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Supplementary Material

A PRELIMINARY LEMMAS

A.1 GEOMETRIC MIXING

The operation p ® ¢ denotes the tensor product between two distributions p(x) and ¢(y), i.e. (p ®
9)(z,y) = p(x) - q(y).
Lemma 1. Suppose Assumption holds for a Markov chain generated by the rule a; ~ g (+|st),
si11 ~ P(-|s¢, ar). Forany 6 € RY, we have
sup dry (P((se, v, s141) € -Js0,m0), 10 @ 79 0 P ) < ip. (19)
sp€

where g (-) is the stationary distribution with policy g and transition kernel P(-|s, a).
Proof. We start with

sup dry (B((se,a0,5041) = |30, 70), o @ 70 © P)
NS

= sup dry (]P’(st = |80, Tg) ® Mg @ 73,/19 & o ®ﬁ)
spES

spES

1 ~ ~
= sup */ Z/ [P(s¢ = ds|so, mo)mg(als)P(ds'|s, a) — po(ds)me(als)P(ds'|s, a)
2 ’
s€S acAYS €S

1 -
= sup 5/ [P(s; = ds|so, m9) — pe(ds)] Z 7r9(a|s)/ P(ds'|s,a)
sES s'eS

50€S acA

= sup drv (P(s¢ € -|s0,m9), 1)
SUES

< kp',
which completes the proof. O

For the use in the later proof, given K > 0, we first define m g as:
My = min { m € N* | k™ < min{ak,ﬁk}} , (20)
where x and p are constants defined in . m 1s the minimum number of samples needed for the

Markov chain to approach the stationary distribution so that the bias incurred by the Markovian
sampling is small enough.

A.2 AUXILIARY MARKOV CHAIN

The auxiliary Markov chain is a virtual Markov chain with no policy drifting — a technique developed
in [35] to analyze stochastic approximation algorithms in non-stationary settings.

Lemma 2. Under Assumption[l|and Assumption[3] consider the update Q) in Algorithm [I| with
Markovian sampling. For a given number of samples m, consider the Markov chain of the worker
that contributes to the kth update:

Ok—dp, P Ok—dp, 1 Ok—d, P Ok—dg P
St—m E— At—m — St7m+1 E— at7m+1 o St—1 EE— ap—1 — St E— Qag — St+17

where (s¢,at,5011) = (S(k), A(k), szk)), and {d;}* is some increasing sequence with dy := .

Given (St—m, Gt—m, St—m+1) and Ok—a,,, we construct its auxiliary Markov chain by repeatedly
applying 7o, _, :

Ok—du, P Ok—dm  ~ ~ Ok—dp  ~ P o~ Ohdpy ~ P~
Stm =% Qg > St T W1 Sl — S Ty1 > 5 —— T Ty > S

Define x; == (s, a, S¢+1), then we have:
dry (P(z¢ € |Ok—d,, > St—m+1), P(Tt € -|Ok—d,,, St—m+1))

1 I
< MLz > Ell0k—i — Ok—a,

T=T}

2|0k—d,. s St—m+1] - 21
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Proof. Throughout the lemma, all expectations and probabilities are conditioned on 6j_4,, and
St—m+1. We omit this condition for convenience.

First we have

dry (P(s¢41 € ), P(8¢41 € 7))

1 ~
= 5/ [P(si1 = ds') — P(541 = ds’)|
s'eS

_1/
2 s'eS

/ Z P(s; = ds,a; = a, 8,11 = ds') —P(3; = ds,a; = a, 8141 = ds’)
seS acA

1 - ~ -

< */ / Z |P(s; = ds,a; = a, 8,41 = ds') = P(3, = ds,a; = a,5,41 = ds’)]
2 )ses Jses i
1 - - -

= 7/ Z / [P(sy = ds,a; = a, 8401 = ds') — P(5; = ds,a; = a, 5,41 = ds')|
2 Jses Ty )ses

=drv (P(z; € -),P(z, € 1)), (22)
where the last second equality is due to Tonelli’s theorem. Next we have

dry (]P’(:ct c ),P(it c ))

1 . . -
== E / [P(sy = ds,a; = a, 8441 = ds') —P(5; = ds,a; = a, 5,41 = ds')|
2 Jses fy Jses

1 B _ ~
5/ E |P(s; = ds,a; = a) — P(5; = ds,a; = a)\/ P(si41 = ds'|sy = ds,a; = a)
€S qcA s'€S

1
5 [ S IPGs= s = @) — B = ds.i = o)
2 €S qea
= dTV (]P((St, at) € ) ,P ((§t,5t) (S )) . (23)

Due to the fact that 0, is dependent on s;, we need to write P(s¢, at) as
P<5t; Clt) = / P(St, 91@77,67%)

ak,-rk cRd

— [ BPO, = Bls)ma,_, (ar]s0)
0ER?

— P(s:) / POk, = db]s0)mo, . (arls)
HeR?
= P(s¢) E[mg, ., (ar|st)]st].
Then we have

drv (P ((st,ar) € -),P((5¢,a¢) € 7))

_ 1/
2 SE€S 4

1
5/ Z )P(st = ds) E[mo,_, (ar = alsy = ds)|s; = ds] — P(s; = ds)me,_,, (ar = a|s; = ds)‘
€S e

)P(st =ds) E[mgk_rk (ar = alsy = ds)|sy = ds] — P(5; = ds)ng_dm (a; = alsy = ds)‘

IN

1 - - . - .
+ 5/ Z ‘P(st = ds)m)k_dm (ar = a|sy = ds) — P(s; = ds)m)k_dm (ar = alsy = ds)’
€S o

1
= 5/ P(s; = ds) Z ’E[wek_qk (a¢ = al|sy = ds)|sy = ds] — g, _, (ar = als; = ds)’
s€S acA
1

+ 7/ |P(s; = ds) — P(s5; = ds)|.
2 s€S

12
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Using Jensen’s inequality, we have

drv (P ((st,ar) € -) ,P((5¢,ar) € 7))

1
< 5/ P(s; = ds) Z E [ Top -, (a¢ = a|s; = ds) — g, _, (ar = als; = ds)‘ Sp = ds]
sES acA
1 -
+ 5/ |P(s; = ds) — P(5; = ds)]
sES
1 1 -
§ 5/ P(St = dS) Z E [||9k_.,-k - ak_dm 2| St = dS] + 5\/ |P(8t = dS) — ]P)(St = d$)|
sES acA SES
1 ~
= §|A\LW]E 10k—7. — Ok—d,, |l2 +drv (P(s € -),P(5: € -)) (24)

where the last inequality follows Assumption 3]

Now we start to prove (21).
drv (P(zy € -),P(T; € 1)) = drv (P((st,a0) € -), P((5¢,ar) € -))

- 1
dry (P(s; € -),P(5; € -)) + §\A|L7,IE 10k, — Or—a,, |2

NS INE 1B

~ 1
drv (P(zi—1 € ), P(T4—1 € ) + §|A|L7rE 10k—r, — Ok—d,, Il2-
Now we have

~ - 1
drv (P(xt S -),]P(:L‘t S )) <drvy (P($t71 S ')7P(.’Et71 S )) + §|A‘L7‘—E ”97@*71‘: — Gk,deg.
(25)

Since dry (P(zt—m € -),P(zi—m € -)) = 0, recursively applying for {t — 1,...,t —m} gives

_ 1 <
drv (P(zy € -),P(3; € ) < §|A\LWZE 10k—d; = Ok—d. 12
=0
1 dm,
5 ML= > E|0k—i — Or-a,

P=Ty

IN

25

which completes the proof. O

A.3 LipSCHITZ CONTINUITY OF VALUE FUNCTION

Lemma 3. Suppose Assumption E|holds. For any 01,05 € R% and s € S, we have

[VVi, (8)ll2 < Ly, (26a)
[Vig, (8) = Vag, ()| < L (|61 — 022, (26b)

where the constant is Ly = Cyryax/(1 — ) with Cy, defined as in Assumption

Proof. First we have
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By the policy gradient theorem [[7]], we have
IV Vo, (9)]l2 = ||[E [Qry, (5,0)006, (5,0)] |,
<E HQﬂ'Gl (8, a)wéh (87 G)HQ
< E [|Qr,, (5,0)l[I¥0, (5,0) 2]
r

< max C

=1_ v (R
where the first inequality is due to Jensen’s inequality, and the last inequality follows Assumption 3]
and the fact that Q. (s,a) < q“_—a; By the mean value theorem, we immediately have

Vg, (8) = Vg, (8)] < Sup [ V'V, (8)], 161 = O2ll2 = Ly [|61 — 2]|2,
1ER4

which completes the proof. O

A.4 LIPSCHITZ CONTINUITY OF POLICY GRADIENT

We give a proposition regarding the L y-Lipschitz of the policy gradient under proper assumptions,
which has been shown by [33].

Proposition 1. Suppose Assumption |3| and 4| hold. For any 6,0’ € R<, we have ||VJ(6) —
VJ (0|2 < Lj||0 — 0'||2, where L is a positive constant.

A.5 LIPSCHITZ CONTINUITY OF OPTIMAL CRITIC PARAMETER

We provide a justification for Lipschitz continuity of wy in the next proposition.
Proposition 2. Suppose Assumptionand hold. For any 01,05 € R?, we have
|wg, —wa, ll2 < Lwll6h — 02|z,
where Ly, = 2rmax| Al Lz (A" + X72(1 4 7))(1 +log, s~ + (1 —p)71).
Proof. We use A1, Ao, by and by as shorthand notations of Am,l, A,rsz, bm,1 and by, respectively.
By Assumption Ay, 4 is invertible for any 6 € RY, so we can write w) = —Ay ébg,(/). Then we have
lwi —wslla = || = A7 b1 + A3 balo

= — A7y — A7 by + AT b + Ay Dol

= || = A7H (01 = b2) — (AT = Ay )bola

< AT = b2l + (AT = A5 )bel2

< AT lallbr = balla + | AT = A [l2][b2]l2

= AT l2llbr = ball2 + [| AT (A2 — A1) A 12]|b2]l2

< AT lallbr = ballz + AT 2l A l2llb2 2]l (A2 — A1)l

S Aoy = bally + A rmax | A1 — Azl @7
where the last inequality follows Assumption[2] and the fact that

[b2ll2 = |E[r(s, a, s")o(s)ll, < Ellr(s,a,s")p(s)lly < Elr(s,a, s")[[6(s)]l2] < rmax-

Denote (s',a', s'') and (s2, a2, s'?) as samples drawn with 6; and 6, respectively, i.e. s' ~ pg,,

al ~mg,, 8" ~ Pand s2 ~ pg,, a® ~ 7g,, s> ~ P. Then we have
b1 = bally = [|E [r(s',a', s (s")] — E [r(s*, 0, s%)b(s*)] ||,

< sup [[r(s, a,5")p(s)||2l|P((s, ', s) € ) = P((s%, a*,5") € )|y

s,a,s

< rmax|[P((s', 0ty 8™) € ) = P((s%, 0%, 5%) € ) |rv
= 2" maxdTV (Mel ® mo, ® P, Lo, @ o, @ 75>
< 2rmax ALz (1 +log, k7" + (1= p)~1)[|61 — O2]l2, (28)
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where the first inequality follows the definition of total variation (TV) norm, and the last inequality
follows Lemma A.1. in [17]. Similarly we have:

HAI - A2H2 S 2(1 +7)dTV (M91 & TGy 5 MO, & 71'92)

= (1+9)|A|Lx (1 +log, k=" + (1= p) )61 — b2 (29)
Substituting (28) and (29) into (7)) completes the proof. O

B PROOF OF MAIN THEOREMS

B.1 PROOF OF THEOREM[I]

For brevity, we first define the following notations:

x = (s,a,s),

) = B _lg(zw)].

s~g,a~Tg,s ~P

We also define constant C5 := ryax + (1 4 ) max{ ’1":‘*,;‘ , R, }, and we immediately have

lg(, @)ll2 < |r(x) +7¢(s") 'w = ¢(s) "w| < rmax + (1 +7) R < Cs (30)
and likewise, we have ||g(z,w)|2 < Cs.

The critic update in Algorithm [I]can be written compactly as:

wk)-‘rl = HRW (OJk; +6kg(w(k)7wk—7'k)) ) (31)
where 7y is the delay of the parameters used in evaluating the kth stochastic gradient, and z () =
(s(k), a(r), s’(k)) is the sample used to evaluate the stochastic gradient at kth update.

Proof. Using wy; as shorthand notation of wy , we start with the optimality gap
w1 — wipa 3
= g, (wk + Brg(zk) wi—r,)) — wit1ll3
< lwk + Brg(€ k), Wh—r,) — wirpa ll3
= |lwk — wi i3 + 285 (wr — Wi, 9@ 1y, Whone) ) + 2 {wi — Wiy wh — Wiy ) + Wi — Wiy + ﬂkg(x(k)7wk—7'k)||§
= |lwr — wills + 285 (W — Wiy 9@y, Wh—n) — 9(T 0y wi)) + 285 (Wi — Wi, 9@y, wi) — T(Ok, wi))
+ 2By (wi, — Wi, GOk, wi)) + 2 {wy — wi, wi — wiq) + ||WZ — Wiy t ﬂkg(m)vw’c—m)ﬂz
< ws — will + 2Bk (wk = Wiy 9Ty, We—r, ) — 9(T (ks W) + 2Bk (Wi — Wi, 9(T k), wr) — GOk, wi))
+ 28 (wr — Wi, GOk, wi)) +2 <wk - UJZMZ —wiigg) 2 ||wi — WZ+1||§ + 203 B3 (32)
We first bound (wy — w}, G0k, wk)) in as
(Wi — wi, GOk, w)) = (wk Wi, GO, wi) — (O, wi))

= (wh = Wi E [(70(5) — () (wr — wi)o(s)] )

= (k= Wi, E [9(5) (0(5") = 6()) " | (e )

= (wh = wis Ang, (1 — )

< —Alwr = wil3, (33)

where the first equality is due to g(0,w;) = Agewy + b = 0, and the last inequality follows
Assumption 2} Substituting (33) into (32), then taking expectation on both sides of (32) yield

E lwir — wit1l3 < (1= 2X80) E lwi — will3 + 285 B (wp — wf', (2 (r), wh—r,.) — (k) wr) )
+ 2B, E (wi — wis, (T k), wk) — G0k, wi)) + 2 (wp — wi, wf — wiiq)
* * 2
+2E ||wj; — wi || +2C38;. (34)

15
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We then bound the term E (wy, — wj, ¢(@ (), Wk—r,) — 9(T k), wr) ) in (34) as
-
E (Wi — wi, 9(T (k) Wr—r,,) — 9(T k), W) = E <wk — W, (Wﬁ(S'(k)) - ¢(S(k))> (Wr—r, — Wk)¢(8(k))>
< (1 +7)E [llwr — wZHzHkark — will2]

E w1+1 - wz
=k—

< (14+7)E | wr - will

2

k—1
< UH+NE |fwx —will2 Y &Ilg(%wz'—n)lzl

L i=k—Tg

k—1
<SA+NE [llox —willz > ﬁk—Kol|g(xivwi—T¢)||2]

Zk‘l’k

< Cs(1+ 'Y)KO/Bk Ko E |lwre — wi|2, (35)

where the second last inequality is due to the monotonicity of step size, and the last inequality follows
the definition of Cy in (30).

Next we jointly bound the fourth and fifth term in (34) as

2E (wy — wi, wj, —w2+1>+2EHwZ -

* * * * * 2
< 2E [Jlon — willy flwi = wigall,] + 2B [lwi — wipall,
< 2L, B [lwg — willy 10k — Oksallo] + 2L2 E |0k — Orsa 15
N N 2
=2L,a,E [Ilwk —willy H5 T (ks W1 )V0r 1, (S()s a(k))‘u +2L20} E H5(ﬂf(k),wk—rk)¢9kw (s(k) a(k))H2

< 2L,Cpay E ||wy, — will, + 2L2 Chog, (36)

where constant C,, := CsCy. The second inequality is due to the L,-Lipschitz of w; shown in
Proposition 2} and the last inequality follows the fact that

102 (), Wr—r )0, (S)» Ay |2 < C5Cy = Co. (37
Substituting (33)) and (36) into (34) yields

E lwn 1 — wi1 |3 < (1= 2X80) E [lwr — wi3 + 264(C1

+02Koﬁk Ko)]E”Wk WZHz

Bk
+ 2Bk E (wi — wfi, 9(x () wi) — G0k, wi)) + Cy Bz, (38)
where Oy == L,C,, O = C5(1 + ) and C; == 202 + 2L2.C2 max ) % = 202 + 202025
1= Lwlp, L2 = U Y q-— s w'p (k)gg_ 5 w-'pelt

For brevity, we use x ~ 6 to denote s ~ g, a ~ 7 and s’ ~ 73 in this proof. Consider the third
term in (38) conditioned on 6y, wg, O, . We bound it as

E [(we — wi, 9@y, wi) — GO0k, wr)) |0k, Wi, Or—r, |

= <wk - UJZ, E [g(m(k),wk)|wk] — g(Hk,wk)>

(k)7

_ <wk ot T swn) — g<9k7wk>>
< ok = w2 F B 0k) — O o)l

E [g(wik)] - ]EG [g(x7wk)]

x~Ok 1), x~ O

< 2R,

2
< 2R, swp lg(a,wn) s o, © 7o, ©P = o, @70, 0P|
x

< AR, Csdrv (po,_,, @ 7o, ., @ P, po, ® w9, @ P), (39)

16
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where second last inequality follows the definition of TV norm and the last inequality uses the
definition of Cj in (30).

Define constant Cs := 2R,,Cs|A|L(1 +log, s~1 + (1 — p)~1). Then by following the third item
in Lemma A.1. shown by [17], we can write as

E [<Wk - wz7g(x(k)7wk) - g(akvwk)> |9kawk7 ak—‘rk}
<A4R,Csdrv(pe, ., ®mg, . @ P, g, ® o, @ P)
< O3 |0k —r;, — Ok,

k—1
< 03 Z O‘ng(xiawi—ﬂ) |2
i:kf‘l'k
< C3Cs Kok — ks (40)

where we used the monotonicity of aj, and Assumption [I]

Taking total expectation on both sides of (@0) and substituting it into (38} yield

* * a *
Ellwkr1 — wip1ll3 < (1= 2X86) E lw — wirll5 + 284 (C'lﬁ*: + CzKoﬁkao) E flwr — willy
+2C3C5 KoBran—i, + CyBi. (41)
Taking summation on both sides of and rearranging yield
K L ) K
%12 %12 *
2 Y Bl —wilh < 30 5 (Blon —willy ~ Bl —wiilly) +Cs 3 e
k=Ko k=K, "k k=Ko
Il 12
K K o
k *
+2 ) 205Cs Kook +2 Y (Clﬁ + CzKoﬂk—Ko> E [lwr — willy -
k=Ko k=Ko k
13 14
(42)
‘We bound I; as
Ko )
* (12 *
I = B (EHwk — willy — E[Jwrta _wk+1H2)
k=M
K
1 1 2 1 2 1 2
= — — — | E||lwk —wi||5 + =—E ||wa, — wi — —E|w — wj,
S () Bl sl g Bl i - g Bl il
K
1 1 2 1 2
< — — —— | E ||wg, — will5 + E|lwa,. — wi
kgw: (ﬂk 5k1> o illz BMi—1 s MK||2
=Mk
K
1 1 1 4R?
< 4R}, ( >+ = @ = O(K"), (43)
<k_ZA; Br  Br-1 B —1 Bk (E™)
- K
where the last inequality is due to the fact that
lwe — wpllz < llwkll2 + [[wgllz < 2R..
We bound I as
K K .
— 72 _ 1—0o
3. 0= 3 g O @
k=M k=M

where the inequality follows from the integration rule Ezza k77 < L

l—0°

17
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‘We bound I5 as

K K—-Ko
Iy =Y 205CsKoap_k, = 2C5Csa1 Ko > (1+k)"7 = O(KoK'™).  (45)
k=Ko k=0

For the last term I, we have

K
a
Iy = Z (C1Bk + C2K06k—K0) Eflwr = will,
k=Ko g
K 2| K 2
< | (G +aakitir) | D (€l wil)
k=Ko k=Ko
K 2| K
< Z (C1 + C2KoBg- K0> Z E ||wr, — wil2, (46)
k=Ko P k=Ko

where the first inequality follows Cauchy—Schwartz inequality, and the second inequality follows
Jensen’s inequality. In (@6), we have

K 2 K—Ko 2
> (ca 5+ CeKoBr- Ko) <> (01 3, +02Koﬁk)
k=Ko k=0
K— Ko K—KO K_KO

fcl Z 7+20102K0 Z Oék+022Kg Z BI%
k=0 k=0
:O(K2(02—01)+1) +O(KOK—J1+1)+O(K3K1—2U2) 47)

where the first inequality is due to the fact that “ and Bk— K, are monotonically decreasing.

Substituting (@7) into {6) gives

K

I < \/o (K2(02=0041) 4 O (KoK —o141) + O (KZK'=22), | Y Ellw —wiill3.  (48)
k=M
Substituting @3)), @4), @3) and (@8) into #2), and dividing both sides of (#2) by K — K + 1 give
Al B - wil
K—Ko+1 b wkll2
k=Ko
\/O (K2(02—01)+1) + O (KoK —o1t1) +(’)(K§K1_2‘72) K )
= K—Ko+1 > Ellwr —wipll;
k=Kj
1 1 Ko
ro(pis) o) o () w
We define the following functions:
TK) = L 3 Bl
YT R -Ky 1 e T
0

To(K) :_O<K11—<72> +O<K102) +O(If({fl>,

O (Ko27o0H) 4 O (KoK~ +1) + O (KZK'~22)
K—-Ky+1 ’

Tg(K) =

18
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Then ([@9) can be written as:

Solving this quadratic inequality in terms of 7 (K'), we obtain
1 1

TWK) L ThK)+ —

T5(K), (50)
which implies
K

1 .2
K _Koi1 > Ellwk —will;
k=Ko

B 1 1 K2 Ko 1
o () +© (e ) -0 (s 0 (1) +0 (7))

‘We further have

1 K Kop—1
LS Bl - il < (z iR+ 3 Bl il
k=1

k=Ko
Ko KoKyt 1 il
= Lir2 0 E [|wi —
i R i74 K — Ky +1k§;< llor — wiell3
0
L& -
k=Ko
K
( Z wk—wk”z) (51)
=Ko
which completes the proof. O

B.2 PROOF OF THEOREM[Z]

We first clarify the notations:
T = (s,a,s),
8(w,w) = 1(s,a,8') +7y9(s") Tw = $(s) Tw,
8(x,0) =r(s,a,8") + 4V, (s") — Vi, (),
The update in Algorithm[T]can be written compactly as:
Opi1 = 0k + akg(x(k),wk_fk)wgqu (S(k)> (k) )- (52)

For brevity, we use wy, as shorthand notation of wp, in this proof. Then we are ready to give the
convergence proof.

Proof. From L j-Lipschitz of policy gradient shown in Proposition [I] we have:
TOxs) > J(00) + (VI (00), O — 04) — =2 [0ucs — 0413
= J(0k) + o <VJ(9k), (5(x(k),wk,m) - §(sc(k)7w,:)) Vo ., (k) a(k))>
+ a <VJ(9k), 0( 1y Wi Pos o, (S(k)»a(k))> - %aillg(ﬂf(k)vwkfu)%qu (sk)> ai)) I3
> J(0k) + a (TIO), (3, whn) = Sy, wi)) o, (509 awy) )

. . .
+ ay <VJ(91€)’ 0(% k), wi)Voy_,, (S(k),a(k))> _ %Czai’

19
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where the last inequality follows the definition of C;, in (37).
Taking expectation on both sides of the last inequality yields

EL Os1)] = BT 00)] + o E (VI0k), (8(wes), wnr) = Swesy, b)) o, (5195 0010) )

I
. ) L
+apE <VJ(0]€), 5(I(k)a wk)’l/)gki,rk (S(k)a a(k))> 7?(]012)0% (53)
Iz

We first decompose 17 as

<S($(k)awk77k) — 5($(k),w7§)) Vo, ., (S(k)s a(k))>
=K <VJ(91€), (8(1‘(;9), wk._Tk) — 5(56(;@, wk)> dl‘gkfw (S(k), a(k))>

L 1
™

<VJ(9k) (3( (),wig)—g(%(k)wi)) Yoy, (S(k),a ())>-

3

IL=E <VJ(0k),

We bound I{l) as

E <VJ(91¢)7 (’Wb(sbc)) - ¢(8(k)))T (Wh—r — wi)Vo,_,, (S(k a(k))>

>-E [IIVJ(Hk)\\2||7¢(SEk)) = o(s))ll2llwr — we—r 2[00, (S(k)va(k))\\z}

>
> —(1+7)Cy E[IVI (k) |l2llwr — wr—m [|2]
> —(147)CyCsKoBr—1 E||VJI(Ok)]2,

where the last inequality follows

lwr — Wz, [l2 =

k—
§ wz-i—l - wz
i=k—

2

k—
S Z ||Bz fzawl 7-7,) 2
=k—
k—1
B Y lolswir)ly
i:k*’rk
< Br-1KoCs,

where the second inequality is due to the monotonicity of step size, and the third one follows (30).

Then we bound 1\?) as
1Y =E <VJ(91€)’ (5(30(1@),%) — 0(x(k), WZ)) Vo, (k) a(k))>
=~ £ (9700, (16(54y) ~ 6lo0)) (o~ ), (e
>-E {HVJ(%)HQHW(SE@) = d(s))llzllwr — will2llve, ., (50 a<k>)||2]

—(1+)Cy E[[VI(Or)ll2[lwr — will2] -
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Collecting lower bounds of I 1(1) and I 52) gives

I > —(1+7)Cy E[[[VI (k)2 (Cs Kofr—1 + [lwr — wl[2)]

—(1+ 7)01/;\/(1@ IV 7(0) 12 (Cs Koo + llwr. — will2)])”

I V

()0 [E IV OIEE (oo -+ o — wila)]

Y

~(1+1)Cu\EIV100)[3y/E [2C2KZ5_, + 2wn — wi ]

= V21 +7)CyE VT 003\ CIEZ, +E s — wil3, (54)

where the the second inequality follows Cauchy-Schwartz inequality, and the third inequality follows
Young’s inequality.

Now we consider I,. We first decompose I5 as

I = <w< ) 80,0, (50, )
< 00), (300, 18) = By, wi—r)) Yo, (500 a00))

sy

E <VJ(9k)7 (5(3%), Wr—z,) = 0(T (k) Hk—rk)) Yoy, (S(k a(k))>

s

E<VJ(9k),5(x(k)>0k )W, (k) k) — VJ(9k)>+||VJ(9k)||§o

5
We bound Iél) as

Yk <w(ek), (8(x(k),w;;) - 8(95(,6),&;;;,”)) Yo, (30k), a(k))>
T
=E <VJ(9k)7 (W)(S/(k)) - ¢(S(k))) (wi = wir,) Yo, (5(k)s a(k))>

]
> B (1900l (16(50y) — #(009)) e =il o, G a0l

> —LyCy(1+7)E|jwi —wi_r |,
> =Ly L,Cy(1+7)E|0) — Ox—r, |2
> — VLwaCp(l + W)KOakaov

where the second last inequality follows from Proposition 2]and the last inequality uses (37) as

k—1
106~ Or o < 3 6ier — il

i:k*‘l’k
k—1

= > alld(@i,wir ), (sir i)l

i=k—Ty

k—1
Z Ckk,Tka S CpKOOlka(y (55)

i:k—Tk
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‘We bound 152) as

12(2) =K <VJ(9k), (S(x(k), w;;ka) — 5(-75(19)’ Gk,Tk)) dj@k*m (S(k), a(k))>

> —E (900l [0ty wh—r,) = 8089, O0ri)| W60, (5089, a0z

2 —LvCyE ‘S(I(k)wz’i—m) = 0(2 (k) Ok )

=—LyCyE ‘7 (¢(8’(k>)Tw}277k ~ Voo, (8@)) + Vi (300) = (s(0) "Wk,

> —LyCy (YE|6() wir, = Vo, (5(1y)| +E Vi, (50) = 9509) "wir, |)

> —LvCy (7\/ E ‘fb(SEk))Twzw ~ Veoury (5’(@)‘2 + \/ BV, (50) = S(s) Twi o,
> —LyCy(147)eapp-

‘We bound 153) as
12(3) = F <VJ(9k), (S(x(k), Hk_Tk)wekfrk (S(k), a(k)) — VJ(@k)>
=E {]E [<VJ(9;€), (5(1‘(@, Gk,m)z/;gk_% (S(k), a(k)) - VJ(@k)>‘ 9]@,-,—,“ 5 HkH

—E <w(ak), E [5(x(k), Or—r Wt (508, a(k))’ ek_m,ek} - VJ(Gk)>

- E<VJ(9k),

S(k) PO _ry
a‘(k)Nﬂ-ekfﬂ'k

where we used the fact that

E [5($(k), Ok—r)Vor ., (k) a(k))‘ Or—r. ek}

= E
S(k)NH'gk—Tk
(k)T

, Z
S(y~P

S(k) PO _7
A(k) T _ry

= E
S(k) MO 7
A(k) T _ry

S(k) PO 7
A(k) T _ry.

(7"(5(19)’ agkys S(ry) + VVwek_Tk (S())

( E {T(S(k),a(k),sl(k)) + ’Yvﬂek,,_

7
s(k)fv’P

(kaqk (s(kys aky) = Vo, (S(k))) Vo, (S(k)» (k)

Arg, . (Stk)s a)Vor ., (3(k)> ar))

Vi, (S<k>)) Vo, (5(k)> Ak))

. (s00)]

Ok 7., 914 .

A Z

TOk—ry,

[Aka,Tk (8(ky> () or_+, (S(k)s a(k))} - VJ(9k)>

Or—ry» 9k:|

(S(@)) Vor_r, (5(k)> Ak))

9k—7k79k}

éccording to [6], if ug is the stationary distribution of an artificial MDP with transition kernel
P(:|s,a) and policy 7y, then we have g(-) = dg(+). Therefore, it follows that

I =E <VJ(0k),

=E <VJ(9k)» B [Amk% (8(ky> () )Vor -, (S(k), Ak))

S(k) MO,
A(k) T O rp.

Sky~doy
A(R)NT O 7).

> —E[IVIO)2lIVI(Ok—r,) — VI (Ok)2]
> —LyL;jE|0i—r, — Okll2
> —LyL;CpKoar—k,,
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[A%Tk (8(k)> () )Vor -, (S(k), ak))

0

0

krk,ﬂk] — VJ(Hk)>

krk,ﬂk] — VJ(Gk)>

)

ﬂk—m,@k]
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where the second last inequality is due to L ;-Lipschitz of policy gradient shown in Proposition|[I]
and the last inequality follows (53).

Collecting lower bounds of I. ) I2(2) and 12(3) gives

I > —D1Koop—gy — LvCy(1 + 7)€app, (56)
where constant Dy := Ly L,,Cy,Cp(1 +v) + Ly L ;C,,.
Substituting and (56) into yields

E[T(01)] > ELI(00)] — onV/2(1+7)Co[E VT 00)13y/CFREE, +E llon — i

L
— aleKoak,KO — akLVC’w(l + ’y)eapp + akHVJ(Hk)H% — %Cgai (57)

Dividing both sides of by ay, then rearranging and taking summation on both sides give

K K K
1 L,
Z E|VJ(0)3 < Z ar (E[J(Ok41)] — E[J(6k)]) + Z (DlKOOék—KO + ;Cﬁak)
k=Ko k=Ko k=Ko
13 14

K
VR +9)Cs 3 EIVI00)13\/CFRE5 + T wx — wil3

k}:Ko
Is
+ (K — Ko+ 1)(1 + )Ly Cyéqpp, (58)
‘We bound I5 as
Ko
=Y —(E[J(Or1)] —E[J(0k)])
kepl Ok
K 1 1 1 1
> — — )E[J(60)] - E [J (@) + — E[J (0 11)]
pente \OE-1 Ok QM -1 QK
1
< —E[J(0x41)]
oK
’rmax 1
< fax  © o1
S O(K°), (59

where the first inequality is due to the oy, is monotonic decreasing and positive, and last inequality is
due to Vr, (s) < 422x forany s € S and my.

We bound 1, as

K I K—Kq I
_ J ~2 J 2 . 1o
[4 = kZK <D1Koak—K0 + 2Cpak> S ];) (DlK()Oék + QCpak) — O(KOK 1)'
=Ky =

We bound I5 as

K
S VEIVIO0I3/CRRZ5, +E o — wil3

Iy =
k=M
K K
<\ D EIVIO)I3,| D (C3K3BE ., +Ellwr — wil3)
k=M k=M
K K K
= D EIVIOR)I3,|C3K3 D> B a+ D Ellwr —wil3, (60)
k=Mg k=Mg k=M
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where the first inequality follows Cauchy-Schwartz inequality. In (60), we have

K— Mg K—Mg
Z Bia < Z Bi = Z (1 + k)72 = O(K'7%72).
k=M k=0

Substituting the last equality into @ gives

K
L<,| S EIVI0)IE,|OEE 27) + 3 Ellwy — w3 ©61)
]{::MK k:MK

Dividing both sides of (57) by K — K + 1 and collecting upper bounds of I5, I, and I give
1

KRyt i > BIVIOIE
k=K,
V2(14+9)Cy | = , Yo K »
S K oTaa1\ 2 EIVIOIE, [ OUGK ) + 5 Ellwr — w3
k‘=KU kI=K(J
1 K,
+ O (Klo—l) +0 <K01> + O(eqapp)- 62)
Define the following functions
1 K
-+ 2
LK) = =1 > EVI0k)3,
k=K,
1 K
& - - 2 11-202 2
T5(K) R rl (0(1{01{ )+sz E ||wi wk||2>,
=Ro

1 Ky
TG(K) = O ([(1—01> + O <K‘71) + O(ﬁapp).
Then (BT)) can be rewritten as

Ty(K) < T(K) + V2(1 + ) Cy v/ Tu(K)/T5(K).

Solving this quadratic inequality in terms of 74 (K’), we obtain

Ty(K) < 2T5(K) +4(1 +7)*C3T5(K), (63)
which implies
1 K
- 2
R aN]

1 K K2 1 K
_ 0 0 k2
=0 <K1_”1> o (K”1> o <K2‘72> O (K—K0+ 1 k;( Ejw wkz) + O(€app)

‘We further have

1 X Ko—1 K
2 2 EIVIO0IE < + (Z Ly + > IEHVJ(ak)H%)
k=1 k=Ko
K L K-Ko+1 1 X
_ Ko—1 2 — 0 2
0
1 K
— 2
- ( )+ (K — ZEnwwk)z)
k=Ko
K
IE 4
( KR ||w<9k>||2> (64)
which completes the proof. O
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B.3 PROOF OF THEOREM [3]

Given the definition in section[B.I] we now give the convergence proof of critic update in Algorithm
[T} with linear function approximation and Markovian sampling.

By following the derivation of (38), we have

* * a *
E |lwis1 — wpp 3 < (1 - 208k) E ||lwx — w5 + QBk(Clﬁ—: + CaKoBr—r,) Ellwr — willy
+ 2B E {wi — wit, g((1y, wi) — G0k, wi)) + CyBr, (65)

— o 12 2 12 ah _ o2 2 2t
where C; := CpL.,, Cy == C5(1 4+ ) and Cy := 2C5 + 2L;,C; maxy,) = 205 +2L,Ch 3.
k 2

Now we consider the third item in the last inequality. For some m € NT, we define M :=

(Ko + 1)m + K. Following Lemmad](to be presented in Sec. [C.1), for some d,,, < M and positive
constants Cy, C5, Cg, C7, we have

E (wi — wi, 9(2 k), wi) — GOk, wi))
dm
< CuE |0k = Ox-a,ll2+C5 Y El0k—s — O_a,ll2 + Co Ellwg — wi—a,,|l2 + Crrp™

i:Tk

k—1 dm—1 k—i—1 k—1

<Ci Y Elfia—6il24+Cs > > Elfj1—0ila+Cs > Elwiyr —willa + Crrp™ !
i=k—d i=i j=k—dpn i=k—d,
k—1 dp—1 k—i—1 k-1

< Cy a,Cp + Cs Z Z a;C, + Cg Z BiCs + Crrp™ 1
i=k—dm =Tk j=k—dm i=k—dm
k-1 d—1 k—i—1 k-1

< Cyo—q,, Z Cp + Csop—q,, Z Z Cp + C6Br—ad,, Z Cs + Crrp™*

i=k—dm i=Ty j=k—dm i=k—d,
S O4dmcpak—dm + 05(dm - Tk,>2cpak—dm + CdeCtsﬁk—dm + C7K/pm71
< (CaM + CsM?) Cpag—ns + CeMCyBy—ns + Crrp™ ™, (66)

where the third last inequality is due to the monotonicity of step size, and the last inequality is due to
7. >0andd,, < M.

Further letting m = my which is defined in (20) yields

E <wk —wi, 9(T (), wr) — ?(Hk,wk»

= (CsMk + Cs M3 ) Cpop—naye + CeCs Mg Bo—nrye + Criep™ !

< (CaM + C5M7) Cpoi—nrye + C6Cs Mg Bo—nie + Crak, (67)
where M = (Ko + 1)mg + K, and the last inequality follows the definition of m .
Substituting into (63)), then rearranging and summing up both sides over k = M, ..., K yield

K K K
1
2N Bl —wilz < D o (Bl il Ellorn —winlly) 405 D A

k=M k=M k=M
Il 12
K
+2 Z ((CaMg + Cs M) Cpa—niye + CoCs My Br—naye + Crov)
k=M
I3
K o
+ 2 Z (Cl +02KOBkK0)]EHWk —WZHQ. (68)
My Br

Iy
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where the order of I3, I, and I, have already been given by {@3)), (44) and [@8) respectively. We
bound I3 as

K K K
I3 = (C4MK + O5M12() Cp Z ag + CeCs My Z Bk + Craxk Z 1
k=M k=M k=M

170'1 170'2

K
< (C4MK+C'5M[2<) Cpcll JngC&MKCzl +CranK(1+ K)™ 7t
— 01 — 02

=0 ((K3log® K)K'™7') + O ((Kolog K)K'~°2) | (69)
where the last inequality follows from the integration rule Z hea k77 < b , and the last equality
isdue to O(Mk) = O(Komg) = O(Kplog K).

Collecting the upper bounds of I1, I, I5 and I4, and dividing both sides of (68) by K — My + 1
yield
K

1 2
2 > Ellwr — will,
K—Mg+1 My
VO (I2oamo+1) 4 O (KoK —o+1) + O (KK 1-202) 5 ,
< Eflwr = will;
K—Mg+1 Ny
1 K2log? K Kolog K
o) o () vo(t228).
Similar to the derivation of (50), implies
Y B -l
F7 Y = Well2
K—Mg+1 iy

_ 1 1 KglogK Koylog K
-0 () +0 (g ) o (i) + 0 () +o (5525

Similar to (BT), we have

K K
1 Koylo K
KZEHwszn%o(Og +0(K > Enwsz@)
k=1 12 Mg
K
:O<K T Ellwk—wkHQ) (71)
k= 5%
which completes the proof. O

B.4 PROOF OF THEOREM[4]

Given the definition in section[B.2] we now give the convergence proof of actor update in Algorithm
[T) with linear value function approximation and Markovian sampling method.

By following the derivation of (53], we have

E[J(0k41)] = E[J(0k)] + ar E <VJ(9;€) (S(m(k Whery ) — (5(.’L‘(k), w,’;)) ’l/)gkfm (S(k), a(k))>

I

. . L
+ ar E <VJ(9k), (5(1‘(@, wk)wek_Tk (S(k), a(k))> —%CZQ)OZ%. (72)
L 12 ]
The item I; can be bounded by following (54) as
I > V21 +7)Cy[E VT 003 /CZKZ5, +E ex — will3 (73)
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Next we consider I,. We first decompose it as
I = <VJ(9k) (1), wi) Vo, (51 a(k))>
=K <VJ 9k ( :E(k), wk (:E(k), Ok)) ’L/Jgk_rk (S(k), a(k.))>

s0

E(VI(00), 8@y, 0600, (s05009) = VIOR)) +E[VI@) 3. (%)

?

For some m € N*, define M := (K, + 1)m + Ky. Following Lemma for some d,,, < M and
positive constants Dy, D3, Dy, Ds, 12(1) can be bounded as

I2(1) =K <VJ(9k)7 (8(1‘(@,0.}2) — 6($(k)70k)> ’l/lak_fk (s(k),a(k))>
k—T1k
> DB ||6k—r, — Ok—a,ll2— DsE|0k — 6x_a,llz—Ds Y E[6i —6c_a,ll2
i=k—dm

— Dskp™ ! — Ly Cy(1 + 7)eapp
> —Da(dy, — 1) Cpak—a,, — D3dimCpag—a,, — Di(dm — 7)?Cpag—_a,,
— Dsrp™ " — (14 7) Ly Cyéapp, (75)

where the derivation of the last inequality is similar to that of (66). By setting m = m in (75), and
following the fact that d,,,,, < Mg and 7, > 0, we have

12(1) > —DoMpCpag—rrye — DaMgCpag—nrye — DaMpCpag—nrye — Dskip™ ™1 — (14 )Ly Cypéapp
— ((DQ + Dg)CpMK + D4CpM12() O — My — D5,‘ime_1 — (1 + ’Y)chwﬁlpp
— ((D2 + D3)CyMg + DsCpyMp) - nrye — Dsae — (14 7) Ly Cyéapp, (76)

where the last inequality is due to the definition of m .

v

Following Lemma@ for some positive constants Dg, D7 and Dg, we bound 152) as

2= <VJ(9k) 5(x(hy, Ok )P0, ., (5(k), A()) — VJ(&k)>

dm
> —DeE||0k—r, — Ok—a,,ll2 — D7 E |0 — Or—q,,|2 — Ds Z E ||0k—i — Ok—a,,|l2 — Dorp™ .
=T}
Similar to the derivation of (76), we have
1Y > — (DsCy My + D7Cp My + DsCy M%) ag_ar,e — Doorgc. (77)

Collecting the lower bounds of 3" and I} yields
Iy > —Dgag—nre — (Ds + Do)ag — (1 +v) Ly Cyeqpp + E HVJ(@]C)H%, (78)
where we define Dy = C,(Dy + Dg)M3 + Cp(D2 + D3 + Dg + D7) M for brevity.

Substituting (73) and (78) into (72) yields
E[T(0k41)] > ET(00)] — aav2(1+7)Co B [V100)[31/CIRZF_, +E llon — w3

L
=L ai.

— O (DKakrfMK (D5 —‘v‘Dg)OéK) —ak(l+’y)LVC¢eapp—&—akEHVJ(Qk)HQ 5 “p

Rearranging and dividing both sides by a, yield

1 L
E[[VJ(6)3 < o (E[J(Or+1)] — E[J(0)]) + Drar—nr, + (Ds + Do)ar + 7‘]0;2;0%

+VE(1+ )y B[V (00)[3/CIRZ7_y +E g — w3 + (1+7) Ly Cscapp.
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Taking summation gives

K K
1
D EIVIOIE< D — (E[J(Or+1)] — E[J(0)])
k=M k=Mg "
I3
= L
+ Z (DKO%—JMK + ?JCZOU@ + (D5 + Dg)O&K>
k=Mgk

Iy

K
FVEL+C, S \EIVIOI3/CRR3G, +E ur — w3
k=M
L - '
+ (K = Mg + 1)(1 +7) Ly Cyeapp. (719)
in which the upper bounds of I3 and I have already been given by (59) and respectively.

We bound 1, as

L
L= Y (DKOékMK + 7‘]02041@ + (D5 + Dg)OéK>

(]

L
(DKak—MK + %Cgak—MK + (D5 + Dg)OéK)

k=Mg
I K
= DK—F;CI%) Z (lk_MK+(D5+D9)(K—MK+1)O(K
k=Mgk

K—-Mg

Z ar + (D5 + Do) (K — Mg + 1)ag
k=0

L
< (DK+ "02> DK 4 ¢y (Ds + Do) (K + 1)1

1-— g1
=0 ((K§log® K)K'~7") (80)
where the last inequality uses Zzza k=7 < %, and the last equality is due to the fact that
O(Dg) = O(M% + Mg) = O(Komg)? + Komg) = O(K2log” K).
Substituting the upper bounds of I3, I, and I5 into (79), and dividing both sides by K — My + 1 give

K
1
o1 2 EIVJ@nI
K — Mg +1 vl
V2(1+7)C K K )
< YALEDCY | S™ B9 (00)[3, | OUREKI27) 4+ 3" B k. — i
K k=M Py
1 KZlog® K
+0 (Kl_m) +0 <0K0g1> + Oleapy). 81)
Following the similar steps of those in (63)), essentially implies
S el
K- Mg +1 v ®
1 K¢ log® K K2 1 K o
= (Kl—gl ) +0 ([(01 +0 K202 +0 mk% E Hwk - w9k||2 +O(5app)-
=MK
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Similar to (64), we have

K K
1 K 1ogK
& LRIV =0 (F ( LY RV ||2>
k=1 k=Mg
K
:0<K Z E|[V.J(6r) ||2>
=M
which completes the proof. O

C SUPPORTING LEMMAS

C.1 SUPPORTING LEMMAS FOR THEOREM 3]

Lemmad. Foranym > land k > (Ko + 1)m + Ko + 1, we have

dm
E (wi, — w;, , 9(x k), wr) — G0k, wi)) < CoE |0 — O, |2 + Cs Z E||0k—i — Ok—a,. 2

1=Tk
+ C6 B |lwg — Wk—a,, ||2 + Crep™ 1,

where d,, < (Ko + 1)m + Ko, and Cy := 2CsL,, + 4R, C5|A|L(1 4 log,, K1+ (1—p) Y,
C5 = 4R, Cs|A|L, and Cs :== 4(1 + )R, + 2Cs, C7 == 8R,,Cs.

Proof. Consider the collection of random samples {(,—k,—1), Z(k—Ko)» - Z(k) }- SUPPOSE T (y) is
sampled by worker n, then due to Assumption {Z(h—Ko—1)» T(k—Ko)s -+ T(k—1) } Will contain at
least another sample drawn by worker n. Therefore, {2 (1 (Ko+1)m)» T(k—(Ko+1)m+1)» -+ L(k—1) }
will contain at least m samples from worker n.

Consider the Markov chain formed by m + 1 samples in {:z: —(Ko+1)m)s T(k—(Ko+1)m+1)» s T(k) }:

Ok —dm P Ok—dp 4 Ok—d, P Ok —dg P
Stem ——— 2 At—m > St—m+4+1 —— Qt—m+1 """ St—1 ——2 Qg1 —> St ———> At —> St+41,

where (s, at, st41) = (S(k), A(k) s(k)), and {d;}7", is some increasing sequence with dg := 7.

Suppose 6y _q4,, was used to do the ., th update, then we have z;_,, = T(k,,)- Following Assumption
we have 7., = k,, — (k — dn) < Ko. Since 2,y is in {Z—(ky+1)m), - (k) }> We have
km > k — (Ko + 1)m. Combining these two inequalities, we have

dm < (Ko + 1)m + K. (82)

Given (St—m, Gt—m, St—m+1) and 0,4, we construct an auxiliary Markov chain as that in Lemma

2

Ok—dy, Ok—dp  ~ Ok—dp  ~ P o~ Oty ~ P
Stfm—>tm_>8t mtl — = Qg1 " Sg—1 —— Qg—1 —> 5 —— Ay — 5,

For brevity, we define
Al(xv (9,&1) = <w - w‘;a g(l’, UJ) - g(evw» .
Throughout this proof, we use 0, §’, w, w’, x and Z as shorthand notations of 0y, 0;_g4, , Wk, Wk—d,,»
x; and Ty respectively.
First we decompose A;(x, 0, w) as

Aq(z,0,w) = Ar(2,0,w) — Ay (2,0, w) + Ay (2,0, w) — Ay (z,0",0)

I Iz
+ Aq(z,0 W) — A(7,0 W) + A (7,0,0) . (83)
13 I4
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We bound I; in (83) as
A1($,97u)) - Al(xve/aw) = <UJ - W;ag(wi) _g(avw» - <w - w;’ag(wi) - g(e/aw»
< |<w - w;,g(x,w) 7?(9,&)» - <w - wg/ag(x7w) 7?(035‘))”

+{w = wg, g(@,w) =96, w)) — (w — wi, gla,w) — G(O",w))|-
(84)

For the first term in (84)), we have
[(w —wg, g(z,w) = g(0,w)) — {w—wy, g(x,w) = g(0,w))| = [(wy — wp, g(,w) —g(0,w))]|
< [lws — wprll2llg(z, w) — g(6, W)l
< 2C5|wg — wprll2
< 2C5Ly [0 — 0",
where the last inequality is due to Proposition 2]

We use x ~ 6’ as shorthand notations to represent that s ~ pg/, a ~ g, 8’ ~ P. For the second
term in (84)), we have

(w = wyr, g(z,w) = g(0,w)) — (w — wy, g(z,w) — g(6',w))|
= [(w — wy, (0, w) — g(0,w))|

< w = wirll2llg (0, w) — (0, w)ll2

< 2R, [|g(0",w) — (0, w2

E, lg(@,w)] - E [g(z,w)

x~0

= 2R,

2
< 2R, sup |lg(z,w)|allte @ 70 @ P — g @ 79 @ Py

< 2R,Cs|lpe @ g @ P — pig @ w6 @ Py
= 4R, Csdry (,uo/ ® Ty @ P, g ® Ty ® ﬁ)

< AR,Cs|A|lLx(1+1og, k" 4+ (1 —p) )0 — &2,

where the third inequality follows the definition of TV norm, the second last inequality follows (30),
and the last inequality follows Lemma A.1. in [L17].

Collecting the upper bounds of the two terms in (84) yields
Iy < [2C5Ly + 4R,Cs|A| L (1 +1og, k™" + (L= p) D] [|0 — €' 2.
Next we bound E[I5] in (83) as
E[l] = E[A(z, 0 ,w) — Aq(z,0",0")]
=E (w—wp,g(z,w) = g(0,w)) - (W = wj, g(z,0') = g(¢',0"))
< E[{w - wj, g(z,w) = g(0",w)) — (w — wp, g(z,0) :
+E[(w—wh g(e,0) =90, o) = (W' —wi, g(z,0) —g(0", )] (85)
We bound the first term in (83) as
E|{w —wg, g(z,w) = 90", w)) — (w — wir, g(x,0') = g(0, &)
=E[(w - wp, g(z,w) - g(z,0’) + 7(0, ) —g(0",w))]
< 2R, (E|lg(z,w) — g(z,w")ll2 + E|[g(0', &) — g(0', w)l|2)

<28, (Ellgtew) - o)l + | B, (o] - B, lo(o,0)

)

2R, (E1G00) = 66) (w0~ + | B, [00() — 0(6)T] & - )

)

<2R, (1+ME[w-wl2+ 1 +7)E[w - o'[l2)

2
4R, (1 4+ 7)) Eljw — w'[|2-
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We bound the second term in (§3) as
E[(w = wjr, g(z, ) = g(0', ")) — (W' = wj, g(z,0") —7(0",0"))|
=E[{w—w',g(z,0") — g(0',w))]
<265 E [lw — |2
Collecting the upper bounds of the two terms in (83) yields
E[l2] < (4(1 +7)Rw +2C5) E f|lw — o'|2.
We first bound I3 as
E[I3]0", &, 8t —my1] = E[A1(2,0",0") — A1 (Z,0",0)]0", 0, St —mi1]
< |E[A (2,0, 0)|0, W, st—mi1] — E[A1(Z,0, )0, ', st—mi1]]
< sup |Aq(z, 0, w")| |P(z € |0, 0', St—mi1) — P(T € 10,0, St—m1)|| 7y

S 8Rw05dTV (]P)(:I" S '|9/7 5t—m+1)7 ]PD(5 S ’|0l7 St—m-i-l)) ) (86)
where the second last inequality follows the definition of TV norm, and the last inequality follows the
fact that

[Ax(z, 0", )] < ||lo” = wiill2llg(z, &) = G(0", )2 < 4RuCs.

By following (2I) in Lemma[2] we have
d

~ 1 -
drv (P(z € -0, st—m+1), P(T € |0, 8t—my1)) < §|A\L,r Z E [[|0x—i — Or—d,, ll2] 0", 8t—m+1] -
1=Ty
Substituting the last inequality into (86), then taking total expectation on both sides yield
dm
E[l3] < 4RuC5|A[Lx Y E||6k—i — Ox—a, [l2-
1=Tk

Next we bound 1. Define T := (5,a,5’) where 5 ~ g/, @ ~ g and 5 ~ P. It is immediate that
E[Al(fv 9/7 w/)‘9/7 wla 5t7m+1] = <w/ - w;/v E[g(f7 w/)|9/7 w’, Stferl] - g(elv w/)>
= (W' —wg,g(0,w') —g(¢'",w)) = 0. (87)
Then we have
B[40, 8t —mi1] = E[A1(Z,0",0") — A (Z,0",0)|0, ', 8¢ 1]
< |E[A1(Z,0, )0, st—mi1] — E[A1(Z, 0, 0|0, ', st mat]]
< sup A1 (2,0, W) [[P(Z € [0, st—mt1) —P(@ € |0, $t—m+1) |y

< 8R,Csdry (P(Z € -0, 8t—m+1),P(T € -|0', $4—m41))

= 8R.Csdry (P(@ €10/, 5i-mi1)s o © 700 &P ) (88)
where the second inequality follows the definition of TV norm, and the third inequality follows (7).

The auxiliary Markov chain with policy 7y starts from initial state s¢_ 1, and S; is the (m — 1)th
state on the chain. Following Lemma[I] we have:

dry (P(i €10, Stmir), e @ Ty @ 75)

= drv (P((gtaatagt-i-l) €10, 8t my1) , por @ Tor ®ﬁ) < rp™ 1.
Substituting the last inequality into (88) and taking total expectation on both sides yield
E[I4] < 8R,Csrp™ .

Taking total expectation on (83) and collecting bounds of I3, I, I5, I4 yield
d

E[A(2,0,w)] < C4E||0k = Ox—a,, |2+ C5 > E|0k—i — Ok—a,, |12

i:Tk
+ Cs E ||wr, — wi—a,, |l2 + Crep™ 1,
where Cy = 2C5L,, + 4R,Cs|A|L(1 +log, k™' + (1 — p)~'), Cs = 4R,Cs|A|Lr, Cs =
A(1 + 7)R., + 2C5 and Cy := 8R,Cj. O
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C.2 SUPPORTING LEMMAS FOR THEOREM [4]

Lemma 5. Foranym > land k > (Ko + 1)m + Ko + 1, we have

E <VJ(9k)7 (5(w(k),w/§) = (), 9k)) Vor_r, (3(0); a(k))> 2 ~DoE|0k-7, — Or-dnll2

d?n
~ D3E |6k — Ok—a,l2— D1 Y El0k—i = Oka,ll2 — Dsrp™ " = Ly Cy (1 +7)€app,
1=Tk
where Dy = 2LyL,Cs, D3 = (20sCyL;+ LyCy(Ly+Lyv)(1+7)), Dy =

2chw05|A|Lﬂ- and D5 = 4LVC¢C5.

Proof. For the worker that contributes to the kth update, we construct its Markov chain:

O — dm P Ok — (. do
St—m ——— Qt—m, —> St—m+1 —>at m41" " St—1 —> ag—1 —> St ——— ag —> St4+1,

where (s¢, as, 5¢41) = (S, Gk, s(k)), and {d; }'" is some increasing sequence with do := 7. By
in Lemmafd] we have d,,, < (Ko + 1)m + Ko.

Given (S¢—m, Qt—m, St—m+1) and O_4 _, we construct an auxiliary Markov chain:

O P Ok—dpy  ~ ~ Ok—dp,  ~ P o~ Ohdpyy ~ P~
St—m —> At—m — St— m+1 — ay— m—+1"° *St—1 I ag—1 — St m— ag — St+1'

First we have
<w<ok>, (B, wi) = 0(wesy, 00)) Yo, (s501)))
< ( T (), wi) — 0(x (k)ﬁk)) (wek,%(s(k’ k) — Vor_a,, (S(k), @ ()))>
+(v <9k>7(< 20> 3) = 02y, 0n) ) Yo, (309 aw) ) - (89)
We first bound the fist term in (89) as

<VJ(‘91€), (3(33(1@)7602) —5(%‘(1@)7‘%)) (Wk o (805 Ak)) — Vor_a,, (S(h)s a(k)))>

> =T (0n) 210 (2 k), wi) = (@ 0¥, (Sk)> Ar)) = Yor_,, (Sys a2

> (102 (18, wi) |+ 18, 00)1) o, (505): aity) = Vo, (5057 @)z

> Ly (I8, @)l + 180, 00)1) [, (309 a0) = You_a,, (50095 a1)]l2

> —2Lv Cs|[Ye, ., (s(k)s ar) = Yor_a,, (S0, @) l2

> 2Ly LyCs|0k—r, — Ok—a,. |2, (90)

where the last inequality follows Assumption [3|and second last inequality follows

[0z, wp)| < (@) + Al e )lzlwhllz + 1 $(s) 2l ll2 < Tmax + (1 +7) R < Cs,
Tmax
16z, 0)] < [ (@) + Vg ()] 4 Vg ()] < Pimax + (1 +79) 7= S S Cs.

Substituting (90) into (89) gives
(V0. (5<x<k>7wz> — (21, 00)) Yo, (5019, A1) )

> 2Ly LyCs |0k, — Ok—d,y, ll2 + <VJ(91¢)7 (5(96(1@),%’2) — (), 9k)) Vor_a,, (Sk)» a(k))> .
91)

Then we start to bound the second term in (9T). For brevity, we define

Bs(x,6) = (VI(0), (§(z,w5) — 6(,6)) Yo, (5,0))
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In the following proof, we use 6, ', wy, wys,  and T as shorthand notations for 0y, Ox_q,,, W},
wi_4 ,x; and T, respectively. We also define T := (5,@,3’), where S ~ pg/, @ ~ g and 3 ~ P.

We decompose the second term in (9T) as
As(z,0) = Ag(z,0) — Ao(z, 9/) + Aq(z, 6‘/) — Ay(z, 0/) + A (z, 9’) — Ay(T, 9/) + Aq (T, 9/) .
I Is I3 Iy

We bound the term [; as
I = <w(9), (S(x,w;;) - 5(39,9)) wo,(s,a)> - <w(9/), (S(x,wg,) - 5@,9’)) Do (s,a)>
= (VI0), (3(w,w5) = 8(2.0)) Yo (s5,0) ) = (VIO), () = 0(2,0)) o (5.))

+ <VJ(9’), (S(a:,w;) — §(z, 9)) e a)> . <w(9'), (S(J;,w;/) —§(x, 9/)) ¢9,(s,a)> :
For the first term in I, we have

(V0), (8(w,w5) = 8(2,0)) Yor(s,0)) = (VIO), (8(z,w5) — 8(2,0)) Yor(5,0))
(VI(0) = V0, (3, w5) = 8(2,0)) s (s,) )
> —|[VJ(0) = VI(O)|2116(z, wp) — 6(x, 0)|2[lvber (5, a) |2
> —2C5Cy|[VJ(0) = VIOl
> —2C5Cy L]0 — 0|2,

where the last inequality is due to the L ;-Lipschitz of policy gradient shown in Proposition [T}

For the second term in I, we have

(v, (8(w,w5) = 6(2,0)) v (s,0) ) = (VI©), (8w wi) = 8(2,6)) o (s,a))
(V) (3(w,w7) = . wi) +3(w,0) = 8(z,6) ) Yo (s,a) )

Ly Cy |8, wp) = b(w, ) + 8(2,6') = 3(2,0)|

—LyCy [yo(s) " (wy —wip) + 6(8) T (@i —w5) + Vi (8) = YWy (8') + Vg (8) = Vi, ()]
—LvCy (Vllws = wirll2 + llwg: — willa + Vi, (87) = Virg ()] + [Virg (5) = Vi, (5)])
—LyCy (YLu[l0 = 'l + Lo |6 = 'll2 + Ly |6 = &l|2 + Lv 10 — 6']|)

—LyCy (Lo + Ly) (1 +7)[0 = 02,

where the last inequality is due to the L,,-Lipschitz continuity of wj shown in Proposition |2| and
Ly -Lipschitz continuity of V;,(s) shown in Lemma Collecting the upper bounds of I; yields

Iy > = (2C5Cy Ly + Ly Cy (L + Ly ) (1 + 7)) 10 — 6'|2.
First we bound I5 as

E[Igwl, St—m—i-l] =E [AQ(I, 9/) - AQ(E, 0/)|0/, St—m-&-l}

IV IV IV IV

> - |]E [AQ (x’ 0/)| 0/7 St*erl] —-E [AQ (57 9/)| 0/7 st7m+1]|

> — sup | Ao, 0)| [P € 10", 51-ms1) — P(F € 10, 51-ms1) gy

> _4LVC¢C<SCZTV (P(m € '|(9/, 3t—m+1)7 P(% S "(9/, 5t—m+1))
dm

> —2Ly CyCslAlLx > E [[0k—i = Ox—a,, |12 0, 5-ms1] (92)
=T}

where the second inequality is due to the definition of TV norm, the last inequality follows (1)) in
Lemma 2] and the second last inequality follows the fact that

|As(,8)] < | VI(O)218(2, w5) — 6z, 0)llver (5, 0) |2 < 2Ly C5Cy. (93)
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Taking total expectation on both sides of (92)) yields
dm
E[L5] > —2LVC¢05|A|L7T Z E||0k—; — Ok—a

T=T}

2.

m

Next we bound I3 as
E[Igwl, St—’m—i-l] =E [AQ (557 9/) - AQ (fa 0/)| 9/’ St—nH—l]

> —|E [A2(F,0)] 0, st-m+1] — E [Az(T,0)]0', st—m1]]
> —sup [Ag(z, )| |P(Z € 10", 8t—m+1) —P(T € |0/, 8t—ms1)llpy
> —ALyCyCadry (B(F € 10, s1-m1), 10 @ 79 @ P) (94)

where the second inequality is due to the definition of TV norm, and the last inequality follows (93).
The auxiliary Markov chain with policy 7y starts from initial state s¢— 1, and s; is the (m — 1)th
state on the chain. Following Lemma [I] we have:

dry (P €10/, s1-mi1)s por @ 700 @) = dry (P (1, 5i1) € 10 50-msn) pior @ 70 @ P)

m—1

< Kkp
Substituting the last inequality into (94) and taking total expectation on both sides yield
E[l3] > —4Ly CyCsrp™ !
‘We bound 1, as

)
> LyCyE Hs(z, wy) — 8(z.9)
[

) + Vi, (3) — 6(3) "wp || 0]
) "wir = Vi, ()| '] +E [|Vi,, (3) — 6(5) "wip |
(

vV
|
h

<
&
>
=
<
@l

o)

AV
|
h
<
S
N
=
&=
S
)
~
&£
<
=~
<
N
e
<
+
Q
&=
5
=
SN
\Cf/\
4‘
&
03 *
)
<
N———

—LyvCy <v\/ E o) Twg — Ve, (37 + \/ B Vo, (5) - ¢(S)Tw25/|2>

5 opgr S~ g

v

=Ly Cy(1 +7)€app
where the second last inequality follows Jensen’s inequality.
Taking total expectation on both sides of (]zf[), and collecting lower bounds of I, I5, I3 and 1 yield

E <VJ(91¢), (S(I(k)MZ) - 5(95(1@7910) Yo, ., (S(k)7a(k))>
d

> Dy B |6k —r, — Ok—d, |2 — DsE |0k — 6x—a, |2 — Ds Y E|0s—i — O—a,ll2
P=T}
- DSKpm_l - LVCw(l + 'Y)eap;m
where Dy = 2LyLyCs, D3 = (2C5CyLyj+ LyCy(Ly,+ Lv)(1+7)), Dy =
2LVC’¢C§|A|L7, and D5 = 4ch¢C5. O]

Lemma 6. Foranym > land k > (Ko + 1)m + Ko + 1, we have

E <VJ(91<)7 6(2 k), O) Vo, ., (S(k) A(k)) — VJ(9k)>
dm
> —D6E|0k—r, —Ok—a,,ll2 — D7 E||0k — Ok—aq,,[l2 — Ds Z E[|0k—i — Ok—ad,,|l2 — Dorp™ ",

’i:Tk

where d, < (Ko + 1)m + Ko, D¢ = LyCsLy, D7 == C,L; + (1 +v)L}Cy + 2Ly Ly,
Ds == Ly Cy|A|Ly and Dy == 2Ly C,,
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Proof. For the worker that contributes to the kth update, we construct its Markov chain:

Ok —dp, P Ok—dp, 1 Ok —dy P Ox—dy P
Stem ——7 Qt—m —7 St—m+41 —7 Qt—m+1 """ St—1 ——2 Qt—1 —> St ———> At —7 St+1,

where (¢, ar, St+1) = (S(k), A(k)» S(y))» and {d; }L¢ is some increasing sequence with do = 7. By
in Lemmafd] we have d,,, < (Ko + 1)m + Ko.

Given (S¢—m, Gt—m, St—m+1) and 0_q, , we construct an auxiliary Markov chain:

O P Ok—dp,  ~ ~ Ok—dp,  ~ P o~ Ohdyy ~ P~
St—m —> At—m — St— m+1 EE— Qp— m—+1 " *St—1 — ag—1 — St — Qg — st+1'

First we have
(VI00). 8wy, 0o, (509 a) = VI (600))

= <VJ(9k)>5(x(k)a9k) (#fexwk (8(k)> aky) — Yoy, (S(k),a(k)))>
+ <VJ(9k), 5($(k), Gk)t/}gkidm (S(k)» a(k)) — VJ(@]C)> . (95)

We bound the first term in (93) as

VJ(ak) S(2 k), Ok) (7/’9;97%(5(1«)’“(@) - ¢0k7dm(5(k)>a(k)))>
—[IVIOk)lo 10(z k), Ok ) l2l1¥0s ., (S(k)s @) — Vor_a,, (k) ary) |2
=Ly |[0(z ), Ok)ll2l1V0, ., (S(k)s @) — Yoy, (Sk)» ar)) 2
—Ly Cs||ve, ., (S(k) ak)) = Vor_a,, (Sk)s a(i))ll2
—LyCsLyl|0k—r, — Ok—a, 2, (96)

P

\\/ I\/ I\/I

where the last inequality follows Assumption[3] and the second last inequality follows the fact that

rma,x
16(2, 0)] < [r(@)| + 7| Vary ()] + [Virg (8)] < Pana + (1 + N, <G

Substituting (96) into (O3] gives
<VJ(9k)7 6(@ (), Ok ) Vo, ., (S(k)s a(i)) — VJ(9k)>
> —LyCsLy|0k—r, — Or—a,ll2 + (VI (Ok),6(x ), Ok )06, _u,, (S)> ary) — VI (Ok)) . (97)
Then we start to bound the second term in (97). For brevity, we define
Ag(x,0) = (VJ(0),0(x,0),_, (s,a)—VJ(0)).

Throughout the following proof, we use 6, §’, x and ¥ as shorthand notations of 0y, 0y _4, , x; and
T, respectively.
We decompose As(x, d) as

Ag(ﬂ?, 9) = Ag(l’, 9) — Ag(l’, 9/) + Ag(l’, 9’) - A3(f, 9/) + A3(f, 9/) .

I I I3
We first bound I; as
I = |As(2,0) — As(z,0')|
= [(VJ(0),6(z,0)¢ (s,a)) — [VIO)I5 = (VI (O'),8(x, 0 e (5,a)) + [[VI(0)]3]
< (VJ(8),6(x, 0)ge (s,a)) — (VI(0),8(z, 0" (s,a))] + [[IV ()3 — IV I(O)]3]
< [(VJ(0),0(x,0)ve (s,a)) — (VI(O'),6(x,0") e (s,0))| + VI () + VI(O)[2]|VI () —
< [(VJ(0),0(x, 0)vo (s,a)) — (VI(0'),6(x,0 ) g (s, a))| + 2Ly Ly[|0 — 0’2, (98)
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where the last equality is due to Ly -Lipschitz of value function and L ;-Lipschitz of policy gradient.
We bound the first term in (98) as

(V.7(0), 6(, Ok (s, @) — (VI(0'), 8(, 8o (5, 0))]
< [(VI(0), 8z, 6)0 (s, a)) — (VI (8), 3z, 8 (5, 0))]
+ [(VT(9), (2,0 Yo (5. 0)) — (VI(8'), 8(x, 0 Vs (s, )
— [(VJ(6), (5(,0) — (x,6')) v (5, )| + [(VI(8) — VI(6), 8(ax, 0 b (s, )|
< Ly Cy [6(z,0) = 6(x,6)| + Cp|[ VI (6) = VI (6')]]2
= Ly Cy [Y(Viry (8) = Vi, (8) + Viry, (8) = Viry ()| + Gl VI (8) = VI (6)]|2
< LyCy (7 [V () = Vi ()] 4 Vg (5) = Vo (5)]) + ClIVT(9) = VI(0)]
< LyCy (Vv |0 = 0'la + Ly |6 = 6]) + Cp L 16 — 02
= (CpLy+ (1 +7)L3Cy) |0 — 0|2
Substituting the above inequality into (98) gives the lower bound of I;:
I > — (CpLy+ (1 +7)L3Cy + 2Ly Ly) || — 0'|2.
First we bound I as
E[L]0', st—mi1] = E[As(z,0") — Az(2,0)|0, 8¢ —ms1]

2> = |]E [A3 (l‘, 9/)|9/7 St*m+1} —-E [AS(E7 0/)|0/’ St*erlH

> — sup | Ao, 8)] B € 10", 51msn) — B € 18 50-ms)lly

> _2LV(Cp + LV)dTV (P(Jj € '|0/7 St—m—&-l)ap(% S '|9/, St—7n+1))
dm

> —Ly(Cp+ Lv)| ALz Y B ([6k—i — Ok—a,. |20, st-msa],  (99)
=T}

where the second inequality is due to the definition of TV norm, the last inequality is due to ZI) in
Lemmal[2] and thesecond last inequality follows the fact that

|As(@,0)] < [IVI(O)ll2 (l0(2,0)¢0, ., (5,02 + VI (O)ll2) < Ly (Cp + Ly).  (100)
Taking total expectation on both sides of (99) yields

dm
E[l5] > —Ly(Cp+ Ly)| ALz > E[|0k—i — Ox_a,, |2

i:Tk

Define 7 := (5,a,s’), where 5 ~ dg/, @ ~ mg: and 5’ ~ P. Then we have
E[A3(Z, 0|0, 8t —my1] = E[(VI(0),0(Z,0 )be (53,a) — VI(0)) 0, 8t —m1]
=(VJ(O),E[6(Z,0 ) (5,a)|0, st—ms1] — VI(0))
={(VJ(),VJ(O)-VJO)) =0.
Therefore, we bound I3 as
E[I5]0", st—m+1] = E[A3(Z,0") — Az(T,0)|0’, 8¢ —m1]

Z - |]E [A3(E, 0/)|0/, St—m—&-l} — ]E [A3(§, 9/)|0/, St—m-‘rlH
> —sup [As(2,0)| |P(@ € |0/, st—mr1) = P@ € |0, st—mt1) Iy
2 —2LV(Cp + LV)dTV (P(% c ‘|9/, 5t7m+1)7 ]P)(f S '|0/, St7m+1))

—2Ly(C,y + Ly )dry (IP’(% € |0, $0—mp1),dor © T @ 73)

= =2Ly(Cy + Ly)dry (P € 10,510 ms1)s i @ g @P)  (101)

where the second inequality follows the definition of total variation norm, and the third inequality
follows (TOO0). The last equality is due to the fact shown by [6] that p¢(-) = dg(-), where g is the

stationary distribution of an artificial MDP with transition kernel P(-|s, a) and policy 7y:.
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The auxiliary Markov chain with policy 7y starts from initial state s¢— 1, and s; is the (m — 1)th
state on the chain. Following Lemma[I] we have:

drv (P €10/, s1-mi1), por @ 700 @) = dry (P (0, 5i1) € 10 50-msn) pior @ 7 @ P)

m—1

< Kkp
Substituting the last inequality into (T0T)) and taking total expectation on both sides yield
E[I3] > —2Ly(Cp, + Ly )kp™ "

Taking total expectation on Ag(z, ) and collecting lower bounds of I, I, I3 yield

E[As(z,0)] > — (CpLy + (14+7)L{Cy + 2Ly Ly) B0 — Ok—aq,, |2
dm
— Ly(Cp+ L)ALz Y E||0k—i — Oka,,ll2 — 2Ly (Cp + Ly )p™ "

i:Tk-

Taking total expectation on and substituting the above inequality into it yield

E <VJ(91<)’ 6(@(k), Ok )0y, (Skys aqy) — VJ(9k)>
dpn

> —D6E |0k, = Ok—d,, 2 — Dz B0k — 0x—a,, |2 — Ds > _ E0k—i — Ok_a,, |l — Dorp™ ",
i:Tk

where Dg = ch(;Lw, D7 = C’pLJ + (1 + ’7)L%C¢ + 2Ly Ly, Dg := Lv(Cp + Lv)|A|L7T,
Dg = 2LV(Cp + Lv) O

D EXPERIMENT DETAILS

Hardware device. The tests on synthetic environment and CartPole was performed in a 16-core
CPU computer. The test on Atari game was run in a 4 GPU computer.

Parameterization. For the synthetic environment, we used linear value function approximation and
tabular softmax policy [34]. For CartPole, we used a 3-layer MLP with 128 neurons and sigmoid
activation function in each layer. The first two layers are shared for both actor and critic network. For
the Atari seaquest game, we used a convolution-LSTM network. For network details, see [39].

Hyper-parameters Value
Number of workers 16
Optimizer Adam
Step size 0.00015
Batch size 20
Discount factor 0.99
Entropy coefficient 0.01
Frame size 80 x 80
Frame skip rate 4
Grayscaling Yes
Training reward clipping [-1,1]

Table 1: Hyper-parameters of A3C-TD(0) in the Atari seaquest game.

Hyper-parameters. For the synthetlc environment tests, we run Algorithm [I] with actor step size

ap = % and critic step size 8 = #])04 In tests of CartPole, we run Algorlthm with a

minibatch of 20 samples. We update the actor network with a step size of ay = W and critic

network with a step size of 5 =

1. See Table I for hyper-parameters to generate the Atari
game results in Figure [4]

(1+k)
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