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A APPENDIX

The appendix is divided into three parts. We first introduce some preliminaries before giving detailed
proof of the main results. We finally discuss more details for truncated mechanisms.

A.1 PRELIMINARIES

We give some specific forms of operator 7" in KM iteration in Table[I] The SGD, SPGD and ADMM
algorithms are the special cases of KM iteration.

Table 1: Overview of several first-order algorithms

Algorithm Operator identity (7") Subgradient identity

SGD I—~Vf T = Wk — 4, V£ (zF)

SPGD (I4~8g)~ (I —~4Vf) Tl = Wk +(pr0x,ykg(1—7ka(wk)) —zF)
ADMM (I+~af)~t [(IJr'yag)’l (I —~Of) +~0f] Pt = Wak + %reﬂﬁ,k_af orefly, a4 (zk)

Table[2]concludes the sensitivity for different typologies in decentralized learning when the step size
is chosen as o, = wand o, = 1/(k + 1).

Table 2: A -Sensitivity under Different Graph Typologies

Graph typology ~ Spectral gap (I-\)  Sensitivity (ay, = @) Sensitivity (o, = (1/(k + 1)))
Ring 0(+%) O(LE + M2aK) o(BEE) L M2 In(K))

Grid O(Frrescay) O(LE 4 Mlog(M)aK)  O(BE) | Mlog(M)In(K))
Star O() O(2K + MaK) O(‘"A%—? + M In(K))
Exponential O(m) O£ +log(M)aK) O( 1’]:4@) + log(M) In(K))
Full connected 1 o(LE 4 aK) o) |+ In(K))

We know that the connection between local servers is described by a mixing matrix W for different
topologies. The mixing matrix has a special property given in Lemmal/T]

Lemma 1 (Convergence of Mixing Matrix [Zhu et al.| (2022)) Let P € RM*M pe g matrix whose
elements are all 1/M. Given any t € 7%, the mixing matrix W € RM*M sarisfies,

HWt o PHop < )\t’

where || || op denotes the spectral norm. Note that W corresponds to some Markov chain’s transition
matrix, and the parameter 0 < \ < 1 characterizes the speed of convergence to the stationary state.

In this paper, we consider three topologies: ring, star, and full connected graph in Figure 4]

Figure 4: Structures of the connected graph from left to right: ring, star, full connected.

Definition 7 (Nonexpansive Operator) A mapping T : X — X is nonexpansive if |Tx — Ty|| <
||z — y|| holds for all z,y € X.
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We next introduce differential privacy based on KL divergence, which measures the distance be-
tween two distributions. The bound given in Definition [§]is useful for establishing the composition
theorem.

Definition 8 ((¢, o)-Rényi Differential Private Duchi & Rogers|(2019)) For distributions P and
Q, Do (P||Q) := 215 log [(dP/dQ)*dQ is the Rényi a-divergence. For o > 1, A is (g, )-Rényi
differential private if for all 2,2/, D, (AE)|A(Z")) < e. By taking a = 1, we obtain e-KL-
privacy. If A is e-differential private, then for any o > 1, it also satisfies,

Do (AE)|A(Z)) < min {2(a — 1) + min {2, (e* — 1)} e, e} .

Lemma 2 (Mohri et al. (2018)) Suppose {Y;}Y.| is a sequence of random variables, Y; €
[—ci,ci). Let {X;}N.| be a sequence of random variables such that E[Y; | X;_1,---, X;] < C;,
where {C;} V| is sequence of constant real numbers. Then,

Lemma 3 (Dwork & Rothblum|(2016)) For any random variables Y,Z, we have that
D} (Y||Z) <&, D) (Z|Y) < ¢ if and only if there exist r.v.s, Y', Z' such that A (Y||Y') <
2o A(Z)|Z) £ L5, D (Y'|Z') £ e,Ds(Z'|)Y') < e, where Doo(X|)Y) =

P(XeU P(XeU)—46
max, esupp(X) |:10g p((ygU”’ Dgo(X”Y) = IMaXyesupp(i):P(YEU)>5 [IOg %}, and

A(X|]Y) = maxy |P(X € U) — P(Y € U)|.

A.2 PROOF OF MAIN RESULTS

A.2.1 PROOF OF LEMMA[4]

Lemma 4 z%(m) is generated by for a given relaxed parameter o, € (0,1]. Define x* =

i Zi‘le x®(m) is an average iterate of all local agent, m € {1,--- , M}. Under Assumption
we have

M B k—1
[Z |2 (m) — xk||2] < ZVMBZaj/\kflfj.

m=1 3=0

Proof. Let
XF o= [zF(1),- -, 2®(M)]T e RM*P,
AP = [T (" (1); 1) — 2" (1), -+ T (@ (M); &5y (an) — (M) T
The matrix form of (T)) is as follows,
X1 = A(XF) = WXF + AP,
where W satisfies Definition [T and Lemma[l} We then have,
(I-P)XF ! = (1-P) [WXF 4+ AF].

Therefore,
[(I=P)X | < || (WX 4 A%) — (PWXF) || + (| A%
< WXk + Ak - PWX*|| + apVMB
< [WX* - PWX*|| + 204,VM B
= [|(W - P)(I - P)X*|| + 2a,VMB
<A ||@-P)X¥|| + 20,V MB

k
SN -P)XO| +2VMB Y arA
=0

The result of Lemma ] follows.
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A.2.2 PROOF OF THEOREM/[I]

Without loss of generality, we assume that two random sets =’ and Z” differ at one point in the
first NV samples of agent 1, and the iteration starts with samples selected from this agent. Then with
probability, 1 — -, the sample selected by D-KM is the same in both =’ and Z”. Note that,

pRHL K+

1 L&
= M Z { [Z wmll'K(l) — QK (T(xK(m);&K(m)) N xK(m))]
=1

m=1

- [Z wmlyK(l) — QK (T(yK<m>;£iK(m)) - yK(m))] }

M Z { fozK ,EZK(m)) K)] - [yK*OéK (T(nyiK(m))*yK)]}Jré‘K’

where,

1 M M

m=1 [=1

+oag| (T@S(m); & e om)) — 25 (M) = (T(@"; &g (my) — =) |1}
| MM
+ 37 2 A wm @) — v
m=1 [=1

ag|[ (TW™ (m); & my) —v™ (M) = (TS5 & om) — ¥™) 1}
M (M
Z {Zwml HIK(Z) — a?KH + ZQKHxK(m) — xKH}
T_ M l_lM
+ Z {ZwmlHyK(l)_yKH +2aKyK(m)_yK|}
m=1
M
Z 2 @) = 2| + 200 Y (|25 (m) ~ xKn}

m=1

M
{ZHZJ — "]+ 20k ) yK(m)—yKI}
m=1

E \

=

IN
S
— /—’H

M 3
(1 + 205 )V [Z Ja* (m) - xKP]
m=1

=[-

M 3
4 (0 200V [Z Iy (m) —y“]

m=1

K-1
<4(1+2a)B Y AT 4 205 (1 4 2a)||(T- P)XO| VM
j=0

K—1
_41+2aKBZa/\K1J (A1)
Due to the nonexpansweness of the operator T, we have that,
732 1% — e (76" = 9] - — o (T80 )|

< IIw —yKII = Ox-
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That is,

K—-1
041 < 0k +4(1+20)B Y ap AT, (A2)
j=0

On the other hand, with probability %, dKM selects the one sample to update in which =’ and &
differ.

X

M M
:M Z { [ZwmlxK(l) — K (T(IK;fiK(m)) - IK)]
m]\; =1
- [Z wmy™ (1) = ok (T(Y™ ;€ (m) — yK)]
1=1
1 M
+7 { [Z wiz™ (1) — ag (T(2";&,cq)) — l"K)]
1=1

M
- Lz: wiy™ (1) — ak (T(yK;fz/-Ku)) - yK)
1

K+1 K+1
-y

+ QK

1 M

:M _ {[J?K — QK (T($K§§z‘x(m)) - xKﬂ - [yK — 0K (T(yK;fiK(m)) - yK)]}

2
M {[xK —ar (T &) —2%)] - {yK T oK (T(yK;fz{x(l)) - yK)} } 3k

From the inequality we have ||Sk|| < 4(1+ 2ak) B Z]K:—Ol a; M=177 We conclude that

K—-1
M—1 Sk + 20k B i
"+ =y Y < bk + K I, B2 b da(1+20)BY apAf1790 (A3)
j=0
Inequalities [A2] [A3]imply that
a K—-1
t K—-1—j
Edxci1 < Box + T +4(1+20x) B ;0 9 S

which indicates that,

BZk 0 Ok k—1—
Edgy1 < — 5% +4B21+2akZo¢)\ =,
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A.2.3 PROOF OF THEOREM[Z]

Let =% be the sample set with size M N which differs = at only point &y. Note that

E~]I§MN {BI(EE) {E(B(E))H - EN]EMN [BI(EE) LJ%M [é (mB(E)vf)]”

=B e~z BI(EE) [ (xB(E)’&nB(E))]H

R
- ENEMN g@ /0 P (K (‘TB(E)v gms(g)) > t) dt‘|‘|

M R
=_E |E > /0 P (¢ (zp(z),&m) > t,mpEz) = m) dtH
R
S PMN |£nE £0np Z /0 (6 P (g(xB(Eﬁo)agm) > tamB(E) = m) + 5) dt

f: esEN%:;MN LNEIEoNP [/OR (IP’ (f(xg(ggo),ém) > t,mpz) = m)) dt

=1

IN

|

+ M6

IN

+ M,

R
/O (P (£ (zBz1Ute0})s ém) > tmpz) = m)) dt

m
M
< S
- Z:le E’NP@IN_l lgmNEEONP
m=

where the first inequality holds because the algorithm B(E) is (¢, ¢)-differentially private. Let = =
= U {€Y}, and &,,, & are i.i.d following the distribution P. We have

M R
m:leag,w@ml meﬂ]ﬁfm [/O (P (¢ (zB0te0)) Em) > tmpz) =m))dt| | +Ms
M R
= Tnz::l eEEN%MN [gIEP |:/0 (IP) (€ (.’EB(E), f) >t,mpE) = m)) dt| | + Mo
R
= eécNPMN L~P /0 (]P (£ (fB(E)»g) > t)) dt| | + Mo
= E LINEP [EB( ) (e (xs(s)aé)]H + M.
Thus we obtain,
&, & [tee)]] <k, | & wee)]
It follows that
_E. & [Lee)] - _E,, |2 e
e Mi-e B LS]EEE : [E(B(E)) ] +_E.. [BI(EE) [ﬁ(B(E))H

<(1—e®)R+e *Mé.

The other side can be similarly obtained. Now we complete the proof.
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A.2.4 PROOF OF THEOREM[3]

Due to ﬁ(B(E)) > 0, for any € > 0, we have,

_E. [BE [L(B(E))]] >_E . {BJ(EE) [L(B(E))H{L(B(E))Zfl(B(E))-k—e}}]

=_E. LJFE) (LBE)+ E)H{L(B<a))zi(8<z))+e}ﬂ :

Therefore,

E [E(B(E))H

E~PMN [B(E) E~PMN {3(5)

=_E. L;E [(ﬁ(B(E))+E)H{Lw(E))zﬁ(zﬁ(a)He}H
- E.. [BE {L(B(E))H{Lw(a))z£<6<a>>+e}}}

-_E. [BE {L(B(E))H{Lw(a)<£<B<E>>+e}]}

= — (e + R) - P(L(B(Z)) < L(B(T)) + ¢). (A4)
Note that Theorem 2]indicates

E,|ELB)-_E, |E]|
E~PMN |:B(E)[ (B( ))]} E~PMN |:B(E)
This result combined with equation [A4]implies that

1—e®)R—e M

P(L(B(Z)) < L(B(E)) + ¢) > <= (

e+ R
A.2.5 PROOF OF THEOREMM]
For any subsets H, Hy, - - - , Hyps, with Deﬁnition@, we have that,
Pz ({X(m)}%:l € H) M Pg (X(m) € Hm)
log — = log H -
Po ({X(m)M, € H)  asi P (X(m) € Hy)

< min{min{2,e*” — 1} e, em} = Cxr(m).

Based on Lemma 2] we have that,
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~ 1t2 . ~
Let 6 = e~ 7, thatis, t = y/2log -, V6 > 0. It follows

M P(Am(a) e Hm) M . 0
1 > +4/2l0g = -

Therefore, { X (m)}M_, is (¢/,6)-pDP with &/ = Zﬁf:l Chrr(m) + \/<2 leg %) (E%:l s?n)

Since {5: }k _o 18 (Em; dm )-DP, for each m = 1,--- , M. Based on Lemma we have that
there exists r.v.s. YH( ) =/ (m), such that,

5"1/
egfm + 1’

Om
egm + 1

A (X=(m)|¥z(m)) < A (XK= (m)l| Z=(m)) <

Do (?E(m)HZE/ (m)) <em, Du (ZE/ (m)||175(m)) <em.

Since { X (m)}M_, is ¢’-pDP, we need to prove that,

HP<X~ )€ Hy) < e HIP( (m) € Hy) +9".

Note that,

which indicates that,

HP(Y_ EH)<mHlmm eEM7]}D(~H 1 ) P(sz(m)eHm).

Case 1: [[)_ 1{ E"L’IP’(ZE(I)GHm)} =<

[1 P (v=(m) € H,)
m:1M 1 .
< ngl min { e, . (Z:,(m) - Hm) P (Z:/ (m) € Hm)
M 1 ~
+ }__[1 min { €=, . (ZE/ e Hm) P (X:f(m) S Hm>
M
B 1711_:[1 e P (Z: (ri) e Hm) {P (ZE (m) € H’”) 1 f;e }

Because
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M
H min { e, - P ( Xz (m) € H,,
e sty (o )

o 1 ~ 5
— H min ¢ ™, — {IP (ZE/ (m) € Hm> — ma }
m=1 P (ZE’ (m) € Hm) L esm

t 1 5
§17H 1 —min g e*™, - ma = A
m=1 P (ZE/(m) € Hm) 1+esm
‘We have that,
M ) M 1 )
H P (YE(’I’TL) € Hm) < H min esm, — P (XE/(’I’TL> S Hm) + Aq.
m=1 m=1 P (ZEI (m) € Hm)
Combing the inequality P (~5( ) € Hm> >P (X'E(m) € Hm> — 1_fggm . We have,
M 3
I1e (Xg(m) € Hm)
m=1
M 1 Mo
< min ¢ e, - P ng(m) €EH,)+A+ i
ng IED (ZE’ (m) c Hm) ( ) 'rnl_:[1 1 + ecm
M ~
<e® H P (XE/(TTL) S Hm> + Ay
m=1
M M 5
+ IP<~5 eHm) _ {P(XE eHm) —}
M M 5
< T P(X= Hpy)+ A +1— 1——" ).
e nl_:[l ( _(m)e )+ 1+ 7n1__[1< 1+€€’”>
Thatis, &' =1 — Hn]‘le (1 - 1fg;m) + Ay
. M m 1 ’
Case2: [[ _, {65 , ]P’(ZE/(m)eHm)} > ef
There exists a sequence of real numbers {a,, }}_, such that,
1 M
e’ < min g €™, —— , Z am = €.
P (Z:/ (m) € Hm> m=1
Note that
M ~
I e (Yz(m) € H,,
T ¥ )
M 1 .
< H min { e, P (Z:/ (m) € Hm)
m=1 P (ZE/(m) S Hm)
M . M s
am =/ — am =/ — m
+n£[1e IP’(X: (m) € Hm) ml":[le {]P’(Z (m) € Hm) 1+esm}
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On the other hand,

M 1)
[] e® (22 (m) € ) - ] e {P (Z2(m) € H,.) —

M

<1- H{leam Om }:AQ.

m=1

which indicates,

In further,

In general,

M

H P (X'E(m) € Hz)

m=1

< ﬁ e’ P (le(m) € Hm) + Ay

m=1

I

M

m

M
<
m=1

IP(XE/(m) eHm) +A2+{1— [Ja-

m=1

i 5”L M
1 []P’ (X=(m) € Hy) - 1 esm} } +11*

Leté’:l—{H%ﬂ(l—e“%fé’;m)}+{1—HM (1- - )}

Thus, we have ¢’ = min {e1, 3,23}, where,

M M )
€1 = Z €m, €2 = Z Ckr(m)+ 210%(5)(
m=1 m=1

1=

M

M M 9

Em __ 1 m Zm: 6771

53:§:u+ E 2¢2 log SRR
m=1

esm 41

m=1
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A.2.6 PROOF OF THEOREM[3]
Denote ¥, := x¥(m), 2V as the v-th element of z* € RP. We know that

M
v,k ~v,k
wml — Il ) Wml :Cl — :El
=1

P M

-3

v=1m=1

M ~ M
(M ) ) S0 {(wz“’“fx?”“) — |+ 0 Wit

Tkm\/ Do1m1 Wiy

M 1\{ . |:( v,k_~'u,k:) _ vm:| M M
<i20km<zwfm) >im Wout [ (7 Zy Hi +M2PM'ZZMEM

v=1m=1 Zl 1w m=1[=1
M M Z Z Wyl W Iv’k _FUR)
( > l1=1 2uly=1 Wmly mis I, Ao Iy Iy i1
\/Zzl 1 wmz1 \/212 1 wml2

2
The last inequality holds since > *_, (u};J) < pu?. Considering that the weight difference is
normally distributed,

(zh, = 75) ~ N (tkym: 0o dp), m=1,...,M,
with g, satisfying Hukag < pp* and 0}, € R being bounded by 0%, we obtain,
M vk ~vk)
D=1 Wmi Kfl Ty ) “k,m} idd

M2
Tk,m\/ D=1 Woy

2

v,k ~uv,k v

Zl 1wml 931 - )*Hk,m} 5

~X%(1), l=1,.
Zz 1w

Further, VI, E le — ) k) uy l} = 0, therefore, we have,
M M v,k ~v,k
) > 211:1 212:1 Winily Wrniy P 1, [(3711 — @) ) - uZ,zl}
ml
M 2 2
\/Zl1:1 Wini,y \/Zl2:1 Wint,

(0,1).

It follows that

ey

Asa consequence,

EMW(X’“—X’“)HZ <p022/\2 +p/RZA2 <p(o®+p2) [1+(M—-1)],

m=1

A.2.7 PROOF OF THEOREM[G]

We discuss the cases by the value of z. Note that, for any S € R, z € (—o0,—%),P.(z) <
P.(z + v). Therefore, P, (S) — P, (S + v) < 0 < 4.

Ifz€[-%£,0),z4+v€[-5,0),then0 < v < §,

pZ(Z) _ eu +2'uz
p(z +v)

Therefore, P, (S) — e*P.(S +v) = [4 (p2(2) — ep(z +v)) dz < 0 < 0.

<1<e®.
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w2420z A2
P

If z € [—%,0),2—1—1}6 [0,A),e” w2 <e>-

< e°. Therefore, P, (S) — P, (S 4+ v) < 4.

For any z € [0, A — A], we still have pf(zz(j_)”) < pzp(;(-i)A) < ef.

Forany z € [A — A, 4+00),
P.(S)—e P, (S+v) <P, (A—A)—eP.(A—A+v)

A—A+v “+o0 +o0o
— p.(z)dz + / p.(2)dz — 65/ p.(2)dz

A-A A—A+v A—Atov
A—A+v “+o00
= / p.(2)dz + / (1 —€%)p.(2)dz
A-A A=A+
A—A+v A
< / px(2)dz < / px(2)dz = 6.
A-A A-A

Based on the above inequality, for any S € R, |d| < A,P,(S) — e“P,(S + d) < §, we have the
conclusion of the theorem.

A.3 TRUNCATED GENERALIZED GAUSSIAN MECHANISMS

In this section, we give more details to determine an appropriate bounding parameter in noise ad-
dition. Given the privacy budget € and 6, we are interested in deriving the minimum amount of
noise added to shared parameters to achieve the highest utility while preserving differential pri-
vacy. Motivated by the observation that under (e, §)-differential privacy, the decay rate defined as
p(z)/p(z + A) shall be as high as possible without exceeding e, except for a set of points with
a probability mass d [Mironov|(2017)]. We then truncate a probability density function (pdf) with
an appropriate normalization factor to restore the integral over the truncated span to be 1 and cal-
culate an appropriate scaling parameter. The required scaling parameter depends upon the privacy
parameter (e, ). Specifically,

 The probability mass J is equal to the area under the pdf in the last interval with length A
over the support of pdf, i.e., the interval [A — A, A].

e The decay rate p(’;(f)A) is exactly e€ for z € [0, A — A).

The parameter A is then derived by solving the equations ffA p(z)dz =1 and ff_A p(z)dz = 6.

Figure 5: Noise probability density function.

We address that the truncated GG mechanisms can be extended to the case b > 3 in practice to pre-
serve a differential privacy guarantee. The major challenge is to calculate the boundary parameter,
as indicated by A, given the pre-specific parameters, such as A, o, and €. As it requires solving
multiple equations or using the approximation methods thereof that could limit its utility in the real
application. This paper thus limits the discussion to the case b = 1,2 which is relatively more
applicable in practice.

23



	Appendix
	Preliminaries
	Proof of main results
	Proof of Lemma 4 
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	Truncated Generalized Gaussian Mechanisms


