
A OVERVIEW

Through this paper, we propose novel ways to condition and control diffusion models for image
manipulation and translation. Our contributions can be summarized as follows:

• Content and Style Latent Space:
We learn separate content and style latent spaces that correspond to different semantic
factors of an image. This lets us control these factors separately to perform reference based
image translation as well as controllable generation and image manipulation.

• Timestep Scheduling:
We leverage the inductive bias of diffusion models and propose timestep dependent weight
schedules to compose information from content and style latent codes for better translation.

• Generalized Composable Diffusion Model (GCDM):
We extend Composable Diffusion Models (CDM) to allow for dependency between condi-
tioning inputs, in our case, content and style. This results in significantly better generations
and more controllability.

We believe that the proposed sampling techniques are applicable for controllable generation in gen-
eral and not specific to image translation. To support our claims and show the ability of the proposed
techniques for various problem formulations, we show additional results with various settings and
parameters in appendix. We also provide more details on the experimental setup, models and pa-
rameters used to get the results shown in the main paper. Below is a list of contents in appendix.

1. We start by deriving how to decompose the score function of the joint conditioning to obtain
the components in the proposed Generalized Composable Diffusion Model in Section B.

2. We next show a derivation that the GCDM PDF p̃ is proportional to a nested geometric
average of different conditional distributions in Section C.

3. Preliminaries on Diffusion Models are provided in Section D.
4. We explain the training details, and show better identity preservation on faces and

other datasets by combining the proposed sampling techniques with deterministic reverse
DDIM (Preechakul et al., 2022) sampling in Section E.

5. We show that the learned style and content space can be used for attribute specific image
manipulation in Section F. We also show that style and content interpolations between
images can be used for for style/content transfer and mixing. We also analyze what the
content and style encoders have learned by visualizing the nearest neighbors in content and
style space respectively in Section F.3

6. The proposed timestep scheduling was only used during inference in the main paper. In
Section G.1, we evaluate a model trained with timestep scheduling to implicitly learn a
mixture–of–experts (Balaji et al., 2022) model by virtue of varying the conditional infor-
mation at each timestep instead. We show these results on FFHQ in Fig. 13. We also show
experiments with different timestep schedule functions in Section G.2

7. We finally provide some additional results such as text2image synthesis and reference based
image translation in Section H.

1

B DERIVATION FOR REFORMULATING THE SCORE FUNCTION OF THE JOINT
CONDITIONING

One of the interesting properties of Diffusion Models is that a score function of the class conditional
density p(x|y) can be obtained by multiplying a score function of the marginal density p(x) and
a gradient of the likelihood p(y|x). This was utilized in (Dhariwal & Nichol, 2021) for classifier
guidance. Since classifier guidance requires a pre-trained classifier, (Ho & Salimans, 2022) proposed
classifier-free guidance to control the generation.

B.1 CLASSIFIER-FREE GUIDANCE (HO & SALIMANS, 2022)

∇xt
log p(xt|c) = ∇xt

log p(xt, c) (1)
∇xt log p(xt, c) = ∇xt log p(xt)p(c|xt) (2)

= ∇xt
log p(xt)

p(xt|c)
p(xt)

(3)

= ∇xt
log p(xt) + (∇xt

log p(xt|c)−∇xt
log p(xt)) (4)

= ϵ(xt, t) + (ϵ(xt, t, c)− ϵ(xt, t)) . (5)

Practically, ϵ(xt, t) + α (ϵ(xt, t, c)− ϵ(xt, t)) is used where α is a temperature controlling the con-
dition effect.

The ∇xt log p(xt|c)−∇xt log p(xt) can be seen as an implicit classifier.

B.2 COMPOSABLE DIFFUSION MODELS (LIU ET AL., 2022)

∇xt
log p(xt|c1, c2) = ∇xt

log p(xt, c1, c2) (6)
∇xt log p(xt, c1, c2) = ∇xt log p(xt)p(c1, c2|xt) assuming C1 ⊥ C2|Xt (7)

= ∇xt
log p(xt)p(c1|xt)p(c2|xt) (8)

= ∇xt
log p(xt)

p(xt|c1)
p(xt)

p(xt|c2)
p(xt)

(9)

= ∇xt
log p(xt) +

∑
i

(∇xt
log p(xt|ci)−∇xt

log p(xt)) (10)

= ϵ(xt, t) +
∑
i

(ϵ(xt, t, ci)− ϵ(xt, t)) (11)

Similar to the Classifier-free Guidance, hyperparameters for controlling the weight of each condition
are used as well, i.e., ϵ(xt, t) +

∑
i αi (ϵ(xt, t, ci)− ϵ(xt, t)).

Now we introduce how to derive the components of GCDM formulation.

2

B.3 GENERALIZED COMPOSABLE DIFFUSION MODELS

For brevity purposes, we omit the term that is canceled out because it is constant w.r.t. xt, e.g.,
∇xt

log p(c1, c2) = 0 and ∇xt
log p(c1) = 0.

∇xt log p(xt|c1, c2) = ∇xt log p(xt, c1, c2) (12)
∇xt log p(xt, c1, c2) = ∇xt log p(xt)p(c1, c2|xt) NOT assuming C1 ⊥ C2|Xt (13)

= ∇xt
log p(xt)p(c1|c2, xt)p(c2|xt) (14)

= ∇xt
log p(xt)p(c2|xt)

(
p(c2|c1, xt)p(c1|xt)

p(c2|xt)

)
(15)

= ∇xt log p(xt)p(c2|xt)p(c1|xt)

(
p(c2|c1, xt)

p(c2|xt)

)
(16)

= ∇xt
log p(xt)p(c2|xt)p(c1|xt)

(
p(c1, c2|xt)

p(c1|xt)p(c2|xt)

)
(17)

= ∇xt
log

p(xt|c2)p(xt|c1)
p(xt)

 p(xt|c1,c2)
p(xt)

p(xt|c1)p(xt|c2)
p(xt)2

 (18)

= ∇xt
log

p(xt|c2)p(xt|c1)
p(xt)

(
p(xt|c1, c2)p(xt)

p(xt|c1)p(xt|c2)

)
(19)

= −ϵ(xt, t) + ϵ(xt, t, c2) + ϵ(xt, t, c1)︸ ︷︷ ︸
1⃝

(20)

+ {ϵ(xt, t, c1, c2) + ϵ(xt, t)− (ϵ(xt, t, c1) + ϵ(xt, t, c2))}︸ ︷︷ ︸
2⃝

(21)

The term 2⃝ can be seen as a guidance from implicit classifiers.

{ϵ(xt, t, c1, c2) + ϵ(xt, t)− (ϵ(xt, t, c1) + ϵ(xt, t, c2))} (22)
= {ϵ(xt, t, c1, c2)− ϵ(xt, t)− (ϵ(xt, t, c1)− ϵ(xt, t))− (ϵ(xt, t, c2)− ϵ(xt, t))} (23)
= {∇xt

log p(xt|c1, c2)−∇xt
log p(xt) (24)

− (∇xt
log p(xt|c1)−∇xt

log p(xt))− (∇xt
log p(xt|c2)−∇xt

log p(xt))} (25)
= {∇xt log p(c1, c2|xt)− (∇xt log p(c1|xt) +∇xt log p(c2|xt))} (26)

Similarly, the term 1⃝ can be rearranged as

− ϵ(xt, t) + ϵ(xt, t, c2) + ϵ(xt, t, c1) (27)
= ϵ(xt, t) + (ϵ(xt, t, c2)− ϵ(xt, t)) + (ϵ(xt, t, c1)− ϵ(xt, t)) (28)
= ∇xt log p(xt) +∇xt log p(c2|xt) +∇xt log p(c1|xt) (29)

By rearranging those two terms and adding hyperparameters α, λ and {βc, βs}, the proposed GCDM
method in Definition 3.1 in the main paper can be obtained.

Clarification of Eq. (17) and Eq. (18). By Bayes rule, Eq. (17) becomes

∇xt
log

p(xt)
p(xt|c2)p(c2)

p(xt)

p(xt|c1)p(c1)
p(xt)︸ ︷︷ ︸

1⃝

 p(xt|c1,c2)p(c1,c2)
p(xt)

p(xt|c1)p(c1)p(xt|c2)p(c2)
p(xt)2

︸ ︷︷ ︸

2⃝

 .

By rearranging 1⃝ and 2⃝ separately, the above equation becomes

3

= ∇xt
log

p(c2)p(c1)
p(xt|c2)p(xt|c1)

p(xt)︸ ︷︷ ︸
rearranged from 1⃝

 p(xt|c1,c2)
p(xt)

p(xt|c1)p(xt|c2)
p(xt)2

(
p(c1, c2)

p(c1)p(c2)

)
︸ ︷︷ ︸

rearranged from 2⃝

 .

By canceling out p(c1)p(c2) in the first and the last term and by rearranging the equation, we can
obtain Eq. (18), i.e.,

= ∇xt log

�����p(c2)p(c1)

p(xt|c2)p(xt|c1)
p(xt)

 p(xt|c1,c2)
p(xt)

p(xt|c1)p(xt|c2)
p(xt)2

(
p(c1, c2)

�����p(c1)p(c2)

)
= ∇xt

log

p(xt|c2)p(xt|c1)
p(xt)

 p(xt|c1,c2)
p(xt)

p(xt|c1)p(xt|c2)
p(xt)2

 p(c1, c2)

= ∇xt

log

p(xt|c2)p(xt|c1)
p(xt)

 p(xt|c1,c2)
p(xt)

p(xt|c1)p(xt|c2)
p(xt)2

︸ ︷︷ ︸

Eq. (18)

+
��������:0
∇xt

log p(c1, c2),

where ∇xt
log p(c1, c2) = 0 because it is constant w.r.t. xt.

C DERIVATION FOR COROLLARY 3.3.

The derivation starts from GCDM formulation proposed in Definition 3.1 in the main paper.

∇xt
log p̃α,λ,β1,β2

(xt|c1, c2) ≜ ϵ(xt, t) + α
[
λ(ϵ(xt, t, c1, c2)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(c1,c2|xt)

) (30)

+ (1− λ)
∑

i={1,2}

βi

(
ϵ(xt, t, ci)− ϵ(xt, t)︸ ︷︷ ︸

∇xt log p(ci|xt)

)]
.

Given the fact that ϵ(xt, t) = ∇xt
log p(xt), taking integral w.r.t. xt to the equation yields:

log p̃α,λ,β1,β2
(xt|c1, c2) = log p(xt) + α

[
λ(log p(xt|c1, c2)− log p(xt)) (31)

+ (1− λ)
∑

i={1,2}

βi

(
log p(xt|ci)− log p(xt)

)]
+ C ,

where C is a constant. Merging all the terms with log:

log p̃α,λ,β1,β2(xt|c1, c2) = log exp(C) + log
(
p(xt)

(
p(xt|c1, c2)

p(xt)

)αλ (
p(xt|c1)β1p(xt|c2)β2

p(xt)β1+β2

)α(1−λ))
(32)

Taking exponential to the above equation:

4

p̃α,λ,β1,β2
(xt|c1, c2) = exp(C)p(xt)

(
p(xt|c1, c2)

p(xt)

)αλ (
p(xt|c1)β1p(xt|c2)β2

p(xt)β1+β2

)α(1−λ)

(33)

= exp(C)p(xt)
(1−αλ−α(1−λ)(β1+β2))p(xt|c1, c2)αλ

(
p(xt|c1)β1p(xt|c2)β2

)α(1−λ)
.

(34)

Given the fact that β1 + β2 = 1,

p̃α,λ,β1,β2(xt|c1, c2) = exp(C)p(xt)
(1−α)

[
p(xt|c1, c2)λ

(
p(xt|c1)β1p(xt|c2)(1−β1)

)(1−λ)
]α

,

(35)

Since the exponential function is always positive,

p̃α,λ,β1,β2(xt|c1, c2) ∝ p(xt)
(1−α)

[
p(xt|c1, c2)λ

(
p(xt|c1)β1p(xt|c2)(1−β1)

)(1−λ)
]α

, (36)

which is the same as Eq. (7) in the main paper.

D PRELIMINARIES ON DIFFUSION MODELS

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are one class of generative models
that map the complex real distribution to the simple known distribution. In high level, DMs aim to
train the networks that learn to denoise a given noised image and a timestep t. The noised image
is obtained by a fixed noising schedule. Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are formulated as pθ(x0). The marginal pθ(x0) can be formulated as a marginalization of
the joint pθ(x0:T) over the variables x1:T , where x1, ...xT are latent variables, and p(xT) is defined
as standard gaussian. Variational bound of negative log likelihood of pθ(x0) can be computed by
introducing the posterior distribution q(x1:T |x0) with the joint pθ(x0:T). In Diffusion Models (Sohl-
Dickstein et al., 2015; Ho et al., 2020), the forward process q(x1:T |x0) is a predefined Markov
Chain involving gradual addition of noise sampled from standard Gaussian to an image. Hence,
the forward process can be thought of as a fixed noise scheduler with the t-th factorized component
q(xt|xt−1) represented as: q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt is defined manually.

On the other hand, the reverse or the generative process pθ(x0:T) is modelled as a denoising neural
network trained to remove noise gradually at each step. The t-th factorized component pθ(xt−1|xt)
of the reverse process is then defined as, N (xt−1|µθ(xt, t),Σ(xt, t)). Assuming that variance is
fixed, the objective of Diffusion Models (estimating µ and ϵ) can be derived using the variational
bound (Sohl-Dickstein et al., 2015; Ho et al., 2020) (Refer the original papers for further details).

Following Denoising Diffusion Probabilistic Models (Ho et al., 2020) (DDPM), Denoising Diffusion
Implicit Model (Song et al., 2020) (DDIM) was proposed that significantly reduced the sampling
time by deriving a non-Markovian diffusion process that generalizes DDPM. The latent space of
DDPM and DDIM has the same capacity as the original image making it computationally expensive
and memory intensive. Latent Diffusion Models (Rombach et al., 2022) (LDM) used a pretrained
autoencoder (Esser et al., 2021) to reduce the dimension of images to a lower capacity space and
trained a diffusion model on the latent space of the autoencoder, reducing time and memory com-
plexity significantly without loss in quality.

All our experiments are based on LDM as the base diffusion model with DDIM for sampling. How-
ever the techniques are equivalently applicable to any diffusion model and sampling strategy.

E IMPLEMENTATION DETAILS

We build our models on top of LDM codebase1. For FFHQ and LSUN-church, we train our model
for two days with eight V–100 GPUs. The model for AFHQ dataset is trained for one and a half days

1https://github.com/CompVis/latent-diffusion

5

https://github.com/CompVis/latent-diffusion

with the same device. All models are trained for approximately 200000 iterations with a batch size of
32, 4 samples per GPU without gradient accumulation. All models are trained with 256×256 images
with a latent z size of 3×64×64. The dimensions of content code zc is 1×8×8 while that of style
code zs is 512×1×1. t1, t2 and t3 from Eq. 1 in the main paper are timestep embeddings learned
to specialize according to the latent code they are applied for to support learning different behavior
for content and style features at different timesteps. We also experimented with different sizes for
content and style code and chose these for best empirical performance. The content encoder takes
as input z and outputs zc following a sequence of ResNet blocks. The style encoder has a similar
sequence of ResNet blocks followed by a final global average pooling layer to squish the spatial
dimensions similar to the semantic encoder in (Preechakul et al., 2022).

To support GCDM during sampling, we require the model to be able to generate meaningful scores
and model the style, content and joint distributions. Hence, during training we provide only style
code, only content code and both style and content code all with probability 0.3 (adding up to
0.9) and no conditioning with probability 0.1 following classifier–free guidance literature. This
helps learn the conditional and unconditional models that are required to use the proposed GCDM
formulation. The code will be released upon acceptance of the paper.

During sampling, without reverse DDIM, if all the joint, conditionals, and unconditional guidance
are used, sampling time for a single image is 10 seconds. With reverse DDIM to get xT where T is
the final timestep, it takes 22 seconds. This might be lesser if reverse DDIM is stopped early and
generation happens from the stopped point. Specific hyperparameters used to generate results in the
main paper and appendix are provided in Table. 1.

Table 1: Hyperparameters used to generate the figures in the main paper and appendix. Timestep
scheduling is only used in the sampling process. The parenthesis in the second column indicates the
number of steps we used for sampling. Note that βc = 1− βs.

Main paper

Dataset sampler xT α λ βs a b scheduler
FFHQ DDIM+SDEdit (60) reverse DDIM 1.5 0.9 1.0 0.025 550 sigmoid

LSUN-church DDIM (100) q(x991|x0) 2.0 0.5 0.0 - - -
AFHQ DDIM+SDEdit (60) q(x591|x0) 3.0 0.75 1.0 - - -

Appendix

FFHQ DDIM (100) reverse DDIM 1.5 0.9 1.0 0.025 550 sigmoid
LSUN-church DDIM (100) reverse DDIM 5.0 0.5 0.0 0.025 600 sigmoid

6

E.1 CHOICE OF HYPERPARAMETERS

We show results with various sets of parameters that can be used to control the effect of content,
style and joint guidance in the generation in Fig. 1. The gray dotted box represents a baseline that
we start from, and the rest of the other columns show the effects of each hyperparameter. As can be
seen in the figure, each hyperparameter can be modified to get varying effects from style, content and
joint guidance to get desirable results. We note that α works similar to classifier guidance scale in

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝛼
𝜆
𝛽!
𝑎
𝑏

1.5
0.9
1.0
0.025
550

3.0
0.9
1.0
0.025
550

1.5
0.5
1.0
0.025
550

1.5
0.9
1.0
0.025
650

1.5
0.9
1.0
0.1
550

1.5
0.5
0.0
0.025
550

1.5
0.9
1.0
0.025
450

1.5
0.25
1.0
0.025
550

1.5
0.25
0.0
0.025
550

Stronger
style

Stronger
content

1.0
0.9
1.0
0.025
550

Baseline

Figure 1: Example generations for different set of hyperparameters showing the effect of varying
the controllable parameters during sampling. All generations start from xT obtained from reverse
DDIM sampling using the content image.

diffusion models like (Rombach et al., 2022) and finding a good one when fixing λ = 1, a = 0.025,
b = 500 takes lesser time (as independent content and style guidance is not provided when λ = 1). If
the joint guidance has weaker style in the generations, it is recommended to modify λ while setting
βs = 1. We find that this setting mostly gives good results. In rare cases when the style changes are
limited even with smaller λ, increasing b is another option. Modifying a has relatively small effects
on content and style specifically.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝛼 = 1Content Style 𝛼 = 2 𝛼 = 3

W.O. reverse DDIM

𝜆 = 0.9

With reverse DDIM

𝜆 = 0.6 𝜆 = 0.3DiffuseIT SAE

Figure 2: Comparisons between with and without reverse DDIM sampling for FFHQ model. We use
the proposed GCDM and timestep scheduling during sampling. We can clearly see better identity
preservation than not using reverse DDIM, on par with SAE (Park et al., 2020) while still providing
better controllability.

7

Table 2: Quantitative comparison between the variants of ours with and without reverse ddim.

w/o reverse ddim w/ reverse ddim

Ours(α = 1.0) Ours(α = 2.0) Ours(α = 3.0) Ours(λ = 0.9) Ours(λ = 0.6) Ours(λ = 0.3)
FID 20.38 23.68 26.45 11.99 13.40 15.45

LPIPS 0.53 0.57 0.6 0.34 0.42 0.49

E.2 IDENTITY PRESERVATION

We notice that when the proposed sampling technique is used with randomly sampled noise xT for
reference based image translation or manipulation, particularly on FFHQ dataset, that the identity
of the content image is not preserved. This is an important aspect of image manipulation for faces.
One of the ways to preserve better identity is to use the deteministic reverse DDIM process described
in (Preechakul et al., 2022) to obtain xT that corresponds to a given content image. To do this, we
pass the content image to both the content and style encoders as well as the diffusion model to get
xT that reconstructs the content image. This xT is then used along with content code from content
image and style code from style image to generate identity preserving translation.

The comparisons between with and without reverse DDIM during sampling are provided in Fig. 2.
Columns 3-7 are the results reported in our main paper (Fig. 4), and Columns 8-10 are the results
from using reverse DDIM. We can see that style is translated well on to the content image while
preserving the identity of the content image. In contrast to SAE (Park et al., 2020) that preserves
better identity by trading of magnitude of style applied, our approach provides the ability to control
the magnitude of identity preservation and style transfer independently.

Additional comparisons between with and without reverse DDIM are provided in Fig. 3 and 4. We
can see that the results with reverse DDIM better preserves the content identity while applying the
style reasonably. On the other hand, the results without reverse DDIM have stronger impact of style
with lesser identity preservation, which may be preferable in non-face domains such as abstract or
artistic images or for semantic mixing.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content StyleContent Style

with reverse DDIM without reverse DDIM

Figure 3: Comparisons between with and
without DDIM reverse sampling method in
FFHQ dataset.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content StyleContent Style

with reverse DDIM without reverse DDIM

Figure 4: Comparisons between with and
without DDIM reverse sampling method in
LSUN-church dataset.

F EXTENT OF CONTROLLABILITY

In this Section, we present rich controllability of our proposed framework. The latent space explo-
ration is presented in Section F.1. Interpolation results are shown in Section F.2. Further analysis on
the latent space is reported in Section F.3.

8

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Young
Female

Old
Male

Style PC 0 Style PC 2

Young OldSmile
Non
smile

Style PC 1 Style PC 5

Big eyes
Eyeglasses Small eyes

(−) (+)(−) (+) (−) (+) (−) (+)

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Eyeglasses
Single
eyelid

Style PC 6 Style PC 10

Closed
eyes

Widely
opened

Big eyes
Eyeglasses Small eyes

Style PC 8 Style PC 11

Freckles

(−) (+)(−) (+) (−) (+) (+)

Figure 5: Example image manipulation results on FFHQ dataset by altering the style code learned by
the proposed model. We can observe that each PCA component obtained from the style latent code
control interpretable, meaningful semantic factors of an image such as smiling, age, gender, hair
color and texture, accessories etc. The text above each block describes the attribute being modified
while the bottom text refers to the principal component that causes the observed changes. Zoom in
for better visibility.

F.1 IMAGE MANIPULATION WITH LATENT SPACE EXPLORATION

One of the advantages of the regularity of GAN latent space is the ability to find directions cor-
responding to specific attributes of an image that can be used for image manipulation. For ex-
ample, (Härkönen et al., 2020) proposed to use the eigenvectors corresponding to the top princi-
pal components of the latent space to manipulate specific attributes. There are also other ways to
find meaningful edit directions such as perturbing the dimensions corresponding to style vectors in
StyleGAN (Wu et al., 2021) or using classifiers to find editable directions (Karras et al., 2020). Dif-
fAE (Preechakul et al., 2022) also used classifiers to find editable directions in their semantic space.

To test the regularity and editability of the style and content latent spaces of the proposed model, we
apply similar PCA (Härkönen et al., 2020) based techniques. We identify that the style codes control
semantic information and the top principal components correspond to different attributes that can be
seamlessly manipulated. We apply PCA algorithm on the style code zs and the content code zc
of all the training images (60000) to get the top 30 Eigenvectors Vstyle = {v0style, ..., v29style} and
Vcontent = {v0content, ..., v29content}. The obtained basis vectors are used for shifting each individual
sample.

To manipulate the attribute controlled by the style principal component (PC) on an image I, we pass
the content code zIc , style code of the same image modified as z′Is = zIs + ws · v0style and the noise
xT obtained by applying reverse DDIM with content image, for generation. Similar procedure is

9

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Background light

Content PC 0 Content PC 2Content PC 1 Content PC 3

Left/right light Face light & Hair color Black/white hair

(−) (+)(−) (+) (−) (+) (−) (+)

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Pose

Content PC 5 Content PC 21Content PC 12

Face size Sunglasses

(−) (+) (−) (+) (−)

Figure 6: Example image manipulation results on FFHQ dataset by manipulating the content code
learned by the proposed model. The components from content code shows controls that correspond
to spatial attributes such as pose, lighting and background. The text above each block describes
the attribute being modified while the bottom text refers to the principal component that causes the
observed changes. Zoom in for better visibility.

followed for the content code as well. Please note that PCs are obtained from the training samples
while unseen data is taken as input I for the PC experiments.

We performed the analysis with FFHQ and LSUN-church dataset. In FFHQ results, as shown in
Fig.5, we observe that the PCs of the style space contain meaningful high-level semantics. For ex-
ample, the first PC v0style controls gender and age. This indicates that the style encoder learns as
intended under our proposed framework. Example generations for ws ∈ {−3, 0, 3} are shown for
various PCs. Fig. 6 shows the results of manipulating the content codes in FFHQ dataset. Interest-
ingly, the content PCs encode the spatial-relevant information, such as the light in the background,
light on the left and right, pose, and facial shape. For the content PC experiments, wc ∈ {−1, 0, 1}
is used.

We also explored the same experiments with LSUN-church dataset. Since the foreground region
of LSUN-church is not as simple and consistent as that of FFHQ dataset, the content PC results
are not consistent. However, we could find some meaningful style PCs because it is designed to
contain global features. As seen in Fig. 7 design, texture, abstraction, color are some attributes
that are controllable. Images are obtained with ws ∈ {−2, 0, 2}. We believe that using classifiers
can possibly lead to better directions for manipulation but it is interesting that simpler PCA based
technique provide meaningful semantic edit directions.

10

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Blurry

Style PC 0 Style PC 3

Complex
architecture Achromatic

Style PC 2 Style PC 4

SophisticatedClear Colorful
Simple

architecture Abstract

(−) (+)(−) (+) (−) (+) (−) (+)

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Reddish
Modern

Style PC 5 Style PC 8

Rock
texture

Flat
texture

Style PC 6

Darkish
Gothic

Complex
texture

(−) (+) (−)(−) (+)

Figure 7: Example image manipulation results on LSUN church dataset by altering the style code
learned by the proposed model. We can observe that each PCA component obtained from the style
latent code control interpretable, meaningful semantic factors of an image such as texture, color,
abstraction and design. The text above each block describes the attribute being modified while the
bottom text refers to the principal component that causes the observed changes. Zoom in for better
visibility.

11

F.2 INTERPOLATION

We conducted experiments on the latent space interpolation in order to analyze the effects of the
content, the style, and xT during the sampling process. All the results use reverse DDIM with
content image to get xT that is used during sampling.

Fig. 8 shows the content-only interpolation results where style code zs and noise xT are fixed to
the image in the first column. The gray box on the top indicates the fixed input while zc is interpo-
lated between the two images in the first two columns. From the figure, we can see that the style
information and the person identity are maintained while pose and facial shape are changed.

Fig. 9 shows the case xT obtained from reverse DDIM of the images in the first two columns is in-
terpolated while the style and content features are fixed to the image in the first column. The content
(e.g., pose, facial shape) and the style (e.g., beard, eyeglasses, and facial color) are maintained while
stochastic properties change. We can see that identity is not entirely tied to xT but the stochastic
changes to cause change in the identity. This is why using reverse DDIM to fix xT preserves better
identity.

Fig. 10 visualizes the style interpolation while content and xt are fixed to the first image. The
person identity, the pose and facial shape are preserved while the facial expression, gender, and age
are smoothly changed validating our results.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)

0.25 0.5 0.75

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

Spherical Interpolation
𝑧&
" , 𝑥'

(") 𝑧&
" , 𝑥'

(")

Figure 8: Content interpolation results. Style and xT are obtained from images in the first column
while content code is interpolated between images in column 1 and column 2. We can see how
content specific factors vary smoothly.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($)
𝑧%
" , 𝑧&

(")

𝑥'
(") 𝑥'

($)

0.25 0.5 0.75

𝑥(") 𝑥($)

0.25 0.5 0.75

Spherical Interpolation
𝑧%
" , 𝑧&

(")

𝑥'
(") 𝑥'

($)Spherical Interpolation

Figure 9: xT interpolation results where style and content are obtained from images in the first
column while xT is interpolated between reverse DDIM of both images. We can see stochastic
changes causing mild identity changes. Fixing xT to the content image hence provides better identity
preservation for image translation and manipulation.

F.3 INTERPRETING THE LATENT SPACES

We additionally perform K Nearest Neighbor (KNN) experiments to understand what features are
encoded in the content and style latent representations. We pass 10000 unseen images through the

12

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

𝑥(") 𝑥($) 𝑧%
(") 𝑧%

($)Spherical Interpolation

0.25 0.5 0.75

𝑧&
" , 𝑥'

(") 𝑧&
" , 𝑥'

(")

Figure 10: Style interpolation results when content and xT are obtained from images in the first
column. We can see smooth changes in the semantic attributes such as age, gender, smile, eyeglasses
etc. allowing for effective style manipulations.

style and the content encodersto get zc and zs. We then compute the distance of an arbitrary sample
with the entire validation set and sort the 10000 distances.

The results are shown in Fig. 11 and Fig. 12. The first column denotes the input image while the
rest of the columns shows the top 10 images that have the closest content or style features indicated
by zc (first row within each macro row) and zs (second row within each macro row) respectively.
The second column is the same image. We can see that the content feature mainly contains the
pose and the facial shape information while the style has the high-level semantics, such as wearing
eyeglasses, gender, age, accessories, and hair color.

13

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Input Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

𝑧!

𝑧"

𝑧!

𝑧"

𝑧!

𝑧"

Figure 11: KNN results of the content and the style features showing what semantic attributes
content and style codes encode.

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Input Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

𝑧!

𝑧"

𝑧!

𝑧"

𝑧!

𝑧"

Figure 12: KNN results of the content and the style features showing what semantic attributes
content and style codes encode.

14

G TIMESTEP SCHEDULING

G.1 TRAINING AN IMPLICIT MIXTURE-OF-EXPERTS

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

𝜆 = 0.9 𝜆 = 0.5 𝜆 = 0.9 𝜆 = 0.5

Trained with
scheduler

Trained w.o.
scheduler

Figure 13: Effects of using the proposed timestep scheduling in training.

Our timestep scheduling approach proposed in Sec 3.2 in the main paper was applied only during
sampling for results in the main paper. We trained a model with timestep scheduling applied during
training to analyze how it affects the behavior of our framework. Fig. 13 shows the comparisons
between the models trained with and without the scheduler. For the results trained with scheduler,
we used a = 0.1 and b = 529 (SNR−1(0.1)) for both training and sampling. As can be seen
in the rightmost two columns, the style effects are relatively small although given λ is controlled.
It is because the style encoder is trained to be injected only in the early timesteps (0-528), which
makes the style representations learn limited features (e.g., eyeglasses are not encoded in the style,
as shown in the second row). However, we observe better decomposition between factors controlled
by content and style compared to using the timestep scheduling only during sampling. We believe
this is because, using timestep scheduling to vary the conditioning input at each timestep implicitly
trains the model to specialize to the varied conditioning, implictly learing a mixture–of–experts like
model (Balaji et al., 2022). We believe this could be a promising avenue for future research to train
expert models without maintaining different entirely finetuned models and leave further analysis as
future work.

G.2 EXPERIMENT WITH DIFFERENT TIMESTEP SCHEDULES

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

SigmoidLinear Exclusive

Figure 14: Plots for different timestep scheduling strategies. The illustrated plot of the sigmoid
scheduler is from a = 0.025 and b = 550. Bigger a makes it similar to the exclusive scheduler
while smaller a makes it close to the linear scheduler. The blue line indicates the weight scheduler
for the style and the red line is for the content.

We compare the different timestep schedulers illustrated in Fig. 14 during sampling. Note that these
schedules are not used for training. In the exclusive scheduling, the style weight is one if t ≤ 550
and zero otherwise. The content weight is applied when style weight is not applied. In the linear

15

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Sigmoid (a=0.025, b=550) Exclusive (550)Linear

Figure 15: Comparison between different timestep scheduled during sampling. Sigmoid has a softer
schedule with more controllability and thus results is more natural generations compared to the other
techniques.

scheduling, the style weight linearly decreases from 1 at t = 0 to 0 at t = 999 while the content
weight increases linearly from 0 to 1. The sigmoid scheduling is the one propose in Eq. 2 and 3.

The comparison results are shown in Fig. 15. We can observe that the exclusive scheduling shows
either magnified style or unnatural generations compared to the sigmoid scheduling. Since it is dif-
ficult to exactly define the role of each timestep, naively separating the point where to exclusively
apply content and style yields the undesirable results. The linear schedule does not work for all im-
ages and has limited control. However, the sigmoid scheduling provides a softer weighting scheme
leading to better generations and has additional controls to get desired results.

16

H ADDITIONAL RESULTS

In this Section, we provide additional results of our proposed framework. Fig. 16 shows example
generations using CDM and GCDM from the same model. CDM consistently shows two failure
modes specific to reference based image translation. First, content-style overlap showing that con-
tent and style codes have certain common information that is not further disentangled during sam-
pling (e.g., first and second rows in the figure). Next is unnatural generation (e.g., third and fourth
rows) where the generated images do not look realistic enough.

Fig. 17 shows the effect of the starting point xT given same content and style codes. Fig. 18 shows
the additional results on FFHQ dataset. Fig. 19 shows the results of multiple style and single content,
and vice versa on LSUN church dataset. Fig. 20 shows the hyperparameters used for CDM and
GCDM on Stable Diffusion V2.

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Content Style CDM GCDM

Figure 16: Comparisons between GCDM and CDM demonstrating that CDM can output unnatural
images while GCDM can generate realistic images. We use DDIM (Song et al., 2020) sampler, and
the reverse process is done from T = 600 inspired by SDEdit (Meng et al., 2021). z600 is obtained
by q(z600|ELDM (xc)) using the content image. xT is randomly sampled.

© 2022 Adobe. All Rights Reserved. Adobe
Confidential.

Win: Alt-F9 (or Alt-Fn-F9 on some laptops)

Content Style Different 𝑥!~𝑁(0, 𝐼)

Figure 17: Example showing the role of the denoising network during sampling when content and
style codes are unchanged. xT is randomly sampled. The images show that the denoising network
play a role in stochasticity since the outputs have consistent shape, color and texture information
while minor details of the buildings or clouds are changed.

17

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

StyleContent StyleContent StyleContent StyleContent

Figure 18: Additional results on FFHQ. The results are sampled by reverse DDIM.

© 2022 Adobe. All Rights Reserved. Adobe Confidential.

Content Style Content StyleContent StyleContent Style

Figure 19: Additional results on LSUN-church. The results are sampled by reverse DDIM.

18

CDM
(𝛼 = 9.0, 𝜆 = 0.0, 𝛽! = 1.0, 𝛽" = 1.0)

𝑐! = Photo of a bear
𝑐" = Photo of a car in the red forest
𝑐!," = Photo of a bear and a car in the red forest

GCDM
(𝛼 = 9.0, 𝜆 = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 0.85, 𝛽! = 1.0, 𝛽" = 0.0)

CDM
(𝛼 = 9.0, 𝜆 = 0.0, 𝛽! = 1.0, 𝛽" = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 1.0)

GCDM
(𝛼 = 9.0, 𝜆 = 0.5, 𝛽! = 0.0, 𝛽" = 1.0)

𝑐! = Photo of a couch
𝑐" = Photo of a dog sitting in the living room
𝑐!," = Photo of a couch and a dog sitting in the living room

Figure 20: Text2image synthesis results with GCDM hyperparameters.

19

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala, Timo
Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with an ensemble of
expert denoisers. arXiv preprint arXiv:2211.01324, 2022. 1, 15

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 8780–8794. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf. 2

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12873–12883,
2021. 5

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering interpretable
gan controls. Advances in Neural Information Processing Systems, 33:9841–9850, 2020. 9

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022. 2

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020. 5

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of StyleGAN. In Proc. CVPR, 2020. 9

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation
with composable diffusion models. Proceedings of the European conference on computer vision (ECCV),
2022. 2

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:
Guided image synthesis and editing with stochastic differential equations. In International Conference on
Learning Representations, 2021. 17

Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and Richard Zhang.
Swapping autoencoder for deep image manipulation. Advances in Neural Information Processing Systems,
33:7198–7211, 2020. 7, 8

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion autoen-
coders: Toward a meaningful and decodable representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022. 1, 6, 8, 9

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022. 5, 7

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256–2265.
PMLR, 2015. 5

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020. 5, 17

Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls for stylegan image
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12863–12872, 2021. 9

20

https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

