
1

σ(t)2

∥∥Dθ

(
y + n;σ(t)

)
− y

∥∥2
2

]
. (189)

We can further express this in terms of σ by replacing σ(t)→ σ and t→ σ−1(σ):

Eσ−1(σ)∼U(ϵt,1)︸ ︷︷ ︸
ptrain

Ey,n

[
1
σ2︸︷︷︸
λ

∥∥Dθ

(
y + n;σ

)
− y

∥∥2
2

]
, (190)

which matches Eq. 108 with the choices for ptrain and λ shown in the “Training” section of Table 1.

C.1.4 VP practical considerations

The pre-trained VP model that we use on CIFAR-10 corresponds to the “DDPM++ cont. (VP)”
checkpoint3 provided by Song et al. [15]. It contains a total of 62 million trainable parameters and
supports a continuous range of noise levels σ ∈

[
σ(ϵt), σ(1)

]
≈ [0.001, 152], i.e., wider than our

preferred sampling range [0.002, 80]. We import the model directly as Fθ(·) and run Algorithms 1
and 2 using the definitions in Table 1.

In Figure 2a, the differences between the original sampler (blue) and our reimplementation (orange)
are explained by oversights in the implementation of Song et al. [15], also noted by Jolicoeur-
Martineau et al. [8] (Appendix D in [8]). First, the original sampler employs an incorrect multiplier4

in the Euler step: it multiplies dx/dt by −1/N instead of (ϵs − 1)/(N − 1). Second, it either
overshoots or undershoots on the last step by going from tN−1 = ϵs to tN = ϵs−1/N , where tN < 0
when N < 1000. In practice, this means that the generated images contain noticeable noise that
becomes quite severe with, e.g., N = 128. Our formulation avoids these issues, because the step
sizes in Algorithm 1 are computed consistently from {ti} and tN = 0.

C.2 Variance exploding formulation

C.2.1 VE sampling in theory

Song et al. [15] define the VE SDE (Eq. 30 in [15]) as

dx = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dωt, (191)

which matches Eq. 10 with

f(t) = 0, g(t) = σmin
√

2 log σd σ
t
d, and σd = σmax/σmin. (192)

The VE formulation does not employ scaling, which can be easily seen from Eq. 12:

s(t) = exp

(∫ t

0

[
f(ξ)

]
dξ

)
= exp

(∫ t

0

[
0
]
dξ

)
= exp(0) = 1. (193)

3
vp/cifar10_ddpmpp_continuous/checkpoint_8.pth, https://drive.google.com/drive/folders/1xYjVMx10N9ivQQBIsEoXEeu9nvSGTBrC

4
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sampling.py#L182

20

https://drive.google.com/drive/folders/1xYjVMx10N9ivQQBIsEoXEeu9nvSGTBrC
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sampling.py#L182

Substituting Eq. 192 into Eq. 12 suggests the following form for σ(t):

σ(t) =

√√√√∫ t

0

[
g(ξ)

]2[
s(ξ)

]2 dξ (194)

=

√√√√∫ t

0

[
σmin
√
2 log σd σξ

d

]2[
1
]2 dξ (195)

=

√∫ t

0

σ2
min

[
2 log σd

] [
σ2ξ

d

]
dξ (196)

= σmin

√∫ t

0

[
log
(
σ2

d

)] [(
σ2

d

)ξ]
dξ (197)

= σmin

√(
σ2

d

)t − (σ2
d

)0
(198)

= σmin
√
σ2t

d − 1. (199)

Eq. 199 is consistent with the perturbation kernel reported by Song et al. (Eq. 29 in [15]). However,
we note that this does not fulfill their intended definition of σ(t) = σmin

(
σmax
σmin

)t
(Appendix C in [15]).

C.2.2 VE sampling in practice

The original implementation5 of Song et al. [15] uses reverse diffusion predictor6 to integrate
discretized reverse probability flow7 of discretized VE SDE8. Put together, these yield the following
update rule for xi+1:

xi+1 = xi +
1
2

(
σ̄2
i − σ̄2

i+1

)
∇x log p̄i(x), (200)

where

σ̄i<N = σmin

(
σmax

σmin

)1−i/(N−1)

and σ̄N = 0. (201)

Interestingly, Eq. 200 is identical to the Euler iteration of our ODE with the following choices:

s(t) = 1, σ(t) =
√
t, and ti = σ̄2

i . (202)

These formulas match the “Sampling” section of Table 1, and their correctness can be verified by
substituting them into line 5 of Algorithm 1:

xi+1 = xi + (ti+1 − ti) di (203)

= xi + (ti+1 − ti)

[(
σ̇(t)

σ(t)
+

ṡ(t)

s(t)

)
x− σ̇(t)s(t)

σ(t)
D

(
x

s(t)
;σ(t)

)]
(204)

= xi + (ti+1 − ti)

[
σ̇(t)

σ(t)
x− σ̇(t)

σ(t)
D
(
x;σ(t)

)]
(205)

= xi − (ti+1 − ti) σ̇(t) σ(t)

[(
D
(
x;σ(t)

)
− x

)/
σ(t)2

]
(206)

= xi − (ti+1 − ti) σ̇(t) σ(t)∇x log p
(
x;σ(t)

)
(207)

= xi − (ti+1 − ti)
[

1
2
√
t

][√
t
]
∇x log p

(
x;σ(t)

)
(208)

= xi +
1
2 (ti − ti+1)∇x log p

(
x;σ(t)

)
(209)

= xi +
1
2

(
σ̄2
i − σ̄2

i+1

)
∇x log p

(
x;σ(t)

)
, (210)

5https://github.com/yang-song/score_sde_pytorch
6

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sampling.py#L191
7

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L102
8

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L246

21

https://github.com/yang-song/score_sde_pytorch
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sampling.py#L191
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L102
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L246

which is made identical to Eq. 200 by the choice p̄i(x) = p
(
x;σ(ti)

)
.

Finally, Song et al. [15] set σmin = 0.01 and σmax = 50 for CIFAR-10 (Appendix C in [15]), and
choose to represent their images in the range [0, 1] to match previous SMLD models. Since our
standardized range [−1, 1] is twice as large, we must multiply σmin and σmax by 2× to compensate.
The “Parameters” section of Table 1 reflects these adjusted values.

C.2.3 VE preconditioning

In the VE case, Song et al. [15] approximate the score of pt(x) of Eq. 13 directly as9

∇x log pt(x) ≈ F̄θ

(
x;σ(t)

)
, (211)

where the network F̄θ is designed to include additional pre-10 and11 postprocessing12 steps:
F̄θ

(
x;σ

)
= 1

σ Fθ

(
2x−1; log(σ)

)
. (212)

For consistency, we handle the pre- and postprocessing using {cskip, cout, cin, cnoise} as opposed to
baking them into the network itself.

We cannot use Eqs. 211 and 212 directly in our framework, however, because they assume that the
images are represented in range [0, 1]. In order to use [−1, 1] instead, we replace pt(x)→ pt(2x−1),
x→ 1

2x+ 1
2 and σ → 1

2σ:

∇[12x+
1
2]
log pt

(
2
[
1
2x+ 1

2

]
−1
)
≈ 1

[12σ]
Fθ

(
2
[
1
2x+ 1

2

]
−1; log

[
1
2σ
])

(213)

2 ∇x log pt(x) ≈ 2
σ Fθ

(
x; log

(
1
2σ
))

(214)

∇x log p(x;σ) ≈ 1
σ Fθ

(
x; log

(
1
2σ
))

. (215)

We can now express the model in terms of Dθ(·) by replacing the left-hand side of Eq. 215 with
Eq. 3: (

Dθ

(
x;σ

)
− x

)
/σ2 = 1

σ Fθ

(
x; log

(
1
2σ
))

(216)

Dθ

(
x;σ

)
= 1 ·︸︷︷︸

cskip

x+ σ ·︸︷︷︸
cout

Fθ

(
1 ·︸︷︷︸
cin

x; log
(
1
2σ
)︸ ︷︷ ︸

cnoise

)
, (217)

where cskip, cout, cin, and cnoise match the “Network and preconditioning” section of Table 1.

C.2.4 VE training

Song et al. [15] define their training loss similarly for VP and VE, so we can reuse Eq. 185 by
borrowing the definition of score(·) from Eq. 216:

Et,y,n

[∥∥s(t)σ(t) score
(
s(t) (y + n); Fθ, t

)
+ n/σ(t)

∥∥2
2

]
(218)

= Et,y,n

[∥∥σ(t) score
(
y + n; Fθ, t

)
+ n/σ(t)

∥∥2
2

]
(219)

= Et,y,n

[∥∥σ(t) [(Dθ

(
y + n;σ(t)

)
− (y + n)

)
/σ(t)2

]
+ n/σ(t)

∥∥2
2

]
(220)

= Et,y,n

[
1

σ(t)2

∥∥Dθ

(
y + n;σ(t)

)
− y

∥∥2
2

]
. (221)

For VE training, the original implementation13 defines σ(t) = σmin
(
σmax
σmin

)t
. We can thus rewrite

Eq. 221 as
Eln(σ)∼U(ln(σmin),ln(σmax))︸ ︷︷ ︸

ptrain

Ey,n

[
1
σ2︸︷︷︸
λ

∥∥Dθ

(
y + n;σ

)
− y

∥∥2
2

]
, (222)

which matches Eq. 108 with the choices for ptrain and λ shown in the “Training” section of Table 1.
9

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/utils.py#L163
10

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L239
11

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L261
12

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L379
13

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L234

22

https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/utils.py#L163
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L239
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L261
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/ncsnpp.py#L379
https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py#L234

C.2.5 VE practical considerations

The pre-trained VE model that we use on CIFAR-10 corresponds to the “NCSN++ cont. (VE)”
checkpoint14 provided by Song et al. [15]. It contains a total of 63 million trainable parameters and
supports a continuous range of noise levels σ ∈

[
σ(ϵt), σ(1)

]
≈ [0.02, 100]. This is narrower than

our preferred sampling range [0.002, 80], so we set σmin = 0.02 in all related experiments. Note
that this limitation is lifted by our training improvements in config E, so we revert back to using
σmin = 0.002 with configs E and F in Table 2. When importing the model, we remove the pre- and
postprocessing steps shown in Eq. 212 to stay consistent with the definition of Fθ(·) in Eq. 217. With
these changes, we can run Algorithms 1 and 2 using the definitions in Table 1.

In Figure 2b, the differences between the original sampler (blue) and our reimplementation (orange)
are explained by floating point round-off errors that the original implementation suffers from at high
step counts. Our results are more accurate in these cases because we represent xi at double precision
in Algorithm 1.

C.3 Improved DDPM and DDIM

C.3.1 DDIM ODE formulation

Song et al. [14] make the observation that their deterministic DDIM sampler can be expressed as
Euler integration of the following ODE (Eq. 14 in [14]):

dx(t) = ϵ
(t)
θ

(
x(t)√

σ(t)2 + 1

)
dσ(t), (223)

where x(t) is a scaled version of the iterate that appears in their discrete update formula (Eq. 10 in
[14]) and ϵθ is a model trained to predict the normalized noise vector, i.e., ϵ(t)θ

(
x(t)/

√
σ(t)2 + 1

)
≈

n(t)/σ(t) for x(t) = y(t) +n(t). In our formulation, Dθ is trained to approximate the clean signal,
i.e., Dθ

(
x(t);σ(t)

)
≈ y, so we can reinterpret ϵθ in terms of Dθ as follows:

n(t) = x(t)− y(t) (224)[
n(t)/σ(t)

]
=

(
x(t)−

[
y(t)

])
/σ(t) (225)

ϵ
(t)
θ

(
x(t)/

√
σ(t)2 + 1

)
=

(
x(t)−Dθ

(
x(t);σ(t)

))
/σ(t). (226)

Assuming ideal ϵ(·) and D(·) in L2 sense, we can further simplify the above formula using Eq. 3:

ϵ(t)
(
x(t)/

√
σ(t)2 + 1

)
=

(
x(t)−D

(
x(t);σ(t)

))
/σ(t) (227)

= −σ(t)
[(

D
(
x(t);σ(t)

)
− x(t)

)
/σ(t)2

]
(228)

= −σ(t)∇x(t) log p
(
x(t);σ(t)

)
. (229)

Substituting Eq. 229 back into Eq. 223 gives

dx(t) = −σ(t)∇x(t) log p
(
x(t);σ(t)

)
dσ(t), (230)

which we can further simplify by setting σ(t) = t:

dx = −t∇x log p
(
x;σ(t)

)
dt. (231)

This matches our Eq. 4 with s(t) = 1 and σ(t) = t, reflected by the “Sampling” section of Table 1.

C.3.2 iDDPM time step discretization

The original DDPM formulation of Ho et al. [6] defines the forward process (Eq. 2 in [6]) as a Markov
chain that gradually adds Gaussian noise to x̄0 ∼ pdata according to a discrete variance schedule
{β1, . . . , βT }:

q(x̄t | x̄t−1) = N
(
x̄t;

√
1− βt x̄t−1, βt I

)
. (232)

14
ve/cifar10_ncsnpp_continuous/checkpoint_24.pth, https://drive.google.com/drive/folders/1b0gy_LLgO_DaQBgoWXwlVnL_rcAUgREh

23

https://drive.google.com/drive/folders/1b0gy_LLgO_DaQBgoWXwlVnL_rcAUgREh

The corresponding transition probability from x̄0 to x̄t (Eq. 4 in [6]) is given by

q(x̄t | x̄0) = N
(
x̄t;
√
ᾱt x̄0, (1− ᾱt) I

)
, where ᾱt =

t∏
s=1

(1− βs). (233)

Ho et al. [6] define {βt} based on a linear schedule and then calculate the corresponding {ᾱt} from
Eq. 233. Alternatively, one can also define {ᾱt} first and then solve for {βt}:

ᾱt =

t∏
s=1

(1− βs) (234)

ᾱt = ᾱt−1 (1− βt) (235)

βt = 1− ᾱt

ᾱt−1
. (236)

The improved DDPM formulation of Nichol and Dhariwal [13] employs a cosine schedule for ᾱt

(Eq. 17 in [13]), defined as

ᾱt =
f(t)

f(0)
, where f(t) = cos2

(
t/T + s

1 + s
· π
2

)
, (237)

where s = 0.008. In their implementation15, however, Nichol et al. leave out the division by f(0)
and simply define16

ᾱt = cos2
(
t/T + s

1 + s
· π
2

)
. (238)

To prevent singularities near t = T , they also clamp βt to 0.999. We can express the clamping in
terms of ᾱt by utilizing Eq. 233 and Eq. 234:

ᾱ′
t =

t∏
s=1

(
1− [β′

s]
)

(239)

=

t∏
s=1

(
1−min

(
[βs], 0.999)

)
(240)

=

t∏
s=1

(
1−min

(
1− ᾱs

ᾱs−1
, 0.999

))
(241)

=

t∏
s=1

max

(
ᾱs

ᾱs−1
, 0.001

)
. (242)

Let us now reinterpret the above formulas in our unified framework. Recall from Table 1 that we
denote the original iDDPM sampling steps by {uj} in the order of descending noise level σ(uj),
where j ∈ {0, . . . ,M}. To harmonize the notation of Eq. 233, Eq. 238, and Eq. 239, we thus have to
replace T −→M and t −→M − j:

q(x̄j | x̄M) = N
(
x̄j ;

√
ᾱ′
j x̄M , (1− ᾱ′

j) I
)
, (243)

ᾱj = cos2
(
(M − j)/M + C2

1 + C2
· π
2

)
, and (244)

ᾱ′
j =

j∏
s=M−1

max

(
ᾱj

ᾱj+1
, C1

)
= ᾱ′

j+1 max

(
ᾱj

ᾱj+1
, C1

)
, (245)

where the constants are C1 = 0.001 and C2 = 0.008.
15https://github.com/openai/improved-diffusion
16

https://github.com/openai/improved-diffusion/blob/783b6740edb79fdb7d063250db2c51cc9545dcd1/improved_diffusion/gaussian_
diffusion.py#L39

24

https://github.com/openai/improved-diffusion
https://github.com/openai/improved-diffusion/blob/783b6740edb79fdb7d063250db2c51cc9545dcd1/improved_diffusion/gaussian_diffusion.py#L39
https://github.com/openai/improved-diffusion/blob/783b6740edb79fdb7d063250db2c51cc9545dcd1/improved_diffusion/gaussian_diffusion.py#L39

We can further simplify Eq. 244:

ᾱj = cos2
(
(M − j)/M + C2

1 + C2
· π
2

)
(246)

= cos2
(
π

2

(1 + C2)− j/M

1 + C2

)
(247)

= cos2
(
π

2
− π

2

j

M(1 + C2)

)
(248)

= sin2
(
π

2

j

M(1 + C2)

)
, (249)

giving the formula shown in the “Parameters” section of Table 1.

To harmonize the definitions of x and x̄, we must match the perturbation kernel of Eq. 11 with the
transition probability of Eq. 243 for each time step t = uj :

p0t
(
x(uj) | x(0)

)
= q(x̄j | x̄M) (250)

N
(
x(uj); s(t) x(0), s(uj)

2 σ(uj)
2 I
)

= N
(
x̄j ;

√
ᾱ′
j x̄M ,

(
1− ᾱ′

j

)
I
)

. (251)

Substituting s(t) = 1 and σ(t) = t from Appendix C.3.1, as well as x̄M = x(0):

N
(
x(uj); x(0), u

2
j I
)
= N

(
x̄j ;

√
ᾱ′
j x(0),

(
1− ᾱ′

j

)
I
)

. (252)

We can match the means of these two distributions by defining x̄j =
√
ᾱ′
j x(uj):

N
(
x(uj); x(0), u

2
j I
)

= N
(√

ᾱ′
j x(uj);

√
ᾱ′
j x(0),

(
1− ᾱ′

j

)
I
)

(253)

= N
(
x(uj); x(0),

1− ᾱ′
j

ᾱ′
j

I

)
. (254)

Matching the variances and solving for ᾱ′
j gives

u2
j = (1− ᾱ′

j) / ᾱ′
j (255)

u2
j ᾱ

′
j = 1− ᾱ′

j (256)

u2
j ᾱ

′
j + ᾱ′

j = 1 (257)

(u2
j + 1) ᾱ′

j = 1 (258)

ᾱ′
j = 1 / (u2

j + 1). (259)

Finally, we can expand the left-hand side using Eq. 245 and solve for uj−1:

ᾱ′
j+1 max(ᾱj/ᾱj+1, C1) = 1 / (u2

j + 1) (260)

ᾱ′
j max(ᾱj−1/ᾱj , C1) = 1 / (u2

j−1 + 1) (261)[
1 / (u2

j + 1)
]
max(ᾱj−1/ᾱj , C1) = 1 / (u2

j−1 + 1) (262)

max(ᾱj−1/ᾱj , C1) (u
2
j−1 + 1) = u2

j + 1 (263)

u2
j−1 + 1 = (u2

j + 1) / max(ᾱj−1/ᾱj , C1) (264)

uj−1 =

√
u2
j + 1

max(ᾱj−1/ᾱj , C1)
− 1, (265)

giving a recurrence formula for {uj}, bootstrapped by uM = 0, that matches the “Time steps” row
of Table 1.

25

C.3.3 iDDPM preconditioning and training

We can solve Dθ(·) from Eq. 227 by substituting σ(t) = t from Appendix C.3.1:

ϵ
(j)
θ

(
x/
√

σ2 + 1
)

=
(
x−Dθ(x;σ)

)
/σ (266)

Dθ(x;σ) = x− σ ϵ
(j)
θ

(
x/
√
σ2 + 1

)
. (267)

We choose to define Fθ(·; j) = ϵ
(j)
θ (·) and solve j from σ by finding the nearest uj :

Dθ(x;σ) = 1 ·︸︷︷︸
cskip

x − σ︸︷︷︸
cout

· Fθ

(
1√

σ2+1︸ ︷︷ ︸
cin

· x; argminj |uj − σ|︸ ︷︷ ︸
cnoise

)
, (268)

where cskip, cout, cin, and cnoise match the “Network and preconditioning” section of Table 1.

Note that Eq. 268 is identical to the VP preconditioning formula in Eq. 181. Furthermore,
Nichol and Dhariwal [13] define their main training loss Lsimple (Eq. 14 in [13]) the same way
as Song et al. [15], with σ drawn uniformly from {uj}. Thus, we can reuse Eq. 190 with σ = uj ,
j ∼ U(0,M − 1), and λ(σ) = 1/σ2, matching the “Training” section of Table 1. In addition to
Lsimple, Nichol and Dhariwal [13] also employ a secondary loss term Lvlb; we refer the reader to
Section 3.1 in [13] for details.

C.3.4 iDDPM practical considerations

The pre-trained iDDPM model that we use on ImageNet-64 corresponds to the “ADM (dropout)”
checkpoint17 provided by Dhariwal and Nichol [4]. It contains 296 million trainable parameters and
supports a discrete set of M = 1000 noise levels σ ∈ {uj} ≈ {20291, 642, 321, 214, 160, 128, 106,
92, 80, 71, . . . , 0.0064}. The fact that we can only evaluate Fθ these specific choices of σ presents
three practical challenges:

1. In the context of DDIM, we must choose how to resample {uj} to yield {ti} for N ̸= M .
Song et al. [14] employ a simple resampling scheme where ti = uk·i for resampling factor
k ∈ Z+. This scheme, however, requires that 1000 ≡ 0 (mod N), which limits the possible
choices for N considerably. Nichol and Dhariwal [13], on the other hand, employ a more
flexible scheme where ti = uj with j = ⌊(M − 1)/(N − 1) · i⌋. We note, however, that
in practice the values of uj<8 are considerably larger than our preferred σmax = 80. We
choose to skip these values by defining j = ⌊j0 + (M − 1− j0)/(N − 1) · i⌋ with j0 = 8,
matching the “Time steps” row in Table 1. In Figure 2c, the differences between the original
sampler (blue) and our reimplementation (orange) are explained by this choice.

2. In the context of our time step discretization (Eq. 5), we must ensure that σi ∈ {uj}.
We accomplish this by rounding each σi to its nearest supported counterpart, i.e., σi ←
uargminj |uj−σi|, and setting σmin = 0.0064 ≈ uN−1. This is sufficient, because Algo-
rithm 1 only evaluates Dθ(·;σ) with σ ∈ {σi<N}.

3. In the context of our stochastic sampler, we must ensure that t̂i ∈ {uj}. We accomplish this
by replacing line 5 of Algorithm 2 with t̂i ← uargminj |uj−(ti+γiti)|.

With these changes, we are able to import the pre-trained model directly as Fθ(·) and run Algorithms 1
and 2 using the definitions in Table 1. Note that the model outputs both ϵθ(·) and Σθ(·), as described
in Section 3.1 of [13]; we use only the former and ignore the latter.

D Further analysis of deterministic sampling

D.1 Truncation error analysis and choice of discretization parameters

As discussed in Section 3, the fundamental reason why diffusion models tend to require a large
number of sampling steps is that any numerical ODE solver is necessarily an approximation; the

17https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt

26

σ=0.02 0.1 0.5 1 2 5 10 20 50

10-4

10-3

10-2

10-1

100

101

102
∥τ∥

ρ = 1.0 1.5 2.0 3.0 7.0

σ=0.02 0.1 0.5 1 2 5 10 20 50

10-4

10-3

10-2

10-1

100

101

102
∥τ∥

ρ = 1.0 1.5 2.0 3.0 7.0

ρ=1 2 3 4 5 6 7 8 9 10

3

4

5

6

7

8

9
10

FID
CIFAR-10, VP, N = 32
CIFAR-10, VE, N = 64
ImageNet-64, N = 12

(a) Truncation error, VE + Euler (b) Truncation error, VE + Heun (c) FID as a function of ρ

Figure 13: (a) Local truncation error (y-axis) at different noise levels (x-axis) using Euler’s method
with the VE-based CIFAR-10 model. Each curve corresponds to a different time step discretization,
defined for N = 64 and a specific choice for the polynomial exponent ρ. The values represent the
root mean square error (RMSE) between one Euler iteration and a sequence of multiple smaller
Euler iterations, representing the ground truth. The shaded regions, barely visible at low σ, represent
standard deviation over different latents x0. (b) Corresponding error curves for Heun’s 2nd order
method (Algorithm 1). (c) FID (y-axis) as a function of the polynomial exponent (x-axis) for different
models, measured using Heun’s 2nd order method. The shaded regions indicate the range of variation
between the lowest and highest observed FID, and the dots indicate the value of ρ that we use in all
other experiments.

larger the steps, the farther away we drift from the true solution at each step. Specifically, given
the value of xi−1 at time step i − 1, the solver approximates the true x∗

i as xi, resulting in local
truncation error τ i = x∗

i − xi. The local errors get accumulated over the N steps, ultimately leading
to global truncation error eN .

Euler’s method is a first order ODE solver, meaning that τ i = O
(
h2
i

)
for any sufficiently smooth

x(t), where hi = |ti − ti−1| is the local step size [16]. In other words, there exist some C and H
such that ||τ i|| < Ch2

i for every hi < H , i.e., halving hi reduces τ i by 4×. Furthermore, if we
assume that Dθ is Lipschitz continuous — which is true for all network architectures considered
in this paper — the global truncation error is bounded by ||eN || ≤ Emaxi ||τ i||, where the value
of E depends on N , t0, tN , and the Lipschitz constant [16]. Thus, reducing the global error for
given N , which in turn enables reducing N itself, boils down to choosing the solver and {ti} so that
maxi ||τ i|| is minimized.

To gain insight on how the local truncation error behaves in practice, we measure the values of
τ i over different noise levels using the VE-based CIFAR-10 model. For a given noise level, we
set ti = σ−1(σi) and choose some ti−1 > ti depending on the case. We then sample xi−1

from p(x;σi−1) and estimate the true x∗
i by performing 200 Euler steps over uniformly selected

subintervals between ti−1 and t. Finally, we plot the mean and standard deviation of the root mean
square error (RMSE), i.e., ||τ i||/

√
dim τ , as a function of σi, averaged over 200 random samples

of xi−1. Results for Euler’s method are shown in Figure 13a, where the blue curve corresponds to
uniform step size hσ = 1.25 with respect to σ, i.e., σi−1 = σi + hσ and ti−1 = σ−1(σi−1). We see
that the error is very large (RMSE ≈ 0.56) for low noise levels (σi ≤ 0.5) and considerably smaller
for high noise levels. This is in line with the common intuition that, in order to reduce eN , the step
size should be decreased monotonically with decreasing σ. Each curve is surrounded by a shaded
region that indicates standard deviation, barely visible at low values of σ. This indicates that τ i is
nearly constant with respect to xi−1, and thus there would be no benefit in varying {ti} schedule on
a per-sample basis.

A convenient way to vary the local step size depending on the noise level is to define {σi} as a
linear resampling of some monotonically increasing, unbounded warp function w(z). In other words,
σi<N = w(Ai + B) and σN = 0, where constants A and B are selected so that σ0 = σmax and
σN−1 = σmin. In practice, we set σmin = max(σlo, 0.002) and σmax = min(σhi, 80), where σlo and
σhi are the lowest and highest noise levels supported by a given model, respectively; we have found
these choices to perform reasonably well in practice. Now, to balance τ i between low and high
noise levels, we can, for example, use a polynomial warp function w(z) = zρ parameterized by the

27

exponent ρ. This choice leads to the following formula for {σi}:

σi<N =

(
σmax

1
ρ +

i

N − 1

(
σmin

1
ρ − σmax

1
ρ

))ρ

, σN = 0, (269)

which reduces to uniform discretization when ρ = 1 and gives more and more emphasis to low noise
levels as ρ increases.18

Based on the value of σi, we can now compute σi−1 =
(
σ
1/ρ
i −A

)ρ
, which enables us to visualize

τ i for different choices of ρ in Figure 13a. We see that increasing ρ reduces the error for low noise
levels (σ < 10) while increasing it for high noise levels (σ > 10). Approximate balance is achieved
at ρ = 2, but RMSE remains relatively high (∼ 0.03), meaning that Euler’s method drifts away from
the correct result by several ULPs at each step. While the error could be reduced by increasing N ,
we would ideally like the RMSE to be well below 0.01 even with low step counts.

Heun’s method introduces an additional correction step for xi+1 to account for the fact that dx/dt
may change between ti and ti+1; Euler’s method assumes it to be constant. The correction leads
to cubic convergence of the local truncation error, i.e., τ i = O

(
h3
i

)
, at the cost of one additional

evaluation of Dθ per step. We discuss the general family of Heun-like schemes later in Appendix D.2.
Figure 13b shows local truncation error for Heun’s method using the same setup as Figure 13a. We
see that the differences in ||τ i|| are generally more pronounced, which is to be expected given the
quadratic vs. cubic convergence of the two methods. Cases where Euler’s method has low RMSE
tend to have even lower RMSE with Heun’s method, and vice versa for cases with high RMSE. Most
remarkably, the red curve shows almost constant RMSE ∈ [0.0030, 0.0045]. This means that the
combination of Eq. 269 and Heun’s method is, in fact, very close to optimal with ρ = 3.

Thus far, we have only considered the raw numerical error, i.e., component-wise deviation from
the true result in RGB space. The raw numerical error is relevant for certain use cases, e.g., image
manipulation where the ODE is first evaluated in the direction of increasing t and then back to t = 0
again — in this case, ||eN || directly tells us how much the original image degrades in the process
and we can use ρ = 3 to minimize it. Considering the generation of novel images from scratch,
however, it is reasonable to expect different noise levels to introduce different kinds of errors that
may not necessarily be on equal footing considering their perceptual importance. We investigate this
in Figure 13c, where we plot FID as a function of ρ for different models and different choices of N .
Note that the ImageNet-64 model was only trained for a discrete set of noise levels; in order to use it
with Eq. 269, we round each ti to its nearest supported counterpart, i.e., t′i = uargminj |uj−ti|.

From the plot, we can see that even though ρ = 3 leads to relatively good FID, it can be reduced
further by choosing ρ > 3. This corresponds to intentionally introducing error at high noise levels
to reduce it at low noise levels, which makes intuitive sense because the value of σmax is somewhat
arbitrary to begin with — increasing σmax can have a large impact on ||eN ||, but it does not affect the
resulting image distribution nearly as much. In general, we have found ρ = 7 to perform reasonably
well in all cases, and use this value in all other experiments.

D.2 General family of 2nd order Runge–Kutta variants

Heun’s method illustrated in Algorithm 1 belongs to a family of explicit two-stage 2nd order Runge–
Kutta methods, each having the same computational cost. A common parameterization [16] of this
family is,

di = f(xi; ti) ; xi+1 = xi + h
[(

1− 1
2α

)
di +

1
2αf(xi + αhdi; ti + αh)

]
, (270)

where h = ti+1 − ti and α is a parameter that controls where the additional gradient is evaluated and
how much it influences the step taken. Setting α = 1 corresponds to Heun’s method, and α = 1

2 and
α = 2

3 yield so-called midpoint and Ralston methods, respectively. All these variants differ in the
kind of approximation error they incur due to the geometry of the underlying function f .

To establish the optimal α in our use case, we ran a separate series of experiments. According to
the results, it appears that α = 1 is very close to being optimal. Nonetheless, the experimentally

18In the limit, Eq. 269 reduces to the same geometric sequence employed by original VE ODE when ρ→∞.
Thus, our discretization can be seen as a parametric generalization of the one proposed by Song et al. [15].

28

Algorithm 3 Deterministic sampling using general 2nd order Runge–Kutta, σ(t) = t and s(t) = 1.
1: procedure ALPHASAMPLER(Dθ(x;σ), ti∈{0,...,N}, α)
2: sample x0 ∼ N

(
0, t20 I

)
3: for i ∈ {0, . . . , N − 1} do
4: hi ← ti+1 − ti ▷ Step length
5: di ←

(
xi −Dθ(xi; ti)

)
/ti ▷ Evaluate dx/dt at (x, ti)

6: (x′
i, t

′
i)← (xi + αhdi, ti + αh) ▷ Additional evaluation point

7: if t′i ̸= 0 then
8: d ′

i ←
(
x′

i −Dθ(x
′
i; t

′
i)
)
/t′i ▷ Evaluate dx/dt at (x′

i, t
′
i)

9: xi+1 ← xi + h
[(

1− 1
2α

)
di +

1
2α

d ′
i

]
▷ Second order step from ti to ti+1

10: else
11: xi+1 ← xi + hdi ▷ Euler step from ti to ti+1

12: return xN

best choice was α = 1.1 that performed slightly better, even though values greater than one are
theoretically hard to justify as they overshoot the target ti+1. As we have no good explanation for
this observation and cannot tell if it holds in general, we chose not to make α a new hyperparameter
and instead fixed it to 1, corresponding exactly to Heun’s method. Further analysis is left as future
work, including the possibility of having α vary during sampling.

An additional benefit of setting α = 1 is that it makes it possible to use pre-trained neural networks
Dθ(x;σ) that have been trained only for specific values of σ. This is because a Heun step evaluates
the additional gradient at exactly ti+1 unlike the other 2nd order variants. Hence it is sufficient to
ensure that each ti corresponds to a value of σ that the network was trained for.

Algorithm 3 shows the pseudocode for a general 2nd order solver parameterized by α. For clarity,
the pseudocode assumes the specific choices of σ(t) = t and s(t) = 1 that we advocate in Section 3.
Note that the fallback to Euler step (line 11) can occur only when α ≥ 1.

E Further results with stochastic sampling

E.1 Image degradation due to excessive stochastic iteration

Figure 14 illustrates the image degradation caused by excessive Langevin iteration (Section 4,
“Practical considerations”). These images are generated by doing a specified number of iterations at a
fixed noise level σ so that at each iteration an equal amount of noise is added and removed. In theory,
Langevin dynamics should bring the distribution towards the ideal distribution p(x;σ) but as noted
in Section 4, this holds only if the denoiser Dθ(x;σ) induces a conservative vector field in Eq. 3.

As seen in the figure, it is clear that the image distribution suffers from repeated iteration in all cases,
although the exact failure mode depends on dataset and noise level. For low noise levels (below 0.2
or so), the images tend to oversaturate starting at 2k iterations and become fully corrupted after that.
Our heuristic of setting Stmin > 0 is designed to prevent stochastic sampling altogether at very low
noise levels to avoid this effect.

For high noise levels, we can see that iterating without the standard deviation correction, i.e., when
Snoise = 1.000, the images tend to become more abstract and devoid of color at high iteration counts;
this is especially visible in the 10k column of CIFAR-10 where the images become mostly black
and white with no discernible backgrounds. Our heuristic inflation of standard deviation by setting
Snoise > 1 counteracts this tendency efficiently, as seen in the corresponding images on the right hand
side of the figure. Notably, this still does not fix the oversaturation and corruption at low noise levels,
suggesting multiple sources for the detrimental effects of excessive iteration. Further research will be
required to better understand the root causes of these observed effects.

Figure 15 presents the output quality of our stochastic sampler in terms of FID as a function of Schurn
at fixed NFE, using pre-trained networks of Song et al. [15] and Dhariwal and Nichol [4]. Generally,
for each case and combination of our heuristic corrections, there is an optimal amount of stochasticity
after which the results start to degrade. It can also be seen that regardless of the value of Schurn, the

29

Uncond. CIFAR-10, Pre-trained, VP, Snoise = 1.000 Uncond. CIFAR-10, Pre-trained, VP, Snoise = 1.007

0.02

0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Step 0 100 200 500 1,000 2,000 5,000 10,000 σ Step 0 100 200 500 1,000 2,000 5,000 10,000

Cond. ImageNet-64, Pre-trained, Snoise = 1.000 Cond. ImageNet-64, Pre-trained, Snoise = 1.003

0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Step 0 500 1,000 2,000 5,000 10,000 σ Step 0 500 1,000 2,000 5,000 10,000

Figure 14: Gradual image degradation with repeated addition and removal of noise. We start with
a random image drawn from p(x;σ) (first column) and run Algorithm 2 for a certain number of
steps (remaining columns) with fixed γi =

√
2− 1. Each row corresponds to a specific choice of σ

(indicated in the middle) that we keep fixed throughout the entire process. We visualize the results
after running them through the denoiser, i.e., Dθ(xi;σ).

30

Schurn=0 10 20 30 40 50 60 70 80 90 100
2.0

2.5

3.0

3.5

4.0

4.5

5.0

FID
Deterministic
Stmin,tmax + Snoise = 1

Stmin,tmax = [0,∞]

Snoise = 1

Optimal settings

0 10 20 30 40 50 60 70 80 90 100

2.0

2.5

3.0

3.5

4.0

FID

0 10 20 30 40 50 60 70 80 90 100

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

FID

(a) Uncond. CIFAR-10, VP (b) Uncond. CIFAR-10, VE (c) Class-cond. ImageNet-64

Figure 15: Ablations of our stochastic sampler (Algorithm 2) parameters using pre-trained networks
of Song et al. [15] and Dhariwal and Nichol [4]. Each curve shows FID (y-axis) as a function of
Schurn (x-axis) for N = 256 steps (NFE = 511). The dashed red lines correspond to our deterministic
sampler (Algorithm 1), equivalent to setting Schurn = 0. The purple curves correspond to optimal
choices for {Stmin, Stmax, Snoise}, found separately for each case using grid search. Orange, blue, and
green correspond to disabling the effects of Stmin,tmax and/or Snoise. The shaded regions indicate the
range of variation between the lowest and highest observed FID.

Table 5: Parameters used for the stochastic sampling experiments in Section 4.

Parameter
CIFAR-10 ImageNet

Grid search
VP VE Pre-trained Our model

Schurn 30 80 80 40 0, 10, 20, 30, . . . , 70, 80, 90, 100
Stmin 0.01 0.05 0.05 0.05 0, 0.005, 0.01, 0.02, . . . , 1, 2, 5, 10
Stmax 1 1 50 50 0.2, 0.5, 1, 2, . . . , 10, 20, 50, 80
Snoise 1.007 1.007 1.003 1.003 1.000, 1.001, . . . , 1.009, 1.010

best results are obtained by enabling all corrections, although whether Snoise or Stmin,tmax is more
important depends on the case.

E.2 Stochastic sampling parameters

Table 5 lists the values for Schurn, Stmin, Stmax, and Snoise that we used in our stochastic sampling
experiments. These were determined with a grid search over the combinations listed in the rightmost
column. It can be seen that the optimal parameters depend on the case; better understanding of the
degradation phenomena will hopefully give rise to more direct ways of handling the problem in the
future.

F Implementation details

We implemented our techniques in a newly written codebase, based loosely on the original imple-
mentations by Song et al.19 [15], Dhariwal and Nichol20 [4], and Karras et al.21 [10]. We performed
extensive testing to verify that our implementation produced exactly the same results as previous
work, including samplers, pre-trained models, network architectures, training configurations, and
evaluation. We ran all experiments using PyTorch 1.10.0, CUDA 11.4, and CuDNN 8.2.0 on NVIDIA
DGX-1’s with 8 Tesla V100 GPUs each.

Our implementation and pre-trained models are available at https://github.com/NVlabs/edm

19https://github.com/yang-song/score_sde_pytorch
20https://github.com/openai/guided-diffusion
21https://github.com/NVlabs/stylegan3

31

https://github.com/NVlabs/edm
https://github.com/yang-song/score_sde_pytorch
https://github.com/openai/guided-diffusion
https://github.com/NVlabs/stylegan3

Table 6: Our augmentation pipeline. Each training image undergoes a combined geometric transfor-
mation based on 8 random parameters that receive non-zero values with a certain probability. The
model is conditioned with an additional 9-dimensional input vector derived from these parameters.

Augmentation Transformation Parameters Prob. Conditioning Constants

x-flip SCALE2D
(
1− 2a0, 1

)
a0 ∼ U{0, 1} 100% a0 Aprob = 12%

y-flip SCALE2D
(
1, 1− 2a1

)
a1 ∼ U{0, 1} Aprob a1 or 15%

Scaling SCALE2D
(
(Ascale)

a2 , a2 ∼ N (0, 1) Aprob a2 Ascale = 20.2

(Ascale)
a2
)

Rotation ROTATE2D
(
−a3

)
a3 ∼ U(−π, π) Aprob cos a3 − 1

sin a3

Anisotropy ROTATE2D
(
a4

)
a4 ∼ U(−π, π) Aprob a5 cos a4 Aaniso = 20.2

SCALE2D
(
(Aaniso)

a5 , a5 ∼ N (0, 1) a5 sin a4

1/(Aaniso)
a5
)

ROTATE2D
(
−a4

)
Translation TRANSLATE2D

(
(Atrans)a6, a6 ∼ N (0, 1) Aprob a6 Atrans = 1/8

(Atrans)a7

)
a7 ∼ N (0, 1) a7

F.1 FID calculation

We calculate FID [5] between 50,000 generated images and all available real images, without any aug-
mentation such as x-flips. We use the pre-trained Inception-v3 model provided with StyleGAN322 [10]
that is, in turn, a direct PyTorch translation of the original TensorFlow-based model23. We have
verified that our FID implementation produces identical results compared to Dhariwal and Nichol [4]
and Karras et al. [10]. To reduce the impact of random variation, typically in the order of ±2%,
we compute FID three times in each experiment and report the minimum. We also highlight the
difference between the highest and lowest achieved FID in Figures 4, 5b, 13c, and 15.

F.2 Augmentation regularization

In Section 5, we propose to combat overfitting of Dθ using conditional augmentation. We build our
augmentation pipeline around the same concepts that were originally proposed by Karras et al. [9] in
the context of GANs. In practice, we employ a set of 6 geometric transformations; we have found
other types of augmentations, such as color corruption and image-space filtering, to be consistently
harmful for diffusion-based models.

The details of our augmentation pipeline are shown in Table 6. We apply the augmentations indepen-
dently to each training image y ∼ pdata prior to adding the noise n ∼ N (0, σ2I). First, we determine
whether to enable or disable each augmentation based on a weighted coin toss. The probability of
enabling a given augmentation (“Prob.” column) is fixed to 12% for CIFAR-10 and 15% for FFHQ
and AFHQv2, except for x-flips that are always enabled. We then draw 8 random parameters from
their corresponding distributions (“Parameters” column); if a given augmentation is disabled, we
override the associated parameters with zero. Based on these, we construct a homogeneous 2D
transformation matrix based on the parameters (“Transformation” column). This transformation is
applied to the image using the implementation of [9] that employs 2× supersampled high-quality
Wavelet filters. Finally, we construct a 9-dimensional conditioning input vector (“Conditioning”
column) and feed it to the denoiser network, in addition to the image and noise level inputs.

The role of the conditioning input is to present the network with a set of auxiliary tasks; in addition
to the main task of modeling p(x;σ), we effectively ask the network to also model an infinite
set of distributions p(x;σ,a) for each possible choice of the augmentation parameters a. These
auxiliary tasks provide the network with a large variety of unique training samples, preventing it from

22
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl

23
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

32

Table 7: Hyperparameters used for the training runs in Section 5.

Hyperparameter
CIFAR-10 FFHQ & AFHQv2 ImagetNet

Baseline Ours Baseline Ours Ours
Number of GPUs 4 8 4 8 32
Duration (Mimg) 200 200 200 200 2500
Minibatch size 128 512 128 256 4096
Gradient clipping ✓ – ✓ – –
Mixed-precision (FP16) – – – – ✓

Learning rate ×104 2 10 2 2 1
LR ramp-up (Mimg) 0.64 10 0.64 10 10
EMA half-life (Mimg) 0.89 / 0.9 0.5 0.89 / 0.9 0.5 50

(VP / VE) (VP / VE)
Dropout probability 10% 13% 10% 5% / 25% 10%

(FFHQ / AFHQ)

Channel multiplier 128 128 128 128 192
Channels per resolution 1-2-2-2 2-2-2 1-1-2-2-2 1-2-2-2 1-2-3-4
Dataset x-flips ✓ – ✓ – –
Augment probability – 12% – 15% –

overfitting to any individual sample. Still, the auxiliary tasks appear to be beneficial for the main
task; we speculate that this is because the denoising operation itself is similar for every choice of a.

We have designed the conditioning input so that zero corresponds to the case where no augmentations
were applied. During sampling, we simply set a = 0 to obtain results consistent with the main
task. We have not observed any leakage between the auxiliary tasks and the main task; the generated
images exhibit no traces of out-of-domain geometric transformations even with Aprob = 100%. In
practice, this means that we are free to choose the constants {Aprob, Ascale, Aaniso, Atrans} any way we
like as long as the results improve. Horizontal flips serve as an interesting example. Most of the prior
work augments the training set with random x-flips, which is beneficial for most datasets but has the
downside that any text or logos may appear mirrored in the generated images. With our non-leaky
augmentations, we get the same benefits without the downsides by executing the x-flip augmentation
with 100% probability. Thus, we rely exclusively on our augmentation scheme and disable dataset
x-flips to ensure that the generated images stay true to the original distribution.

F.3 Training configurations

Table 7 shows the exact set of hyperparameters that we used in our training experiments reported in
Section 5. We will first detail the configurations used with CIFAR-10, FFHQ, and AFHQv2, and then
discuss the training of our improved ImageNet model.

Config A of Table 2 (“Baseline”) corresponds to the original setup of Song et al. [15] for the two
cases (VP and VE), and config F (“Ours”) corresponds to our improved setup. We trained each
model until a total of 200 million images had been drawn from the training set, abbreviated as “200
Mimg” in Table 7; this corresponds to a total of ∼400,000 training iterations using a batch size of
512. We saved a snapshot of the model every 2.5 million images and reported results for the snapshot
that achieved the lowest FID according to our deterministic sampler with NFE = 35 or NFE = 79,
depending on the resolution.

In config B, we re-adjust the basic hyperparameters to enable faster training and obtain a more
meaningful point of comparison. Specifically, we increase the parallelism from 4 to 8 GPUs and
batch size from 128 to 512 or 256, depending on the resolution. We also disable gradient clipping,
i.e., forcing ∥dL(Dθ)/dθ∥2 ≤ 1, that we found to provide no benefit in practice. Furthermore, we
increase the learning rate from 0.0002 to 0.001 for CIFAR-10, ramping it up during the first 10
million images, and standardize the half-life of the exponential moving average of θ to 0.5 million
images. Finally, we adjust the dropout probability for each dataset as shown in Table 7 via a full grid
search at 1% increments. Our total training time is approximately 2 days for CIFAR-10 at 32×32
resolution and 4 days for FFHQ and AFHQv2 at 64×64 resolution.

33

Table 8: Details of the network architectures used in this paper.

Parameter DDPM++ NCSN++ ADM
(VP) (VE) (ImageNet)

Resampling filter Box Bilinear Box
Noise embedding Positional Fourier Positional
Skip connections in encoder – Residual –
Skip connections in decoder – – –
Residual blocks per resolution 4 4 3
Attention resolutions {16} {16} {32, 16, 8}
Attention heads 1 1 6-9-12
Attention blocks in encoder 4 4 9
Attention blocks in decoder 2 2 13

In config C, we improve the expressive power of the model by removing the 4×4 layers and
doubling the capacity of the 16×16 layers instead; we found the former to mainly contribute to
overfitting, whereas the latter were critical for obtaining high-quality results. The original models of
Song et al. [15] employ 128 channels at 64×64 (where applicable) and 32×32, and 256 channels
at 16×16, 8×8, and 4×4. We change these numbers to 128 channels at 64×64 (where applicable),
and 256 channels at 32×32, 16×16, and 8×8. We abbreviate these counts in Table 7 as multiples
of 128, listed from the highest resolution to the lowest. In practice, this rebalancing reduces the
total number of trainable parameters slightly, resulting in ∼56 million parameters for each model at
32×32 resolution and ∼62 million parameters at 64×64 resolution.

In config D, we replace the original preconditioning with our improved formulas (“Network and
preconditioning” section in Table 1). In config E, we do the same for the noise distribution and loss
weighting (“Training” section in Table 1). Finally, in config F, we enable augmentation regularization
as discussed in Appendix F.2. The other hyperparameters remain the same as in config C.

With ImageNet-64, it is necessary to train considerably longer compared to the other datasets in order
to reach state-of-the-art results. To reduce the training time, we employed 32 NVIDIA Ampere GPUs
(4 nodes) with a batch size of 4096 (128 per GPU) and utilized the high-performance Tensor Cores
via mixed-precision FP16/FP32 training. In practice, we store the trainable parameters as FP32 but
cast them to FP16 when evaluating Fθ, except for the embedding and self-attention layers, where
we found the limited exponent range of FP16 to occasionally lead to stability issues. We trained
the model for two weeks, corresponding to ∼2500 million images drawn from the training set and
∼600,000 training iterations, using learning rate 0.0001, exponential moving average of 50 million
images, and the same model architecture and dropout probability as Dhariwal and Nichol [4]. We did
not find overfitting to be a concern, and thus chose to not employ augmentation regularization.

F.4 Network architectures

As a result of our training improvements, the VP and VE cases become otherwise identical in con-
fig F except for the network architecture; VP employs the DDPM++ architecture while VE employs
NCSN++, both of which were originally proposed by Song et al. [15]. These architectures corre-
spond to relatively straightforward variations of the same U-net backbone with three differences, as
illustrated in Table 8. First, DDPM++ employs box filter [1, 1] for the upsampling and downsampling
layers whereas NCSN++ employs bilinear filter [1, 3, 3, 1]. Second, DDPM++ inherits its positional
encoding scheme for the noise level directly from DDPM [6] whereas NCSN++ replaces it with
random Fourier features [18]. Third, NCSN++ incorporates additional residual skip connections
from the input image to each block in the encoder, as explained in Appendix H of [15] (“progressive
growing architectures”).

For class conditioning and augmentation regularization, we extend the original DDPM++ and
NCSN++ arhictectures by introducing two optional conditioning inputs alongside the noise level
input. We represent class labels as one-hot encoded vectors that we first scale by

√
C, where C is

the total number of classes, and then feed through a fully-connected layer. For the augmentation
parameters, we feed the conditioning inputs of Appendix F.2 through a fully-connected layer as-is.

34

We then combine the resulting feature vectors with the original noise level conditioning vector through
elementwise addition.

For class-conditional ImageNet-64, we use the ADM architecture of Dhariwal and Nichol [4] with
no changes. The model has a total of ∼296 million trainable parameters. As detailed in Tables 7
and 8, the most notable differences to DDPM++ include the use of a slightly shallower model (3
residual blocks per resolution instead of 4) with considerably more channels (e.g., 768 in the lowest
resolution instead of 256), more self-attention layers interspersed throughout the network (22 instead
of 6), and the use of multi-head attention (e.g., 12 heads in the lowest resolution). We feel that the
precise impact of architectural choices remains an interesting question for future work.

F.5 Licenses

Datasets:

• CIFAR-10 [12]: MIT license

• FFHQ [11]: Creative Commons BY-NC-SA 4.0 license

• AFHQv2 [2]: Creative Commons BY-NC 4.0 license

• ImageNet [3]: The license status is unclear

Pre-trained models:

• CIFAR-10 models by Song et al. [15]: Apache V2.0 license

• ImageNet-64 model by Dhariwal and Nichol [4]: MIT license

• Inception-v3 model by Szegedy et al. [17]: Apache V2.0 license

References
[1] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,

12(3):313–326, 1982.
[2] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. StarGAN v2: Diverse image synthesis for multiple domains. In Proc.

CVPR, 2020.
[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image

database. In Proc. CVPR, 2009.
[4] P. Dhariwal and A. Q. Nichol. Diffusion models beat GANs on image synthesis. In Proc. NeurIPS, 2021.
[5] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale

update rule converge to a local Nash equilibrium. In Proc. NIPS, 2017.
[6] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proc. NeurIPS, 2020.
[7] A. Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine

Learning Research, 6(24):695–709, 2005.
[8] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas. Gotta go fast when

generating data with score-based models. CoRR, abs/2105.14080, 2021.
[9] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative adversarial

networks with limited data. In Proc. NeurIPS, 2020.
[10] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-free generative

adversarial networks. In Proc. NeurIPS, 2021.
[11] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.

In Proc. CVPR, 2018.
[12] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of

Toronto, 2009.
[13] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Proc. ICML, volume

139, pages 8162–8171, 2021.
[14] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In Proc. ICLR, 2021.
[15] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative

modeling through stochastic differential equations. In Proc. ICLR, 2021.
[16] E. Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003.
[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Inception architecture for

computer vision. In Proc. CVPR, 2016.

35

[18] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi,
J. T. Barron, and R. Ng. Fourier features let networks learn high frequency functions in low dimensional
domains. In Proc. NeurIPS, 2020.

[19] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation,
23(7):1661–1674, 2011.

36

	Additional results
	Derivation of formulas
	Original ODE / SDE formulation from previous work
	Our ODE formulation (Eq. 1 and Eq. 4)
	Denoising score matching (Eq. 2 and Eq. 3)
	Evaluating our ODE in practice (Algorithm 1)
	Our SDE formulation (Eq. 6)
	Generating the marginals by heat diffusion
	Derivation of our SDE

	Our preconditioning and training (Eq. 8)

	Reframing previous methods in our framework
	Variance preserving formulation
	VP sampling
	VP preconditioning
	VP training
	VP practical considerations

	Variance exploding formulation
	VE sampling in theory
	VE sampling in practice
	VE preconditioning
	VE training
	VE practical considerations

	Improved DDPM and DDIM
	DDIM ODE formulation
	iDDPM time step discretization
	iDDPM preconditioning and training
	iDDPM practical considerations

	Further analysis of deterministic sampling
	Truncation error analysis and choice of discretization parameters
	General family of 2nd order Runge-Kutta variants

	Further results with stochastic sampling
	Image degradation due to excessive stochastic iteration
	Stochastic sampling parameters

	Implementation details
	FID calculation
	Augmentation regularization
	Training configurations
	Network architectures
	Licenses

