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Figure 5: Scores on the LIMIT small task (N=46) over embedding dimensions. Despite having just
46 documents, model struggle even with recall@10 and cannot solve the task even with recall@20.

A RELATIONSHIP TO ORDER-K VORONOI REGIONS

We also provide an explanation for how our results compare to Clarkson (1988) which put bounds
on the number of regions in the order-k Voronoi graph. The order-k Voronoi graph is defined as the
set of points having a particular set of n points in S as its n nearest neighbors. This maps nicely to
retrieval, as each order-k region is equivalent to one retrieved set of top-k results. Then the count of
unique regions in the Voronoi graph is the total number of combinations that could be returned for
those points. However, creating an empirical order-k Voronoi graph is computationally infeasible for
d > 3, and theoretically it is hard to bound tightly. Thus we use a different approach for showing the
limitations of embedding models, through the use of the sign-rank.

B HYPERPARAMETER AND COMPUTE DETAILS

Inference We use the default length settings for evaluating models using the MTEB framework
(Enevoldsen et al., 2025). As our dataset has relatively short documents (around 100 tokens), this
does not cause an issue.

Training For training on the LIMIT training and test set we use the SentenceTransformers library
(Reimers & Gurevych, 2019) using the MultipleNegativesRankingLoss. We use a full dataset batch
size and employ the no duplicates sampler to ensure that no in-batch negatives are duplicates of the
positive docs. We use a learning rate of 5e-5. We train for 5 epochs and limit the training set slightly
to the size of the test set (from 2.5k to 2k examples, matching test).

Compute Inference and training for LIMIT is done with A100 GPUs on Google Colab Pro. The
free embedding experiments are done mainly on H100 GPUs and TPU v5’s for larger size N to
accommodate higher VRAM for full-dataset batch vector optimization.

C EFFECTS OF QREL PATTERNS

As mentioned in previous sections, one of the main differences that makes LIMIT hard is the qrel
matrices are designed to have higher sign ranks, through testing models on more combinations of
documents than typically used. This is mostly clearly seen when training on the test data (as in the
free embeddings) where these constraints cause more difficulties in optimization. However, even for
zero-shot models we ablate this decision and show that methods that do not test as many combinations
(i.e. when the qrels are represented as a graph, have lower graph density) are easier empirically.
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Experiment Setup We instantiate four new LIMITs from different qrel patterns (using the open-
sourced code, which differs slightly from the original LIMIT due to changes in random seeds/docu-
ment names): (1) random sampling from all combinations (2) a cycle-based setup where the next
query is relevant to one document from the previous query and the following next document, (3) a
disjoint pattern where each query is relevant to two new documents and (4) the pattern that maximizes
the number of connections (n choose k) for the largest number of documents that fit in the query set
(dense, our standard setup). For all configurations, we use the same setup as the main LIMIT (50k
docs, 1k queries, k=2, 45 entities per doc, etc)

Table 1: Recall@1000 (%) for Qwen3 8B and GritLM 7B across different Qrel patterns for LIMIT.

Model Embed Dim Dense Random Cycle Disjoint

Qwen3 8B 4096 13.8 14.8 14.7 15.4
GritLM 7B 4096 32.9 35.5 34.9 35.1

Results We see in Table 1 dense shows worse performance, even in the zero-shot setting. However,
as there is no training being done, the constraints provide a smaller impact on the models.

C.1 CORRELATION WITH MTEB

Figure 6: No obvious correlation
between BEIR vs LIMIT.

BEIR (used in MTEB v1) (Thakur et al., 2021; Muennighoff
et al., 2022) has frequently been cited as something that em-
bedding models have overfit to (Weller et al., 2025b; Thakur
et al., 2025). We compare performance on LIMIT to BEIR
in Figure 6. We see that performance is generally not corre-
lated and that smaller models (like Arctic Embed) do worse on
both, likely due to embedding dimension and pre-trained model
knowledge.

D LIMITATIONS

Although our experiments provide theoretical insight for the most common type of embedding model
(single vector) they do not hold necessarily for other architectures, such as multi-vector models.
Although we showed initial empirical results with non-single vector models, we leave it to future
work to extend our theoretical connections to these settings.

We also did not show theoretical results for the setting where the user allows some mistakes, e.g.
capturing only the majority of the combinations. We leave putting a bound on this scenario to future
work and would invite the reader to examine works like Ben-David et al. (2002).

We have showed the theoretical connection that proves that some combinations cannot be represented
by embedding models, however, we cannot prove apriori which types of combinations they will fail
on. Thus, it is possible that there are some instruction-following or reasoning tasks they can solve
perfectly, however, we do know that there exists some tasks that they will never be able to solve.

E LLM USAGE

LLMs were not used for any paper writing, only for coding help and title brainstorming.

F METRICS MEASURING QREL GRAPH DENSITY

We show two metrics that treat the qrel matrix as a graph and show that LIMIT has unique properties
compared to standard IR datasets (Table 2). We call these metrics Graph Density and Average Query
Strength and describe them below.
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Graph Density We use the qrel matrix to construct the graph, where nodes are documents and an
edge exists between two documents if they are both relevant to at least one common query.

For a given graph G = (V,E) with V being the set of nodes and E being the set of edges, the graph
density is defined as the ratio of the number of edges in the graph to the maximum possible number
of edges. For an undirected graph, the maximum possible number of edges is |V |(|V |→1)

2 . Thus, the
density ω is calculated as:

ω =
|E|

|V |(|V |→1)
2

=
2|E|

|V |(|V |→ 1)

This metric indicates how connected the graph is; a density of 1 signifies a complete graph (all
possible edges exist), while a density close to 0 indicates a sparse graph. For a qrel dataset, the

Average Query Strength In a query-query graph where nodes are queries and edges represent
similarity between queries (e.g., Jaccard similarity of their relevant documents), the strength of a
query node i, denoted si, is defined as the sum of the weights of all edges incident to it. If wij is the
weight of the edge between query i and query j, and N(i) is the set of neighbors of query i, then the
strength is:

si =
∑

j↑N(i)

wij

The Average Query Strength s̄ is the mean of these strengths across all query nodes in the graph:

s̄ =
1

|VQ|
∑

i↑VQ

si

where VQ is the set of all query nodes in the graph. This metric provides an overall measure of how
strongly connected queries are to each other on average within the dataset, based on their shared
relevant documents.

Comparisons to other datasets We compare with standard IR Datasets such as NQ (Kwiatkowski
et al., 2019), HotpotQA (Yang et al., 2018), and SciFact (Wadden et al., 2020). We also show an
instruction-following dataset, FollowIR Core17 (Weller et al., 2024a). For all datasets, we use the
test set only. The results in Table 2 show that LIMIT has significantly higher values for both of these
metrics (i.e. 28 for query similarity compared to 0.6 or lower for the others).

Table 2: Metrics measuring the density of the qrel matrix. We see that LIMIT is significantly higher
than other datasets, but that the closest are instruction-following datasets such as Core17 from
FollowIR. Our empirical ablations suggest (although cannot definitively prove) that datasets with
higher values here will be harder for retrieval models to represent.

Dataset Name Graph Density Average Query Strength
NQ 0 0
HotPotQA 0.000037 0.1104
SciFact 0.001449 0.4222
FollowIR Core17 0.025641 0.5912
LIMIT 0.085481 28.4653

G TABLE FORMS OF FIGURES

In this section we show the table form of various figures. For Figure 3 it is Table 5, Figure 5 in
Table 4, Figure 2 in Table 6, and Figure 4 in Table 3.
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Split Dim Recall@2 Recall@10 Recall@100

Test 32 85.5 98.4 100.0
Test 64 90.4 98.7 100.0
Test 128 93.1 99.5 99.9
Test 256 94.2 99.7 100.0
Test 384 95.6 99.6 100.0
Test 512 94.0 99.5 99.9
Test 768 96.1 99.8 100.0
Test 1024 96.5 99.8 100.0

Train 32 0.0 0.0 0.0
Train 64 0.1 0.3 2.2
Train 128 0.2 0.7 3.1
Train 256 0.0 0.0 0.4
Train 384 1.1 2.7 8.3
Train 512 0.7 2.3 9.8
Train 768 0.7 2.4 9.9
Train 1024 1.0 2.8 11.2

Table 3: Fine-tuning results in table form. See Figure 4 for the comparable plot.
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Model Dim Recall@2 Recall@10 Recall@20

BM25 default 97.8 100.0 100.0
E5-Mistral 7B 32 7.9 32.6 56.2
E5-Mistral 7B 64 10.2 37.0 60.3
E5-Mistral 7B 128 14.5 41.9 65.9
E5-Mistral 7B 256 15.3 45.9 69.7
E5-Mistral 7B 512 22.2 54.7 74.8
E5-Mistral 7B 768 21.6 57.5 79.2
E5-Mistral 7B 1024 24.5 60.5 80.0
E5-Mistral 7B 2048 28.9 66.3 83.2
E5-Mistral 7B 3072 29.9 67.8 85.3
E5-Mistral 7B 4096 29.5 68.1 85.2
GTE-ModernColBERT default 83.5 97.6 99.1
GritLM 7B 32 7.8 33.5 56.3
GritLM 7B 64 9.4 35.9 59.6
GritLM 7B 128 14.2 42.7 64.9
GritLM 7B 256 17.3 46.2 68.3
GritLM 7B 512 21.8 55.6 76.7
GritLM 7B 768 23.8 58.1 80.1
GritLM 7B 1024 26.2 61.4 80.1
GritLM 7B 2048 33.0 69.1 86.2
GritLM 7B 3072 36.3 72.9 89.9
GritLM 7B 4096 38.4 75.4 90.5
Promptriever Llama3 8B 32 6.1 31.4 56.0
Promptriever Llama3 8B 64 8.9 35.8 62.3
Promptriever Llama3 8B 128 13.7 44.5 67.6
Promptriever Llama3 8B 256 18.5 52.1 74.1
Promptriever Llama3 8B 512 27.0 61.8 81.7
Promptriever Llama3 8B 768 35.5 69.0 84.7
Promptriever Llama3 8B 1024 38.0 73.5 89.1
Promptriever Llama3 8B 2048 46.2 83.6 94.2
Promptriever Llama3 8B 3072 49.2 87.3 96.6
Promptriever Llama3 8B 4096 54.3 90.0 97.7
Qwen3 Embed 32 8.3 30.6 53.9
Qwen3 Embed 64 9.4 35.5 57.6
Qwen3 Embed 128 11.6 38.3 60.8
Qwen3 Embed 256 14.3 41.6 63.8
Qwen3 Embed 512 16.1 43.7 66.0
Qwen3 Embed 768 17.2 45.3 69.3
Qwen3 Embed 1024 17.8 48.7 70.3
Qwen3 Embed 2048 19.5 51.5 72.4
Qwen3 Embed 3072 19.3 52.8 73.3
Qwen3 Embed 4096 19.0 52.3 73.8
Gemini Embed 2 4.2 23.0 45.5
Gemini Embed 4 4.2 21.9 46.0
Gemini Embed 8 4.9 23.2 47.0
Gemini Embed 16 5.2 24.7 47.5
Gemini Embed 32 6.3 25.2 50.6
Gemini Embed 64 6.9 30.6 55.0
Gemini Embed 128 7.7 37.0 62.9
Gemini Embed 256 14.6 46.9 69.7
Gemini Embed 512 23.3 58.4 77.9
Gemini Embed 768 28.8 67.5 84.5
Gemini Embed 1024 31.8 69.9 86.1
Gemini Embed 2048 31.9 70.3 87.1
Gemini Embed 3072 33.7 72.4 87.9
Snowflake Arctic L 32 8.3 30.3 53.8
Snowflake Arctic L 64 9.0 35.4 58.5
Snowflake Arctic L 128 12.7 41.3 65.1
Snowflake Arctic L 256 16.0 48.2 72.6
Snowflake Arctic L 512 16.7 51.3 74.1
Snowflake Arctic L 768 17.9 53.5 74.6
Snowflake Arctic L 1024 19.4 54.9 76.0
Snowflake Arctic L 2048 19.4 54.9 76.0
Snowflake Arctic L 3072 19.4 54.9 76.0
Snowflake Arctic L 4096 19.4 54.9 76.0

Table 4: Results for the LIMIT small version. See comparable Figure 5.
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Model Dim Recall@2 Recall@10 Recall@100

E5-Mistral 7B 32 0.0 0.0 0.5
E5-Mistral 7B 64 0.0 0.1 0.4
E5-Mistral 7B 128 0.1 0.3 1.0
E5-Mistral 7B 256 0.4 0.9 1.9
E5-Mistral 7B 512 0.7 1.3 3.8
E5-Mistral 7B 768 0.9 1.7 4.3
E5-Mistral 7B 1024 0.9 1.8 5.9
E5-Mistral 7B 2048 1.0 1.9 6.8
E5-Mistral 7B 3072 1.3 2.0 7.7
E5-Mistral 7B 4096 1.3 2.2 8.3
Snowflake Arctic L 32 0.0 0.1 0.6
Snowflake Arctic L 64 0.2 0.4 1.7
Snowflake Arctic L 128 0.1 0.3 1.8
Snowflake Arctic L 256 0.2 0.8 2.5
Snowflake Arctic L 512 0.3 1.0 2.5
Snowflake Arctic L 768 0.4 1.1 3.1
Snowflake Arctic L 1024 0.4 0.8 3.3
Snowflake Arctic L 2048 0.4 0.8 3.3
Snowflake Arctic L 3072 0.4 0.8 3.3
Snowflake Arctic L 4096 0.4 0.8 3.3
GritLM 7B 32 0.0 0.0 0.8
GritLM 7B 64 0.0 0.1 0.3
GritLM 7B 128 0.1 0.3 1.3
GritLM 7B 256 0.1 0.4 2.8
GritLM 7B 512 0.6 1.8 6.5
GritLM 7B 768 1.5 3.1 8.7
GritLM 7B 1024 1.8 3.5 10.6
GritLM 7B 2048 2.3 4.3 11.8
GritLM 7B 3072 2.0 4.3 12.9
GritLM 7B 4096 2.4 4.1 12.9
Promptriever Llama3 8B 32 0.0 0.0 0.1
Promptriever Llama3 8B 64 0.0 0.0 0.3
Promptriever Llama3 8B 128 0.0 0.1 0.6
Promptriever Llama3 8B 256 0.2 0.4 1.8
Promptriever Llama3 8B 512 0.6 1.4 5.4
Promptriever Llama3 8B 768 1.3 3.1 8.7
Promptriever Llama3 8B 1024 2.1 4.4 12.8
Promptriever Llama3 8B 2048 3.2 6.5 18.1
Promptriever Llama3 8B 3072 2.9 6.3 17.8
Promptriever Llama3 8B 4096 3.0 6.8 18.9
Qwen3 Embed 32 0.0 0.1 1.1
Qwen3 Embed 64 0.0 0.2 1.0
Qwen3 Embed 128 0.3 0.4 1.8
Qwen3 Embed 256 0.4 0.8 3.2
Qwen3 Embed 512 0.6 1.3 3.3
Qwen3 Embed 768 0.7 1.5 3.8
Qwen3 Embed 1024 0.7 1.6 4.6
Qwen3 Embed 2048 0.9 1.7 4.7
Qwen3 Embed 3072 0.8 1.6 4.8
Qwen3 Embed 4096 0.8 1.8 4.8
Gemini Embed 2 0.0 0.0 0.1
Gemini Embed 4 0.0 0.0 0.0
Gemini Embed 8 0.0 0.0 0.0
Gemini Embed 16 0.0 0.0 0.0
Gemini Embed 32 0.0 0.0 0.0
Gemini Embed 64 0.0 0.0 0.3
Gemini Embed 128 0.0 0.1 0.3
Gemini Embed 256 0.0 0.1 1.2
Gemini Embed 512 0.2 1.1 3.6
Gemini Embed 768 0.9 2.5 7.6
Gemini Embed 1024 1.3 2.7 8.1
Gemini Embed 2048 1.5 3.1 8.5
Gemini Embed 3072 1.6 3.5 10.0
GTE-ModernColBERT default 23.1 34.6 54.8
BM25 default 85.7 90.4 93.6

Table 5: Results on LIMIT. See comparable Figure 3.
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d Critical-n

4 10
5 14
6 19
7 24
8 28
9 32

10 36
11 42
12 47
13 54
14 62
15 70
16 79
17 89
18 99
19 109
20 120
21 132
22 144
23 157
24 170
25 184
26 198
27 213
28 229
29 245
30 261
31 278
32 296
33 314
34 333
35 352
36 372
37 392
38 413
39 434
40 460
41 484
42 505
43 545
44 605
45 626

Table 6: Critical Values of n for different d values in the Free Embedding optimization experiments.
See Figure 2 for the corresponding figure.

Model BEIR LIMIT R@100

Snowflake Arctic 55.22 3.3
Promptriever 56.40 18.9
E5-Mistral 57.07 8.3
GritLM 57.40 12.9
Gemini Embed 62.65 10.0
Qwen3 Embed 62.76 4.8

Table 7: BEIR vs LIMIT results. See Figure 6 for the comparable plot.
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