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A OPTIMIZATION DETAILS

A.1 CoDE UPDATE STEP

Algorithm [2]and 3| give details about the resolution of equation by using proposition

Algorithm 2 LRD-CODE. Solves the LRD problem by means of an alternated approach for every

n-mode. E(ng )) is defined in eq. l) The optimization problem is solved by means of algo-
rithmEl

2: Output: {Xm }g:]\ﬁm:l

3: while not converged do

4: forn =1to N do

5 for m = 1to M do

6: X(") = arg min x(m) L(X(” )
7: end for

8 end for

9: end while

Algorithm 3 LRD-GD. Solves the optimization problem in algorithm (2) by means of a gradient
descent approach in the DFT domain, gradient given by eq. (28).

Input: VLX), (XM, T

Olltpllt {X(n) }m 1
fort =0to7 — 1do

20 =% - VL")

DR =

end for

A.2 COMPUTATIONAL COMPLEXITY

The costly operations are the iterations of algorithm [2| which require to update Tﬁ,? ) that is an

operation dominated by the computation of F™) and QE,? ). For a matrix completion case (two-
dimensional) is

O(2n® + Rn?), (32)
and for a three-dimensional tensor completion is
O(n® +n* + (2 + R)n?). (33)

A.3 EXISTENCE OF SOLUTION

The existence of solution regarding the LRD decomposition is tied to the existence of the Kruskal
tensor. It’s existence is limitedto R < I, forn =1,--- | N.

B MORE ABOUT THE EXPERIMENTS

B.1 SYNTHETIC DATA GENERATION

As explained in section ] synthetic data is generated using the LRD model, that is
2= Dy Ky =Y Dy #[XH), ..., X, (34)

m m

where the dictionary {D}M_, is the collection of filters learned and {X(") yMN =1 the matrices
that conform the kruskal activation map. For the two-dimensional case the dictionary is learned
from the city and fruit testing dataset from [Zeiler et al.| (2010). For three-dimensional tensors we
use the filters learned on the basketball sequence used by |[Reixach| (2023)). In both cases we generate
random activation-map matrices drawn from the uniform distribution on the open interval (0, 1) and
learn the filters using the algorithm from Wohlberg| (2017). Figures [3]and @] show the used filters.
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Figure 3: Dictionary for the two-dimensional case. From left to right and top to bottom the fifteen
filters that conform the dictionary.

Figure 4: Dictionary for the three-dimensional case. From left to right and top to bottom the
fifteen slides from each filter that conform the dictionary. As the filters are three-dimensional tensors
here we picture the fifth slide in the third dimension of the filter.

B.2 MORE RESULTS

Figures 5] [6|and[7]report synthetic results for AWGN with o = 0, 0 = 0.1 and o = 0.5 respectively.
We observe the behaviour described in section 4} Tables [] [5 [6] and [9) report results on real
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data for matrix and tensor completion. Regarding tensor completion, to the datasets considered in
section 4] we also include SW-NIR kinetic data (Bijlsma & Smilde| 2000)(301 x 241 x 8) that we
cut to (100 x 100 x 8) due to computational limitations of our method. We observe the behaviour

described in section [l

Figure 5: Performance evaluation of matrix and tensor completion on synthetic data (o = 0.0).

Figure 6: Performance evaluation of matrix and tensor completion on synthetic data (¢ = 0.1).

Table 4: Relative recovery error of matrix completion on MovieLens-100k (¢ = 0.0 ).

Missing ratio MF FGSR | DMF | M°DMTF | LRD
10% 0.2513 | 0.2413 | 0.2548 0.2454 -
30% 0.2570 | 0.2480 | 0.2605 0.2529 0.2596
50% 0.2615 | 0.2512 | 0.2621 0.2531 0.2608
70% 0.2793 | 0.2648 | 0.2712 0.2546 0.2689
90% 0.3913 | 0.3374 | 0.3157 0.2744 0.8056
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MMM

Figure 7: Performance evaluation of matrix and tensor completion on synthetic data (¢ = 0.5).

Table 5: Relative recovery error of matrix completion on MovieLens-100k (¢ = 0.1 ).

Missing ratio MF FGSR | DMF | M°DMTF | LRD
10% 0.2472 | 0.2376 | 0.2479 0.2450 0.2450
30% 0.2531 | 0.2436 | 0.2567 0.2472 0.2547
50% 0.2606 | 0.2495 | 0.2616 0.2543 -
710% 0.2773 | 0.2621 | 0.2695 0.2586 0.2615
90% 0.3892 | 0.3356 | 0.3170 0.2716 0.5842

Table 6: Relative recovery error of matrix completion on MovieLens-100k (o = 0.5).

Missing ratio MF FGSR | DMF | M°DMTF | LRD
10% 0.2562 | 0.2484 | 0.2744 0.2600 0.2569
30% 0.2585 | 0.2521 | 0.2804 0.2699 -
50% 0.2605 | 0.2511 | 0.2781 0.2682 0.2770
710% 0.2806 | 0.2654 | 0.2854 0.2786 0.2747
90% 0.3999 | 0.3449 | 0.3221 0.2803 0.6660

B.3 PARAMETER SETTING

B.3.1 PARAMETER SETTING ON SYNTHETIC DATA
- in MF, the factorization dimension d is 5. The « is set to 1 and the maximum iteration is
2000.

- in FGSR, we use the variational form of Schatten-1/2 norm, d = 30, A\ = 0.015. The
maximum iteration is 2000.

- in DMF, the network structure is [10, 50, 100, I,,]. The weight decay parameters are set to
0.1 and the maximum iteration is 1000.

- in M2DMTF (three-dimensional case), L = 2, d; = 10Vi, h; = 50¥i, m; = I;Vi and
A; = 1Vi. The optimizer is iRprop+ and the maximum iteration is 2000.

- in LRD (two-dimensional case), = 1 - 10716, ~ is choosen from {1 - 10741 - 1072},
A=0,7=3,n=1/50and T = 500. Maximum iteration is 100.

- In FaLRTC we set o;; = 1Vi and the maximum iteration is 200.
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Table 7: Relative recovery error of tensor completion on three real tensors (o = 0.0 ).

data | MR | FalRTC | TenALS | TMac | KBR-TC | TRLRF | OITNN-O | M?2DMTF | LRD
10% | 0.0480 | 0.0197 | 0.0112 | 0.0186 0.0262 0.0115 0.0129 0.0441
e | 30% | 0.0472 0.0199 | 0.0116 | 0.0203 0.0454 0.0129 0.0137 0.0229
‘g | 50% | 0.0672 0.0203 | 0.0134 | 0.0197 0.0201 0.1360 0.0149 0.0380
< | 70% | 0.1124 0.0206 | 0.0169 | 0.0251 0.0216 0.0188 0.0157 0.0381
90% | 0.01124 | 0.0221 | 0.0163 | 0.0251 0.0287 0.0188 0.0161 0.0504
10% | 0.0788 0.3939 | 0.0047 | 0.0014 0.0450 0.0021 0.0135 0.0127
. 30% | 0.0998 0.3953 | 0.0057 | 0.0014 0.0460 0.0017 0.0150 0.0153
S | 50% | 0.1353 0.3958 | 0.0076 | 0.0016 0.0372 0.0021 0.0118 0.0136
| 70% | 0.2121 0.3966 | 0.0103 | 0.0019 0.0234 0.0048 0.0142 0.0165
90% | 0.5275 0.4005 | 0.0132 | 0.0039 0.0375 0.0480 0.0260 0.0721
10% | 0.1285 0.1222 | 0.0000 | 0.0012 0.0055 0.0101 0.0057 0.0106
& | 30% | 0.1617 0.1131 | 0.0002 | > 0.95 0.0028 0.0010 0.0070 0.2030
Z | 50% | 0.2913 0.1507 | 0.1404 | 0.1403 0.0436 0.0036 0.0059 0.5486
% 70% | 0.6736 >0.95 | 0.2362 | 0.2363 0.0877 0.0062 0.0111 > 0.95
90% | 0.9413 >0.95 | 0.7050 | > 0.95 0.5046 0.4905 0.0459 > 0.95

Table 8: Relative recovery error of tensor completion on three real tensors (o0 = 0.1).
data [ MR | FalRTC | TenALS | TMac | KBR-TC | TRLRF | OITNN-O | M?2DMTF | LRD
10% | 0.1928 0.0854 | 0.2165 0.2634 0.1091 0.1554 0.2267 0.2782

~—

g | 30% | 0.1898 | 0.0961 | 0.2513 | 0.2517 0.1555 0.1701 0.2574 0.2504
‘E | 50% | 0.1922 | 0.1121 | 0.3231 | 0.3080 0.1942 0.1858 0.3890 0.1816
< | 70% | 0.2285 | 0.1699 | 0.4667 | 0.2268 0.2040 0.2284 0.5782 0.3354
90% | 0.2285 | 0.1587 | 0.4589 | 0.2268 0.2853 0.2284 0.5906 0.4117
10% | 0.1329 | 0.3977 | 0.2143 | 0.1115 0.1014 0.1928 0.0904 0.1455
. 30% | 0.1488 | 0.3992 | 0.2290 | 0.1124 0.1128 0.1951 0.1116 0.1575
S | 50% | 0.1697 | 0.3966 | 0.2571 | 0.1523 0.1288 0.1903 0.1319 0.1761
| 70% | 02237 | 0.3982 | 0.3367 | 0.2445 0.2099 0.2001 0.1804 0.2184
90% | 0.5243 | 0.4068 | 0.6801 | 0.2524 0.3942 0.2876 0.4299 0.3288
10% | 0.3469 | 0.1266 | 0.5085 | 0.1688 0.4394 0.4923 0.5717 0.4710
& | 30% | 04176 | 0.1380 | 0.5612 | 0.3251 0.6218 0.4850 0.4725 0.5481
Z | 50% | 0.5336 | 0.1682 | 0.6547 | 0.2140 0.7099 0.4844 0.8324 0.4139
% 70% | 0.7896 | >0.95 | 09342 | 0.2903 > 0.95 0.5755 >0.95 0.7776

90% | > 0.95 >095 | >0095 > 0.95 > 0.95 0.8742 > 0.95 > 0.95

Table 9: Relative recovery error of tensor completion on three real tensors (o = 0.5 ).
data [ MR [ FalRTC | TenALS | TMac | KBR-TC | TRLRF | OITNN-O | M?DMTF | LRD

10% | > 0.95 0.4625 | >0.95 > 0.95 > 0.95 0.5992 > 0.95 0.6037
e 30% | >0.95 0.5579 | >0.95 > 0.95 > 0.95 0.6472 > 0.95 0.4788
B 50% | >0.95 0.6784 | >0.95 > 0.95 > 0.95 0.6982 > 0.95 0.5671
< | 70% | > 0.95 0.9343 | >0.95 > 0.95 > 0.95 0.7254 > 0.95 0.6357
90% | > 0.95 >095 | >0.95 > 0.95 > 0.95 0.7254 > 0.95 0.7310
10% | 0.5109 0.4069 | >0.95 0.5551 0.7446 0.8524 0.7679 0.3731
. 30% | 0.5365 0.4162 | >0.95 0.5350 0.8835 0.8364 > 0.95 0.3930
9 50% | 0.5766 0.4232 | >0.95 0.5712 > 0.95 0.7671 > 0.95 0.4138
=~ | 70% | 0.6765 0.4456 | >0.95 > 0.95 > 0.95 0.7086 > 0.95 0.4535
90% | 0.9100 0.5281 | >0.95 > 0.95 > 0.95 0.7164 > 0.95 0.5263
10% | > 0.95 0.6854 | > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95
& 30% | >0.95 0.6938 | > 0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95
Z 50% | >0.95 0.8747 | >0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95
E 70% | > 0.95 >095 | >0.95 > 0.95 > 0.95 > 0.95 > 0.95 > 0.95

90% | >095 | >095 | >095| >0.95 > 0.95 > 0.95 > 0.95 > 0.95

- in TenALS the initial rank is set to 1 and the maximum iteration is 20.

- in TMac, the rank is initialized to [10,10,10] and adjusted adaptively. The maximum
iteration is 1000.

- in KBR-TC, p = 1.05 and A = 0.01. The maximum iteration is 300.
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- in TRLREF the rank is set to [3, 3, 3] and A = 10. The maximum iteration is 500.

in OITNN-O o = 1 - 10~*. The maximum iteration is 300.

- in M2DMTF (three-dimensional case), L = 2, d; = 10V4, h; = 20Vi, m; = I;Vi and
A; = 1Vi. The optimizer is iRprop+ and the maximum iteration is 3000.

in LRD (three-dimensional case), « = 1- 1076, v =2-107°, A = 0,7 = 3, n = 1/50 and
T = 500. Maximum iteration is 100.

B.3.2 PARAMETER SETTING ON REAL DATA

- in MF, the factorization dimension d is 5. The « is set to 1 and the maximum iteration is
2000.

- in FGSR, we use the variational form of Schatten-1/2 norm, d = 50, A = 0.015. The
maximum iteration is 2000.

- in DMEF, the network structure is [10, 50, 100, I,,]. The weight decay parameters are set to
0.1 and the maximum iteration is 1000.

- in M?DMTF (three-dimensional case), L = 2, d; = 104, h; = 50¥4, m; = I;Vi and
A; = 1Vi. The optimizer is iRprop+ and the maximum iteration is 2000.

- in LRD (two-dimensional case), « = 1-1071%, 4y =1-107%, A = 2, r = 5, n = /50 and
T = 500. Maximum iteration is 100.

- In FaLRTC we set a;; = 1V7 and the maximum iteration is 200.
- in TenALS the initial rank is set to 1 and the maximum iteration is 20.

- in TMac, the rank is initialized to [10, 10, 10] and adjusted adaptively. The maximum
iteration is 1000.

- in KBR-TC, p = 1.05 and A = 0.01. The maximum iteration is 300.
- in TRLREF the rank is set to [5, 5, 5] and A = 10. The maximum iteration is 500.
- in OITNN-O a = 1 - 10~%. The maximum iteration is 300.

- in M?DMTF (three-dimensional case), L = 2, d; = 10V4, h; = 20Vi, m; = I;Vi and
Ai = 1Vi. The optimizer is iRprop+ and the maximum iteration is 3000.

- in LRD (three-dimensional case), o = 1 - 1071, ~ is chosen from {1 -1078,1-1076,1 -
1072,5-107°}, A = 0,7 = 4,7 = /50 and T' = 500. Maximum iteration is 100.

C PROOFS

C.1 ProposITION[ZT]

The squared total variation regularization is given by
v 2 g 2
5 U7y = S (VU (35)
2 2

where,

2lvul; = (36)

2
ouN\T /oum\T PRONAN
< Oty ) < Oty ) ""’<6tN>
By using the derivative property of the DFT transform,

(n)
]-‘{ a;t } = 27j¢; @ F{u™} =

N[

omj&; ® W), (37)
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with §; and & defined in section Together with the definition of ©(") leads us to the following

expression,
2
v
FlL
{;

)

M

m=1

2l ‘ oM\ Tgm|* 13
9 (©M™) x ) (38)
which can be derived in the following manner (complex derivative),
. 2
o2 H AT (n)
2|97 2 = J(@myHH™, (39)

A(x(m)H 2

The result above combined with the solution of eq. and the derivative of the nuclear norm
operator brings us to eq. (28).

C.2 THEOREM[2.2]

This proof and the ones that follow are obtained following the method from |Fan| (2022)), we also
introduce the following lemma from the same work (Lemma 1):

Lemma C.1. Let S be a set defined over tensors of size Iy x Iy X --- x I,. Let |S| be the
e-covering number of S w.rt. the Frobenius norm. Let I, = T[], I,. Suppose Z € S and
max(||Y|loo, |Z]loc) < & Then with probability at least 1 — 21 1:

1 2¢ 8¢ 10g(|SI7r)>1/4
—\Y-% Py < 40
Sul?g T, ||1d ||F /TQ ” (Y )HF = /7|Q| + ( 1€ (40)
Proof. See|Fan|(2022) appendix D.1. O

After, we introduce a new lemma that shows an upper bound for the covering number of the Low-
rank Deconvolution matrix set:

_ Lxli. g _ M @p £ (2) (T g ()
Lemma C2 Let S = {Z €¢ R2xh:Z ="  Fy D, &X' (X)) F1,HXm ||F <

m=1

H Dol < 8% m =1,...,M,n = 1,2} where X} € Cl»*", F; € Ch*1 and Fy €

; . 2) .
(CI2XI2 are the inverse DFT matrices and ( D,, € C2%I1 Then the covering number of S w.r.t.
the Frobenius norm satisfy:

Iir+21,
3P 5N (30,6450
€
Proof. See appendix [C.6] 0
With Lemma [CIland LemmalC.2] we obtain
1 1 .
v fn ||
1
Y Z F+ E F
fn I+ Il
2¢ 8¢t log(|S| L)\
|Po(Y = Z)||r + —=|E||r + + (
f | \/ﬂ N )
2€
Po(Y — Z)|F+ E|lr+ —+
< P =2l + Bl +
3 0 31 323 1/4
854(1Og(17r)+(]17“+2177) log(3 M2y 1(/3m[3m5 ) ))
@ “2)
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C.3 THEOREM[2.4

2) ~
This is a special case of proof where ( )D = 1 and DFT matrices are not longer needed as we
consider spatial versions X (™). With that we introduce a new lemma that shows an upper bound for
the covering number of the classical Low-rank matrix set:

Lemma C3. Let S = {Z € R2*h: Z = XO(XW)T || XM < " n = 1,2} where
X (™ € RI"*"_ Then the covering number of S w.r.t. the Frobenius norm satisfy:

152y2\ {17+«
N € < (22D @)

Proof. See appendix|[C.7] O

With Lemma and Lemma we obtain

1 ~ 1 N
—|Z-Z|p=—|Y-E-Z
772l = | I
1 A 1
< Y -Z|r+ —|E
< I e+ Bl

- 2 (8etlog(IS|1,)\ "
|1Pa(Y = Z)||r + —=|E|lr + —= + (
T VIl 0]
1 1 2¢’
< ——=Pa(Y = 2)|lr + ——=|Bllr + =+
. VIx Nl
1/
864 (log(Ix) + (Iir + I,T)1Og(12(ﬁ:7/52)2) 4
Q] ' (44)

C.4 THEOREM

This is the three-dimensional variation of proof [C.2} To that end we introduce a new lemma that
shows an upper bound for the covering number of the three-dimensional Low-rank Deconvolution
matrix set:

Lemma Cd4. Let S = {Z e RBxhlk.z = M (S)ﬁm e XPXL o
XV F oo, | X0 < B, ® Do, <89, m=1,...,M,n=1,2,3} where X} € Cln*",

. . (3)
Fiy € ChlaxIilz gpng By € CI3%13 gre the inverse DFT matrices and =~ D,,, € C3*Iil2 Then
the covering number of S w.r.t. the Frobenius norm satisfy:

(45)

| (3 MM (80 8L B2 B3 k)t

(1+12)11T+21ﬂ7
NS Hr 0 < 6 )

Proof. See appendix[C.§| O
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With Lemma and Lemma we obtain
~ 1 ~

Z-Zr=——|Y-E-Z

122l = = I

1
VIx

1 . 1
< Y -7 Jri E

4 /4
Ly 2 (setlisie)

E F+7+
\/ﬂ” | NG

1/4
(8{4(log(f7r) + (14 B) Ty + 21, log (PN Zoics PP P Pk
€

||Psz (Y - 2)||lr +

e s

(46)
C.5 THEOREM[2.8

2) A
This is a special case of proof where ( )D = 1 and DFT matrices are not longer needed as we
consider spatial versions X (™). With that we introduce a new lemma that shows an upper bound for
the covering number of the classical three-dimensional Low-rank matrix set:

Lemma C.5. Let S = {Z € Rl=*h/2: 7 = XO)/(XM) @ X)T | XM < g",n = 1,2,3}
where X(") € RIn*"_ Then the covering number of S w.r.t. the Frobenius norm satisfy:

(34(B1/8263kr)3 A+I) [ir+Ix
¢ )

N(S, ||'HF7€/) < 47)
Proof. See appendix|[C.9] -
With Lemma [CIland Lemma[C:3] we obtain
1 . 1 .
——|1Z - Z||p = ——=||Y ~E - Z
1 . 1
Y -Z|r+ E
ﬁll 13 \/ﬂll IF3
1 2’ 8¢t log(|S|I;)\ 7"
< Y = D)+ —— B+ —— + (
\/@ ﬁ \/@ Q]
1 ¢
< ——||Po(Y = Z)|lr + —=|E|r + +
1] \/17 \/@
1/4
864 (log(I) + ((1+ L) Iyr + I) log (3220 k)"
|Q| (48)

C.6 LEMMAI[C2

LetZ = Y™ B, DD, o XPXD)TF, where X&) € Clnx7, Fy € Chxl and Fy € Cl2x 2
are the inverse DFT matrices and Dg,%) C2*11 We give the following two lemmas:

Lemma C.6. Let Sy = {A € C*': A = F,A, A € R* |A|l, < B,Fy €
C**® the inverse DFT matrix, |Fy|| . = 1}. Then there exist an e-net Sy, obeying

ab
Nsan ) < (2) )

such that HA — AH <e
F
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Proof. See appendix[C.10] O

Lemma C.7. Let A € C%*° and B € C*? then
s, = an < 4] ]
F F F

Where @ is defined above and depicts hadamard product.

. (2)
< m=1,....M, n=12 | 'Dy—

F_C;LL’ b 3 9

m”F E)” . Let §70n = SMBrln %1, Cvln = 3M/831572n and <72n = 3M/819n/61'1n

Now replace € with ¢/¢7 and let HX%I ) x(m
(2 )

HZ - HZB D, & X2 XW)TF, - ZFQ D, & X (X()TF
m=1 F
D, & XPXD)TF, + Z F, “D,, & X2 (X()TF,
M
+ Z F2 m SY) X(2)( S’}L) TFl Z F2 D 52 X‘SYQL) (X'En))TF
m=1 F
M 2~
< H Z F, D, o XQXD)TF, - 3 F, D, 0 XO(XD)TF,
m=1 F
HZF2 D,, & X (XTF ZFQ 'D,, & X2 (X)TF,
F
H D, & X (XWHT Z F, D, o X XD)TF,
F
“D,, ~ Db, |x2|| |x©| [F,
F F F F
- @5 | ko _ % ;
+ Z F, D,.|| [|X& —x®| [XD] |7y
me1 F F F F F
M
D|| X2 %@ -%D| |y
—1 F F F F
M
Z B152 +Z BOBI +Z ﬂOBZ
=e. (51

The second inequality utilized the submultiplicativity of the Frobenius norm and Lemma[C.7] There-
fore, S is an e-cover of S. Then, we have

M 2 347 (1 Iyr+21x
N0 < D T (5

m=1n=0

o~ (3UM3(80,81,82)\
22 )

€

(52)
€

(34M3 lewmmmf’)“””“
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C.7 LEMMAI[C3

Let Z = X®(XM)T where X(™ € C/»*". Using Lemma [C.6] replace ¢ with <'/¢" and let
HX(") ~X0| < &n =12 Let¢t = 262 and (2 = 2%,

= Ix®@ (X(l))T _ X(Z)(X(l))T
F F

— [|x® (X(l))T 4 X(2)(X(1))T _ X(2)(X(1))T

=

F

< |lx@xwyr —x@ x| 4 HX@)(X(l))T _x@(xW)T
F F
<[x x| x| +fxe) [xw-xw
F ) F
<fpifpd (53)
¢? ¢t

The second inequality utilized the submultiplicativity of the Frobenius norm. Therefore, S is an
€'-cover of S. Then, we have

L sagngny Dl
NS, [l ) H( pr¢ )

Iir+1, Iyr+1x
(BZGRY_ (e 5

6/

C.8 LEMMA[CA

3) o (3) < . < (n ,
LetZ =M F, 9D, 0 XP (XY 0 XP)TF,, where X € Clnx7, Fyy € Clil2xNi2 and
F5 € Cls*1s are the inverse DFT matrices and D) € Cs*1112 We give the following lemma:

Lemma C.8. Let A € Co%? and B € C%? then

)A@B - A) 3| ||, (55)
F F F F
Where © is defined above and depicts khatri-rao product.
: () _ x(n) e @)
Now replace € with ¢/¢7 and let HXm —Xom - Saom=1....M, n=12, "Dy, —

“Dolr < . Let (O = AMBLG B Ky, Gy = AMBG 2Bk, G = AMBY, 53,55k and
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G =AM B Bk

M M
Hz ~7)| =[S R ID, 0 XOED o X@)TE, - 3 F VD, 0 XO XD 0 X2)TF,
F m=1 m=1
M )
Z F3 D, ® XP XY o X T'F, + Z F3 (3)Dm e XP(XH o XE)TF,
m=1 m=1

j:ZFg
_ZF

IN

+ZF

m=1

+ ZFg

M

IN

F3

m=1

F3

+
B

3
Il

F3

+
M=

3
I

+

= 1=

F3

Sgignﬂ

™3
I

F

F

M
D, d X (XY 0 X2)TF, + Z F; @ D,, ® XP XY o XTF,
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The second inequality utilized the submultiplicativity of the Frobenius norm and Lemma[C.8] There-
fore, S is an e-cover of S. Then, we have
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C.9 LEMMAI[CA

Let Z = X® (XM © X@)T where X(™) € C'»*". Using LemmalC.6] replace e with ¢'/c* and let

X0 =X <= 1,23, Let ¢ = 3828°, ¢ = 3813 and (° = 331 8%,
F
‘PZ _ lx®xw o x@)r -0 x0 o x@)7
F F

< [[x® (X(l) ® X(Q))T —_x®) (X(l) ® X(Q))T
F
+ [[X®XD o xXE)T - XO/(XD o X@)HT
F
< [x@-x| x| x| +|xo) |xw-xw| |xe
F F F F F F
Hlxe| xo] |x@ - x@
F F F
€ iga . € sa2 € o3
<GP gF B ghs =¢. (58)

The second inequality utilized the submultiplicativity of the Frobenius norm and Lemma|C.8] There-
fore, S is an €/-cover of S. Then, we have

o
, 3 n/ mn
N ) < TT (5
n=0

6/

(3'3*5W?553)“+b””+“__(3“5Wﬁﬁ%3>“+bﬂ”+“

€ 4

) (1+12)11T+I7r

(59)

C.10 LemMA[C.dl

A-A| —|F.A-FAl < [A-A]. (60)

The inequality utilized the submultiplicativity of the Frobenius norm.
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