
Under review as a conference paper at ICLR 2021

A. PROOF FOR PROPOSITION 2

Proposition 2. Consider a ball Bε(x) at an arbitrary point x ∈ X . For any x∗ ∈ Bε(x), we define
W̆x∗ and x̆∗ accordingly, as in equation (4). Let u be a constant such that, for all possible W̆x∗ , the
following is satisfied

‖W̆x∗‖F ≤ u. (9)
Assume x1 and x2 are arbitrary chosen points in Bε(x). Then for any

xη = η · x1 + (1− η) · x2, (10)

we have
dW̆xη x̆η ≥

1

2
(dW̆x1

x̆1 + dW̆x2

x̆2)− u · L, (11)

where L =
√

2(2‖x̆η‖+ 1
2‖x̆

1 − x̆2‖) is a constant.

Proof. The proof is straightforward. To simplify the notation, we define s1 := dW̆x1

x̆1, s2 :=

dW̆x2

x̆2 and sη := dW̆xη x̆η. Also, let l be the lower bound dW̆x∗ x̆∗ ≥ l for any x∗ ∈ Bε(x).
Such l exits because Bε(x) is a closed and bounded ball and f is continuous. We first note that

|s1 − l| − |s1 − sη| ≤ |sη − l|.

Since s1 − l > 0 and sη − l ≥ 0, we can remove the absolute sign and have

s1 − |s1 − sη| ≤ sη. (16)

The term |s1 − sη| can be upper bounded as

|s1 − sη| = |dW̆x1

x̆1 − dW̆xη x̆η|

≤ |(dW̆x1

− dW̆xη)x̆η|+ |dW̆x1

(x̆1 − x̆η)|
≤ 2u‖d‖2‖x̆η‖2 + u(1− η)‖d‖2‖x̆1 − x̆2‖2.

(17)

We further denote m = 2u‖d‖2‖x̆η‖2 and v = u‖d‖2‖x̆1 − x̆2‖2. By replace |s1 − sη| with its
upper bounds equation (17), it follows that

s1 −m− (1− η)v ≤ sη. (18)

Similarly for s2, we have
s2 −m− ηv ≤ sη. (19)

Finally, combining equation (18) and equation (19), we get

1

2
(s1 + s2)−m− 1

2
v ≤ sη, (20)

the desired inequality.

B. EXPERIMENTAL DETAILS

We give more details about training and attacks in the following.

Training We rely on the robust accuracy on a validation dataset to guide the training process. To be
more specific, we first randomly select 5000 images from the training dataset to form a validation set
before training starts. During training, after each epoch, we run a multi-step PGD attack to evaluate
the model’s robust accuracy on the validation set. If the validation robust accuracy does not improve
for a fixed number of consecutive epochs (we refer to the number as plateau epoch number), we
decrease the learning rate by five. If the robust accuracy does not improve for ten consecutive epochs,
we terminate the training process.

MNIST We use SGD optimizer with a starting learning rate of 0.01 on MNIST. Batch size is set to
be 128. After each epoch, we apply a 20-step PGD attack with step size 0.01 to determine validation
robust accuracy. Similarly, when generating strong adversaries for multi-step methods, 20-step PGD

11

Under review as a conference paper at ICLR 2021

attack with step size 0.01 is used. For numbers reported in Table 1, zero-step JAC is trained with
αJAC = 0.5; one-step and multi-step TRADES are trained with βTRADES = 1; one-step LEAP is
trained with α = 1e − 05 and β = 0.3 while multi-step LEAP is trained with α = 5e − 06 and
β = 0.2.

CIFAR-10 and CIFAR-100 On both CIFAR-10 and CIFAR-100, we employ the SGD optimizer
with a starting learning rate of 0.1, a momentum of 0.9 and a weight decay of 2e− 4. A batch size of
64 is used. In terms of computing validation robust accuracy and generating strong adversaries in
multi-step cases, we apply 10-step PGD attack with step size 0.07. On the CIFAR-10 dataset, the
following parameters are used for the numbers reported in Table 1: zero-step JAC is trained with
αJAC = 0.5; one-step TRADES is trained with βTRADES = 2; multi-step TRADES is trained with
βTRADES = 4; one-step LEAP is trained with α = 0.0002 and β = 5 and multi-step LEAP is trained
with α = 0.0001 and β = 5.0. On the CIFAR-10 dataset, we used αJAC = 0.5 for zero-step JAC;
βTRADES = 2 for one-step TRADES; βTRADES = 4 for multi-step TRADES; α = 0.0002 and β = 5.0
for one-step LEAP and α = 0.0001 and β = 10.0 for multi-step LEAP.

Attacks Random initialization is applied in all attacks. Untargeted and Multi-targeted attacks are
implemented by following the descriptions given in (Qin et al., 2019). For these two attacks, we
consider an attack is successful if an adversary is found after a gradient update at any point during
the optimization procedure.

B.1. PLATEAU EPOCH NUMBER AND FGSM STEP-SIZE

Due to the simplicity of the MNIST dataset and similar behaviour on both CIFAR-10 and CIFAR-100,
we determine the plateau epoch number and the FGSM step-size by experimenting with one-step
ADV on CIFAR-10.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
PGD step size (multiplied by)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

One step ADV
Clean-plt2
Robust-plt2
Clean-plt4
Robust-plt4

Figure 1: Clean and robust accuracy for one-step ADV at different step sizes

We use strongest Multi-T attack for evaluating model’s robust accuracy. In Figure 1, the green lines
show the results for plateau epochs to be 2 (plt2) while red lines are for plateau epochs to be 4 (plt4).
In terms of step sizes, we tested 3 possible values: 1.25ε (the suggested value by Wong et al. (2020)),
1.5ε and 1.8ε. It is clear to see that with plt2, models perform better in both nominal accuracy and
robust accuracy at all three step sizes. We thus use plateau epoch number 2 to adjust the learning rate
in all our experiments for comparable results. When step size is considered, both 1.25ε and 1.5ε give
satisfactory results. Since other methods show more stable performances with the step size 1.25ε, we
use it for generating weak adversaries in our experiments.

C LEAP: ABLATION STUDIES

We perform ablation studies for LEAP. We consider the one-step setting. Recall that LEAP consists
of two components: a local component and a global component. We test the effect of the local
component by setting β = 0 to get LEAP-l:

`LEAP-l =
1

|X |
∑
x∈X

`CE(x′) + α · A(J(x′)), x′ ∈ Bε(x). (21)

12

Under review as a conference paper at ICLR 2021

and the global component by setting α = 0 to get LEAP-g:

`LEAP-g =
1

|X |
∑
x∈X

`CE(x′) + β · KL(p(x′;θ)‖p(x;θ)), x′ ∈ Bε(x). (22)

We apply the strongest Multi-T attack on CIFAR-10 and Un-T attack on CIFAR-100. Results are
summarised in Table 2. When CIFAR-10 is considered, both LEAP-l and LEAP-g alone are effective
in improving the model’s robust accuracy. Combining the local and global components (one-step
LEAP) lead to a further robustness improvement. In terms of time per batch, apart from the cross-
entropy loss term at the adversary in both LEAP-l and LEAP-g, LEAP-l requires computing the
gradient of a Jacobian approximation term and is computationally more expensive than LEAP-g,
which calculates the gradient of a KL penalty term instead. Furthermore, the fact that LEAP-g is
computationally cheaper than TRADES is because it uses cross-entropy loss to compute gradients for
FGSM while TRADES uses KL distance. Similar performance is observed on CIFAR-100.

Table 2: Robustness performance for CIFAR-10 and CIFAR-100 on Wide-Resnet 28-8. The higher
the better.

Model Clean
accuracy

Un-T
attack

Multi-T
attack

Time
per batch

C
IF

A
R

-1
0

one-step ADV 86.24% - 42.97% 0.25s
one-step TRADES 86.84% - 38.14% 0.55s
one-step LEAP-l 85.24% - 44.46% 0.60s
one-step LEAP-g 82.07% - 44.43% 0.38s
one-step LEAP 84.52% - 46.55% 0.73s

C
IF

A
R

-1
00

one-step ADV 48.88% 19.04% - 0.25s
one-step TRADES 62.58% 14.83% - 0.53s
one-step LEAP-l 58.46% 24.73% - 0.60s
one-step LEAP-g 51.88% 19.71% - 0.37s
one-step LEAP 60.98% 26.28% - 0.73s

We show model’s performance when trained with LEAP-l and LEAP-g at different parameter values.
Results for CIFAR-10 are summarised in Figure 2 and 3 while results for CIFAR-100 are summarised
in Figure 4 and 5. For CIFAR-10, we see that the clean accuracy decreases with the increase of α
value for LEAP-l but robust accuracy retains at the similar level. In terms LEAP-g, the same trend is
observed and when the value of β is large, both clean and robust accuracy decline. On CIFAR-100,
there is a big drop in robust accuracy for LEAP-l when α rises while robust accuracy for LEAP-g is
relatively insensitive to the change of β value.

0.000 0.001 0.002 0.003 0.004
LEAP alpha value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP-L (CIFAR-10)
Clean-Acc
Robust-Acc

Figure 2: Clean and robust accu-
racy for LEAP-l at different α on
CIFAR-10

0 2 4 6 8 10
LEAP Beta value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP-G (CIFAR-10)

10 20 30 40
LEAP Beta value

LEAP-G (CIFAR-10)
Clean-Acc
Robust-Acc

Figure 3: Clean and robust accuracy for LEAP-l at different
β on CIFAR-10

C.1 LEAP-G VS. TRADES

Leap-g and TRADES take similar forms. The only differences between these two methods are: firstly,
Leap-g computes cross-entropy loss at the adversary while TRADES at the natural image; secondly,

13

Under review as a conference paper at ICLR 2021

0.000 0.001 0.002 0.003 0.004
LEAP alpha value

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

LEAP-L (CIFAR-100)
Clean-Acc
Robust-Acc

Figure 4: Performance of LEAP-l
at different α on CIFAR-100

0 2 4 6 8 10
LEAP Beta value

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

LEAP-G (CIFAR-100)

10 20 30 40
LEAP Beta value

LEAP-G (CIFAR-100)
Clean-Acc
Robust-Acc

Figure 5: Clean and robust accuracy for LEAP-l at different
β on CIFAR-100

LEAP-g uses cross-entropy loss to find a gradient in FGSM while TRADES employs KL distance.
On CIFAR-10, it is clear that LEAP-g outperforms TRADES on both clean and robust accuracy for
all tested β values. This observation supports the fact that LEAP-g, by focusing on local patches
around adversary points, weakens the potential dominating effects of natural images. LEAP-g allows
a more effective use of weak adversaries. In terms of CIFAR-100, LEAP-g outperforms TRADES
on robust accuracy. However, TRADES achieves higher clean accuracy on small β values. The
regularization effect of LEAP-g could be higher than TRADES.

0 2 4 6 8 10
LEAP Beta value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP-G vs TRADES (CIFAR-10)

Figure 6: LEAP-g vs. TRADES on
CIFAR-10

0 2 4 6 8 10
LEAP Beta value

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

LEAP-G vs TRADES (CIFAR-100)
Clean-Acc-NRL
Robust-Acc-NRL
Clean-Acc-Trades
Robust-Acc-Trades

Figure 7: LEAP-g vs. TRADES on CIFAR-100

D PARAMETER CHOICES: ONE-STEP CASE

We show clean accuracy and robust accuracy for each method at various parameter choices.

D.1 ZERO-STEP JAC

Although zero-step Jac does not require adversaries, we used 2 epochs for adjusting learning rate via
validation robust accuracy to be consistent. Model’s performance over a range of αJac values is shown
in Figure 8 for CIFAR-10 and 9 for CIFAR-100. There is a large trade-off between clean and robust
accuracy for small αJac values and then both clean and robust accuracy decrease with the increase of
αJac.

0.0 0.5 1.0 1.5 2.0
Jacobian alpha value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Zero step Jac (CIFAR-10)
Clean-Acc
Robust-Acc

Figure 8: Clean and robust accuracy for zero-
step JAC at different αJac on CIFAR-10

0.00 0.02 0.04 0.06 0.08 0.10
Jacobian alpha value

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

Zero step Jac (CIFAR-100)
Clean-Acc
Robust-Acc

Figure 9: Clean and robust accuracy for zero-
step JAC at different αJac on CIFAR-100

14

Under review as a conference paper at ICLR 2021

D.2 ONE-STEP TRADES

In Figure 10 (CIFAR-10) and 11 (CIFAR-100), we show one-step TRADES at various βTRADES
values. It is easy to see that increasing the value of βTRADES mainly hurts the clean accuracy without
improving robust accuracy.

0 2 4 6 8 10 12
Trades Beta

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

One step TRADES (CIFAR-10)
Clean-Acc
Robust-Acc

Figure 10: Clean and robust accuracy for one-
step TRADES at different βTRADES on CIFAR-
10

0 2 4 6 8 10 12
Trades Beta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

One step TRADES (CIFAR-100)
Clean-Acc
Robust-Acc

Figure 11: Clean and robust accuracy for one-
step TRADES at different βTRADES on CIFAR-
100

D.3 ONE-STEP NRL

In Figure 12, we give clean and robust accuracy for models trained at different α and β values on
CIFAR-10. In Figure 13, we give clean and robust accuracy for models trained at different α and β
values on CIFAR-100. A slight trade-off between clean and robust accuracy can be observed.

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.0001 (CIFAR-10)

(a)

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.0002 (CIFAR-10)

(b)

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.0005 (CIFAR-10)
Clean-Acc
Robust-Acc

(c)

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.001 (CIFAR-10)

(d)

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.002 (CIFAR-10)

(e)

0 2 4 6 8 10
Beta Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LEAP: alpha=0.003 (CIFAR-10)
Clean-Acc
Robust-Acc

(f)
Figure 12: Clean and robust accuracy for one-step NRL at different α, β on CIFAR-10

15

Under review as a conference paper at ICLR 2021

0.0000 0.0005 0.0010 0.0015 0.0020
Alpha Value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LEAP: beta=5 (CIFAR-100)

(a)

0.0000 0.0005 0.0010 0.0015 0.0020
Alpha Value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LEAP: beta=10 (CIFAR-100)

(b)

0.0000 0.0005 0.0010 0.0015 0.0020
Alpha Value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LEAP: beta=20 (CIFAR-100)

(c)

0.0000 0.0005 0.0010 0.0015 0.0020
Alpha Value

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

LEAP: beta=30 (CIFAR-100)
Clean-Acc
Robust-Acc

(d)
Figure 13: Clean and robust accuracy for one-step NRL at different α, β on CIFAR-100

16

