759

761 762

765 766

767

768

771

772

773 774

775 776

777

778

779

781

782

783

784 785 786

787 788

789

790

791 792

793

794

795

796

797 798

799

800

801 802

803 804 805

806

807

808

809

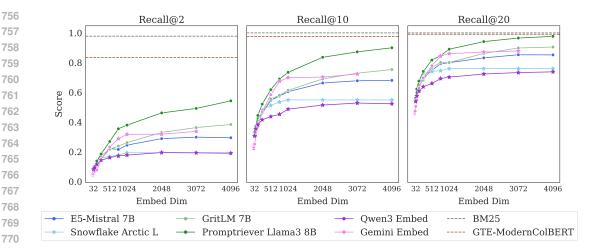


Figure 5: Scores on the LIMIT small task (N=46) over embedding dimensions. Despite having just 46 documents, model struggle even with recall@10 and cannot solve the task even with recall@20.

RELATIONSHIP TO ORDER-K VORONOI REGIONS

We also provide an explanation for how our results compare to Clarkson (1988) which put bounds on the number of regions in the order-k Voronoi graph. The order-k Voronoi graph is defined as the set of points having a particular set of n points in S as its n nearest neighbors. This maps nicely to retrieval, as each order-k region is equivalent to one retrieved set of top-k results. Then the count of unique regions in the Voronoi graph is the total number of combinations that could be returned for those points. However, creating an empirical order-k Voronoi graph is computationally infeasible for d > 3, and theoretically it is hard to bound tightly. Thus we use a different approach for showing the limitations of embedding models, through the use of the sign-rank.

Hyperparameter and Compute Details

Inference We use the default length settings for evaluating models using the MTEB framework (Enevoldsen et al., 2025). As our dataset has relatively short documents (around 100 tokens), this does not cause an issue.

Training For training on the LIMIT training and test set we use the SentenceTransformers library (Reimers & Gurevych, 2019) using the MultipleNegativesRankingLoss. We use a full dataset batch size and employ the no duplicates sampler to ensure that no in-batch negatives are duplicates of the positive docs. We use a learning rate of 5e-5. We train for 5 epochs and limit the training set slightly to the size of the test set (from 2.5k to 2k examples, matching test).

Compute Inference and training for LIMIT is done with A100 GPUs on Google Colab Pro. The free embedding experiments are done mainly on H100 GPUs and TPU v5's for larger size N to accommodate higher VRAM for full-dataset batch vector optimization.

C EFFECTS OF QREL PATTERNS

As mentioned in previous sections, one of the main differences that makes LIMIT hard is the qrel matrices are designed to have higher sign ranks, through testing models on more combinations of documents than typically used. This is mostly clearly seen when training on the test data (as in the free embeddings) where these constraints cause more difficulties in optimization. However, even for zero-shot models we ablate this decision and show that methods that do not test as many combinations (i.e. when the grels are represented as a graph, have lower graph density) are easier empirically.

Experiment Setup We instantiate four new LIMITs from different qrel patterns (using the open-sourced code, which differs slightly from the original LIMIT due to changes in random seeds/document names): (1) random sampling from all combinations (2) a cycle-based setup where the next query is relevant to one document from the previous query and the following next document, (3) a disjoint pattern where each query is relevant to two new documents and (4) the pattern that maximizes the number of connections (n choose k) for the largest number of documents that fit in the query set (dense, our standard setup). For all configurations, we use the same setup as the main LIMIT (50k docs, 1k queries, k=2, 45 entities per doc, etc)

Table 1: Recall@1000 (%) for Qwen3 8B and GritLM 7B across different Qrel patterns for LIMIT.

Model	Embed Dim	Dense	Random	Cycle	Disjoint
Qwen3 8B	4096	13.8	14.8	14.7	15.4
GritLM 7B	4096	32.9	35.5	34.9	35.1

Results We see in Table dense shows worse performance, even in the zero-shot setting. However, as there is no training being done, the constraints provide a smaller impact on the models.

C.1 CORRELATION WITH MTEB

BEIR (used in MTEB v1) (Thakur et al.) 2021; Muennighoff et al., 2022) has frequently been cited as something that embedding models have overfit to (Weller et al.) 2025b; Thakur et al., 2025). We compare performance on LIMIT to BEIR in Figure 6. We see that performance is generally not correlated and that smaller models (like Arctic Embed) do worse on both, likely due to embedding dimension and pre-trained model knowledge.

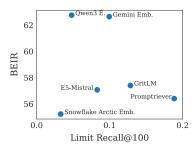


Figure 6: No obvious correlation between BEIR vs LIMIT.

D LIMITATIONS

Although our experiments provide theoretical insight for the most common type of embedding model (single vector) they do not hold necessarily for other architectures, such as multi-vector models. Although we showed initial empirical results with non-single vector models, we leave it to future work to extend our theoretical connections to these settings.

We also did not show theoretical results for the setting where the user allows some mistakes, e.g. capturing only the majority of the combinations. We leave putting a bound on this scenario to future work and would invite the reader to examine works like Ben-David et al. (2002).

We have showed the theoretical connection that proves that some combinations cannot be represented by embedding models, however, we cannot prove apriori which *types* of combinations they will fail on. Thus, it is possible that there are some instruction-following or reasoning tasks they can solve perfectly, however, *we do know* that there exists some tasks that they will never be able to solve.

E LLM USAGE

LLMs were not used for any paper writing, only for coding help and title brainstorming.

F METRICS MEASURING QREL GRAPH DENSITY

We show two metrics that treat the qrel matrix as a graph and show that LIMIT has unique properties compared to standard IR datasets (Table 2). We call these metrics Graph Density and Average Query Strength and describe them below.

Graph Density We use the qrel matrix to construct the graph, where nodes are documents and an edge exists between two documents if they are both relevant to at least one common query.

For a given graph G=(V,E) with V being the set of nodes and E being the set of edges, the graph density is defined as the ratio of the number of edges in the graph to the maximum possible number of edges. For an undirected graph, the maximum possible number of edges is $\frac{|V|(|V|-1)}{2}$. Thus, the density ρ is calculated as:

$$\rho = \frac{|E|}{\frac{|V|(|V|-1)}{2}} = \frac{2|E|}{|V|(|V|-1)}$$

This metric indicates how connected the graph is; a density of 1 signifies a complete graph (all possible edges exist), while a density close to 0 indicates a sparse graph. For a qrel dataset, the

Average Query Strength In a query-query graph where nodes are queries and edges represent similarity between queries (e.g., Jaccard similarity of their relevant documents), the *strength* of a query node i, denoted s_i , is defined as the sum of the weights of all edges incident to it. If w_{ij} is the weight of the edge between query i and query j, and N(i) is the set of neighbors of query i, then the strength is:

$$s_i = \sum_{j \in N(i)} w_{ij}$$

The Average Query Strength \bar{s} is the mean of these strengths across all query nodes in the graph:

$$\bar{s} = \frac{1}{|V_Q|} \sum_{i \in V_Q} s_i$$

where V_Q is the set of all query nodes in the graph. This metric provides an overall measure of how strongly connected queries are to each other on average within the dataset, based on their shared relevant documents.

Comparisons to other datasets We compare with standard IR Datasets such as NQ (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), and SciFact (Wadden et al., 2020). We also show an instruction-following dataset, FollowIR Core17 (Weller et al., 2024a). For all datasets, we use the test set only. The results in Table 2 show that LIMIT has significantly higher values for both of these metrics (i.e. 28 for query similarity compared to 0.6 or lower for the others).

Table 2: Metrics measuring the density of the qrel matrix. We see that LIMIT is significantly higher than other datasets, but that the closest are instruction-following datasets such as Core17 from FollowIR. Our empirical ablations suggest (although cannot definitively prove) that datasets with higher values here will be harder for retrieval models to represent.

Dataset Name	Graph Density	Average Query Strength
NQ	0	0
HotPotQA	0.000037	0.1104
SciFact	0.001449	0.4222
FollowIR Core17	0.025641	0.5912
LIMIT	0.085481	28.4653

G TABLE FORMS OF FIGURES

In this section we show the table form of various figures. For Figure 3 it is Table 5, Figure 5 in Table 4, Figure 2 in Table 6, and Figure 4 in Table 3.

Split	Dim	Recall@2	Recall@10	Recall@100
	Dilli	Recail@2	Recaire 10	Recaire 100
Test	32	85.5	98.4	100.0
Test	64	90.4	98.7	100.0
Test	128	93.1	99.5	99.9
Test	256	94.2	99.7	100.0
Test	384	95.6	99.6	100.0
Test	512	94.0	99.5	99.9
Test	768	96.1	99.8	100.0
Test	1024	96.5	99.8	100.0
Train	32	0.0	0.0	0.0
Train	64	0.1	0.3	2.2
Train	128	0.2	0.7	3.1
Train	256	0.0	0.0	0.4
Train	384	1.1	2.7	8.3
Train	512	0.7	2.3	9.8
Train	768	0.7	2.4	9.9
Train	1024	1.0	2.8	11.2

Table 3: Fine-tuning results in table form. See Figure 4 for the comparable plot.

	Model	Dim	Recall@2	Recall@10	Recall@20
	BM25	default	97.8	100.0	100.0
	E5-Mistral 7B	32 64	7.9 10.2	32.6 37.0	56.2 60.3
	E5-Mistral 7B E5-Mistral 7B	128	10.2	41.9	65.9
	E5-Mistral 7B	256	15.3	45.9	69.7
	E5-Mistral 7B	512	22.2	54.7	74.8
	E5-Mistral 7B	768	21.6	57.5	79.2
	E5-Mistral 7B	1024	24.5	60.5	80.0
	E5-Mistral 7B	2048	28.9	66.3	83.2
	E5-Mistral 7B	3072	29.9	67.8	85.3
	E5-Mistral 7B	4096	29.5	68.1	85.2
	GTE-ModernColBERT GritLM 7B	default 32	83.5 7.8	97.6 33.5	99.1 56.3
	GritLM 7B GritLM 7B	64	9.4	35.9	59.6
	GritLM 7B	128	14.2	42.7	64.9
	GritLM 7B	256	17.3	46.2	68.3
	GritLM 7B	512	21.8	55.6	76.7
	GritLM 7B	768	23.8	58.1	80.1
	GritLM 7B	1024	26.2	61.4	80.1
	GritLM 7B	2048	33.0	69.1	86.2
	GritLM 7B	3072	36.3	72.9	89.9
	GritLM 7B Promptriever Llama3 8B	4096 32	38.4 6.1	75.4 31.4	90.5 56.0
	Promptriever Llama3 8B Promptriever Llama3 8B	52 64	8.9	31.4 35.8	62.3
	Promptriever Llama3 8B	128	13.7	44.5	67.6
	Promptriever Llama3 8B	256	18.5	52.1	74.1
	Promptriever Llama3 8B	512	27.0	61.8	81.7
	Promptriever Llama3 8B	768	35.5	69.0	84.7
	Promptriever Llama3 8B	1024	38.0	73.5	89.1
	Promptriever Llama3 8B	2048	46.2	83.6	94.2
	Promptriever Llama3 8B	3072	49.2	87.3	96.6
	Promptriever Llama3 8B	4096	54.3	90.0	97.7
	Qwen3 Embed	32	8.3	30.6	53.9 57.6
	Qwen3 Embed Qwen3 Embed	64 128	9.4 11.6	35.5 38.3	57.6 60.8
	Qwen3 Embed	256	11.6	38.3 41.6	63.8
	Qwen3 Embed	512	16.1	43.7	66.0
	Qwen3 Embed	768	17.2	45.3	69.3
	Qwen3 Embed	1024	17.8	48.7	70.3
	Qwen3 Embed	2048	19.5	51.5	72.4
	Qwen3 Embed	3072	19.3	52.8	73.3
	Qwen3 Embed	4096	19.0	52.3	73.8
	Gemini Embed	2	4.2	23.0	45.5
	Gemini Embed	4	4.2	21.9	46.0
	Gemini Embed Gemini Embed	8 16	4.9 5.2	23.2 24.7	47.0 47.5
	Gemini Embed	32	6.3	25.2	50.6
	Gemini Embed	64	6.9	30.6	55.0
	Gemini Embed	128	7.7	37.0	62.9
	Gemini Embed	256	14.6	46.9	69.7
	Gemini Embed	512	23.3	58.4	77.9
	Gemini Embed	768	28.8	67.5	84.5
	Gemini Embed	1024	31.8	69.9	86.1
	Gemini Embed	2048	31.9	70.3	87.1
	Gemini Embed	3072	33.7	72.4	87.9
	Snowflake Arctic L	32	8.3	30.3	53.8
	Snowflake Arctic L Snowflake Arctic L	64 128	9.0 12.7	35.4 41.3	58.5 65.1
	Snowflake Arctic L	256	16.0	48.2	72.6
	Snowflake Arctic L	512	16.7	51.3	74.1
	Snowflake Arctic L	768	17.9	53.5	74.6
	Snowflake Arctic L	1024	19.4	54.9	76.0
	Snowflake Arctic L	2048	19.4	54.9	76.0
	Snowflake Arctic L	3072	19.4	54.9	76.0
	Snowflake Arctic L	4096	19.4	54.9	76.0
T	able 4. Results for the LI	MIT em	all version	n See com	narable Fig

Table 4: Results for the LIMIT small version. See comparable Figure 5.

Model	Dim	Recall@2	Recall@10	Recall@100
E5 Mintrel 7D	22	1 00	0.0	0.5
E5-Mistral 7B E5-Mistral 7B	32 64	0.0 0.0	0.0 0.1	0.5 0.4
E5-Mistral 7B	128	0.1	0.3	1.0
E5-Mistral 7B	256	0.4	0.9	1.9
E5-Mistral 7B	512	0.7	1.3	3.8
E5-Mistral 7B	768	0.9	1.7	4.3
E5-Mistral 7B	1024	0.9	1.8	5.9
E5-Mistral 7B	2048	1.0	1.9	6.8
E5-Mistral 7B	3072	1.3	2.0	7.7
E5-Mistral 7B Snowflake Arctic L	4096 32	1.3 0.0	2.2 0.1	8.3 0.6
Snowflake Arctic L	64	0.0	0.1	1.7
Snowflake Arctic L	128	0.1	0.3	1.8
Snowflake Arctic L	256	0.2	0.8	2.5
Snowflake Arctic L	512	0.3	1.0	2.5
Snowflake Arctic L	768	0.4	1.1	3.1
Snowflake Arctic L	1024	0.4	0.8	3.3
Snowflake Arctic L	2048	0.4	0.8	3.3
Snowflake Arctic L	3072	0.4	0.8	3.3
Snowflake Arctic L	4096	0.4	0.8	3.3
GritLM 7B GritLM 7B	32 64	0.0 0.0	0.0 0.1	0.8 0.3
GritLM 7B	128	0.0	0.1	1.3
GritLM 7B	256	0.1	0.3	2.8
GritLM 7B	512	0.6	1.8	6.5
GritLM 7B	768	1.5	3.1	8.7
GritLM 7B	1024	1.8	3.5	10.6
GritLM 7B	2048	2.3	4.3	11.8
GritLM 7B	3072	2.0	4.3	12.9
GritLM 7B	4096	2.4	4.1	12.9
Promptriever Llama3 8B	32	0.0	0.0	0.1
Promptriever Llama3 8B	64	0.0	0.0	0.3
Promptriever Llama3 8B Promptriever Llama3 8B	128 256	0.0 0.2	0.1 0.4	0.6 1.8
Promptriever Llama3 8B	512	0.2	1.4	5.4
Promptriever Llama3 8B	768	1.3	3.1	8.7
Promptriever Llama3 8B	1024	2.1	4.4	12.8
Promptriever Llama3 8B	2048	3.2	6.5	18.1
Promptriever Llama3 8B	3072	2.9	6.3	17.8
Promptriever Llama3 8B	4096	3.0	6.8	18.9
Qwen3 Embed	32	0.0	0.1	1.1
Qwen3 Embed	64	0.0	0.2	1.0
Qwen3 Embed	128	0.3	0.4	1.8
Qwen3 Embed	256	0.4	0.8	3.2
Qwen3 Embed Qwen3 Embed	512 768	0.6 0.7	1.3 1.5	3.3 3.8
Owen3 Embed	1024	0.7	1.5	3.8 4.6
Qwen3 Embed	2048	0.7	1.7	4.7
Qwen3 Embed	3072	0.8	1.6	4.8
Qwen3 Embed	4096	0.8	1.8	4.8
Gemini Embed	2	0.0	0.0	0.1
Gemini Embed	4	0.0	0.0	0.0
Gemini Embed	8	0.0	0.0	0.0
Gemini Embed	16	0.0	0.0	0.0
Gemini Embed	32	0.0	0.0	0.0
Gemini Embed Gemini Embed	64 128	0.0 0.0	0.0 0.1	0.3
Gemini Embed Gemini Embed	256	0.0	0.1	0.3 1.2
Gemini Embed	512	0.0	1.1	3.6
Gemini Embed	768	0.9	2.5	7.6
Gemini Embed	1024	1.3	2.7	8.1
Gemini Embed	2048	1.5	3.1	8.5
Gemini Embed	3072	1.6	3.5	10.0
GTE-ModernColBERT	default	23.1	34.6	54.8
BM25	default	85.7	90.4	93.6
Table 5: Results	on LIM	IT See co	mparable F	Figure 3

Table 5: Results on LIMIT. See comparable Figure 3.

d	Critical-n
4	10
5	14
6	19
7	24
8	28
9	32
10	36
11	42
12	47
13	54
14	62
15	70
16	79
17	89
18	99
19	109
20	120
21	132
22	144
23	157
24	170
25	184
26	198
27	213
28	229
29	245
30	261
31	278
32	296
33	314
34	333
35	352
36	372
37	392
38	413
39	434
40	460
41	484
42	505
43	545
44	605
45	626

Table 6: Critical Values of n for different d values in the Free Embedding optimization experiments.

See Figure 2 for the corresponding figure.

Model	BEIR	LIMIT R@100
Snowflake Arctic	55.22	3.3
Promptriever	56.40	18.9
E5-Mistral	57.07	8.3
GritLM	57.40	12.9
Gemini Embed	62.65	10.0
Qwen3 Embed	62.76	4.8

Table 7: BEIR vs LIMIT results. See Figure 6 for the comparable plot.