
A EFFECT OF MULTIDIMENSIONAL OUTPUT ON LEARNED REPRESENTATIONS

A

C

Hidden

Output

+/+ +/- -/+ -/-

Input
1

2

4

3

B

-/0+/0 0/-0/+

De
cR
GLn
g

(tU
DLn
eG
)

De
cR
GLn
g

(un
tUD
Lne
G)
CC
GP

(tU
DLn
eG
)

CC
GP

(un
tUD
Lne
G)
Inp
ut

DlL
gn
Pe
nt

7D
Ug
et

DlL
gn
Pe
nt

0.00

0.25

0.50

0.75

1.00

7Dnh
5eLU

D

Intra-class axis

In
te

r-c
la

ss
 a

xi
s

Intra-class axis

In
te

r-c
la

ss
 a

xi
s

0 40k
Training steps

−0.3

0.0

0.3

In
pu

t w
ei

gh
t p

ro
je

ct
io

n
on

to
 c

lu
st

er
 c

en
tr

oi
G

Group +/+

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group -/-

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group +/0

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group 0/+

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

−0.3

0.0

0.3

In
pu

t w
ei

gh
t p

ro
je

ct
io

n
on

to
 c

lu
st

er
 c

en
tr

oi
G

Group +/+

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group -/-

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group +/0

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

0 40k
Training steps

Group 0/+

Cluster 1 (+/+)
Cluster 2 (+/-)

Cluster 3 (-/+)
Cluster 4 (-/-)

tanh ReLU

tanh ReLU

tanh ReLU

δ = 0

δ = 0.25

δ = 0.5

δ = 0.75

δ = 1

Gaussian inputs Nudged inputs

Single output

Two outputs

tanh ReLU

tanh ReLU

tanh ReLU

δ = 0

δ = 0.25

δ = 0.5

δ = 0.75

δ = 1

Gaussian inputs Nudged inputs

Single output

Two outputs

Ta
nh

R
eL
U

Intra-class axis

Intra-class axis

In
te

r-c
la

ss
 a

xi
s

tanh ReLU

tanh ReLU

tanh ReLU

δ = 0

δ = 0.25

δ = 0.5

δ = 0.75

δ = 1

Gaussian inputs Nudged inputs

Single output

Two outputs

tanh ReLU

tanh ReLU

tanh ReLU

δ = 0

δ = 0.25

δ = 0.5

δ = 0.75

δ = 1

Gaussian inputs Nudged inputs

Single output

Two outputs

Group +/+ Group +/0

Figure 1: A. Schematic of binary classification task with unstructured inputs and two outputs. The
outputs are trained to classify four input clusters according to two different labelings of the inputs.
In this case the hidden layer of the network is divided into eight groups of neurons defined by their
two output weights (positive: blue, negative: red, zero: no line). B. Measures of representational
geometry at network initialization (left of each line segment) and following training (right of each
line segment). Error bars indicate standard deviation over 20 simulated networks. D. Alignment
(dot product similarity) of input weights to hidden layer neurons with the four input cluster centers.
Shown for four of the eight hidden layer neuron groups. Error bars indicate standard deviation across
neurons within a single network. E. Trajectories of input weights to hidden layer neurons along the
inter-class (x1 + x2− x3 − x4) and the intra-class axis (x1 − x2). Each line sigment represents an
individual neuron from a simulation, and small circles indicate the beginning of the trajectory (at
network initialization). Shown for hidden layer neurons with an output weight of +1. Vector field
background indicates the expected average direction that weights will evolve due to gradient of the
task objective.

Here we include an in-depth exploration of networks trained with two targets and four items. We
modified our tasks by now assigning each of the four input clusters to two different binary labels:
(1, 1), (1, 0), (0, 1), and (0, 0), respectively (Fig 1). We modified the network architecture by adding
a second output unit; each output unit was tasked with predicting one of the two labels. Thus, in
this task, there were two trained dichotomies (x1/x2 vs. x3/x4, and x1/x3 vs. x1/x4) and one
untrained dichotomy (x1/x4 vs. x2/x3). For analysis, we again used frozen readout weights dis-
cretized into eight groups (Fig 1A), which we found was sufficient to approximate the behavior of
networks trained with randomly initialized output weights. Again, we found a noticeable difference
in the learned representations of ReLU and Tanh networks, with Tanh networks reflecting the ge-
ometry of the targets more than ReLU networks (Fig 1B). Again, we analyzed the source of these
phenomena by tracking the alignment of input weights to each neuron with the four input cluster
centroids. In general, we observed that neurons grew positively tuned to inputs which matched their

1

output weights, negatively tuned to inputs mismatched with their output weights, and not tuned at
all to inputs matched with one output weight and mismatched with the other (Fig. 1C). However, in
the ReLU networks, a clear asymmetry emerged in the degree of positive tuning to matched input
clusters and the degree of negative tuning to mismatched input clusters. As a result, in the ReLU
networks, roughly half the neurons (those with nonzero outputs to both class readout units) devel-
oped selectivity primarily for one of the four input clusters. As a result, these ReLU units developed
strong selectivity for intra-class differences, while Tanh units did not (Fig. 1D). This behavior was
observed to be uniform across the hidden neurons (Fig. 1D).

Thus, both the multi-output task produced similar results as the similar output task in terms of
representational geometry, the source of these effects was somewhat different. In both cases, the
gradient of the task objective drives input weights to accrue inter-class selectivity in Tanh networks.
However, for ReLU networks, the picture is different. In the single-output case, the emergence of
intra-class selectivity arises due to heterogeneity in initial conditions of input weights, while in the
multi-output case it also arises due to heterogeneity in initial conditions of output weights.

B IMPACT OF CONSTRAINTS ON THE OUTPUT WEIGHTS

0 40k
Training steps

0.90

0.95

1.00
Decoding accuracy

(trained)

0 40k
Training steps

0.90

0.95

1.00
Decoding accuracy

(untrained)

0 40k
Training steps

0.5

1.0 Parallelism

0 40k
Training steps

0.0

0.5

1.0
Input alignment

0 40k
Training steps

0.0

0.5

1.0
Target alignment

Tanh
Tanh (fixed readouts)
Tanh (fixed discretized readouts)
ReLU
ReLU (fixed readouts)
ReLU (fixed discretized readouts)

Figure 2: Measures of representational geometry during training for three cases: randomly ini-
tialized trainable readouts, randomly intiialized fixed readouts, and discretized (binary ±1) fixed
readouts.
In our experiments we used frozen output weights with discretized values. In Fig. 2 we show that
the behavior of representation learning is essentially the same when we relax the discretization and
allow the readouts to be trained.

C FURTHER DETAILS ON RANDOM ALIGNED KERNEL SAMPLING

Our sampling procedure for tasks with a specified input-output alignment used in Section 5 has
some important considerations, which will be further elaborated in this section. Firstly, obviously,
the sampled matrices must be symmetric and positive semi-definite (SPSD), and they need to have
the required correlation value. Secondly, kernels with the same alignment value can have different
dimensionality (i.e. eigenspectra).

It is worth clarifying that we assume all kernels are already centered, meaning that the features
used to compute them have been mean-subtracted. Or, equivalently, that their nullspace contains
the vector 1 of all ones. They should also have unit trace, TrK = 1. Both are non-restrictive
assumptions, since the CKA is invariant to scaling and shifting of features.

The set of matrices with a given correlation value, c, to a reference matrix KY is the solution set
of a quadratic form1, while the SPSD matrices (of unit trace) are a compact convex body. We will
refer to this set as Kc. Our procedure is to randomly sample a SPSD matrix, and project it onto the
quadric surface, taking care to remain SPSD. This method certainly does not ensure uniformity, but
it is simple and empirically shows a wide spread of samples even in relatively high dimensions.

An important consideration with this method is the linear dimensionality of the input geometry,
intuitively a measure of correlations between input patterns. If we define dimensionality in terms of
the participation ratio of the eigenvalues, λ, of K:

p.r.(K) =
(
∑

i λi)
2∑

i λ
2
i

1C(KX ,KY) = c ⇔ Tr(KXKY)2 = c2Tr(KXKX)Tr(KY KY).

2

(0, 1) (1, 1)

(0, 0) (1, 0)

Fit classifier for

x2 for samples

where x1 = 0

Classifier generalizes

to samples where x1 = 1

-> high CCGP

(0, 1) (1, 1)

(0, 0) (1, 0)

Find vector

encoding x2

conditioned on x1 = 0

Find vector

encoding x2

conditioned on x1 = 1

and -> high parallelism scoreare parallel

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fit classifier for

x2 for samples

where x1 = 0

Classifier does not generalize

to samples where x1 = 1

-> low CCGP

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Find vector

encoding x2

conditioned on x1 = 0

Find vector

encoding x2

conditioned on x1 = 1

and

-> low parallelism score

are

not parallel

Cross-condition generalization
performance (CCGP)

Parallelism score (PS)

Figure 3: Examples of representational geometries with high and low CCGP and PS, for data gen-
erated by two underlying binary variables, i.e. data points of the form (x1, x2) where xi ∈ {0, 1}.

then, per our assumption of unit trace, this is just ∥K∥−2
F . In the special case when c = 0 the set K0

is convex, and this implies that there is a unique kernel matrix Kmax which maximises p.r.(K), i.e.
minimises ∥K∥F . If we draw a line between KY and Kmax, we get the set of input kernels which
form the solid lines of Fig. 4B and Fig. 5 of the main text.

D EXPLANATION OF CCGP AND PS METRICS

See Figure 3.

E COMPARISON OF WEIGHT DYNAMICS AT DIFFERENT NOISE LEVELS IN
RELU NETWORKS

In Section 5.2 we observed in ReLU networks an interesting increase in the values of target align-
ment / parallelism / CCGP, and decrease in the value of input alignnment, for intermediate values of
the input noise σ. Here (Fig. 4) we provide an analysis that sheds some light on this phenomenon.
For diffeerent noise values, we tracked the relationship between the value of the input weights to
a network hidden-layer neuron and the corresponding value following training. In the absence of
noise, neurons initialized with sufficient intra-class selectivity relative to their initial inter-class se-
lectivity are destined to maintain it over time (remain in the purple or green regions in Fig. 4 – see
weight trajectory plots in Fig. 1D, 2C for an explanation of why). In the presence of noise, neu-
rons with substantial intra-class vs. inter-class selectivity at initialization can nevertheless evolve to
develop primarily inter-class selectivity over the course of training. Note that this explanation does
not account for why, at extremely high noise values, target alignment drops again (Fig. 3C) – we
leave an in-depth characterization of this phenomenon to future work, but suspect it arises because
the input noise grows substantial enough for the weights to accrue significant projections along axes
other than the two we visualize here.

3

Zero input noise Greater input noise

Intra-class axis Intra-class axis Intra-class axis

In
te

r-c
la

ss
 a

xi
s

In
te

r-c
la

ss
 a

xi
s

In
te

r-c
la

ss
 a

xi
s

Figure 4: Effect of input noise on training dynamics of ReLU networks trained on the tasks in
Section 5.2, in the case of maximal separability of the trained dichotomy, varying the level of input
noise σ2 during training. Each point corresponds a hidden-layer neuron in the network, and the
position of the point indicates the value of the input weights for that neuron at initialization. The
colors of the dots indicate which of the three colored regions the input weights end up in at the end
of training.

F EXPLANATION OF TASKS USED IN SYNTHETIC MULTI-LAYER NETWORK
EXPERIMENTS

Here we describe the tasks used in Section 7. Formally, the “hard” task is generated by sampling
input data of minimal possible dimensionality (5), or equivalently an input data kernel of rank 5,
subject to the constraint of zero input-output kernel alignment. Intuitively, this task involves inputs
generated by 5 binary latent variables, and the input-output function requires a nonlinear conjunction
of all 5 (e.g. whether the number of latent variables set to 1 is even or odd).

The “easy” task involves sampling inputs of maximal possible dimensionality (27 dimensions, i.e. a
rank-27 input data kernel) subject to the kernel alignment constraint. Intuitively, this task, the targets
require nonlinear conjunction of only two of the input dimensions.

4

	Effect of multidimensional output on learned representations
	Impact of constraints on the output weights
	Further details on random aligned kernel sampling
	Explanation of CCGP and PS metrics
	Comparison of weight dynamics at different noise levels in ReLU networks
	Explanation of tasks used in synthetic multi-layer network experiments

