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ABSTRACT

While diffusion models can generate high-quality images through the probability
flow process, the theoretical understanding of this process is incomplete. A key
open question is determining when the probability flow converges to the training
samples used for denoiser training and when it converges to more general points on
the data manifold. To address this, we analyze the probability flow of shallow ReLU
neural network denoisers which interpolate the training data and have a minimal
ℓ2 norm of the weights. For intuition, we also examine a simpler dynamics which
we call the score flow, and demonstrate that, in the case of orthogonal datasets, the
score flow and probability flow follow similar trajectories. Both flows converge
to a training point or a sum of training points. However, due to early stopping
induced by the scheduler, the probability flow can also converge to a general point
on the data manifold. This result aligns with empirical observations that diffusion
models tend to memorize individual training examples and reproduce them during
testing. Moreover, diffusion models can combine memorized foreground and
background objects, indicating they can learn a "semantic sum" of training points.
We generalize these results from the orthogonal dataset case to scenarios where
the clean data points lie on an obtuse simplex. Simulations further confirm that
the probability flow converges to one of the following: a training point, a sum of
training points, or a point on the data manifold.

1 INTRODUCTION

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), new images
are sampled from the data distribution through an iterative process. Beginning with a random
initialization, the model gradually denoises the image until a final image emerges. At their core,
diffusion models learn the data distribution by estimating the score function of a Gaussian-blurred
version of the data distribution. The connection between the score function and the denoiser, often
called Tweedie’s identity (Robbins, 1956; Miyasawa et al., 1961; Stein, 1981), holds only under
optimal Bayes estimation. Moreover, for the estimated score to be a true gradient field, the denoiser
must have a symmetric positive semidefinite Jacobian matrix (Chao et al., 2023; Manor & Michaeli,
2024). However, in practice, neural network denoisers are used, and their Jacobian matrix is generally
non-symmetric, raising open questions about the convergence of the sampling process in score-based
diffusion algorithms.

Diffusion models typically use a stochastic sampling process, which can be described by a stochastic
differential equation (SDE) (Song et al., 2021b). Alternatively, a deterministic version of the sampling
process can also be used, formulated as an ordinary differential equation (ODE) (Song et al., 2021a),
called the probability flow ODE. We aim to theoretically analyze the probability flow, in order to
illuminate this complex sampling process. However, practical diffusion architectures are typically
deep and not fully connected, making it difficult to obtain theoretical guarantees without making
additional strong assumptions (e.g., assuming a linearized regime like the neural tangent kernel (Jacot
et al., 2018)). Therefore, in this paper we focus on diffusion models based on shallow ReLU neural
network denoisers. These are both simple enough to allow for a theoretical investigation and rich
enough to offer valuable insights.

To gain intuition into the dynamics of the probability flow ODE, we also explore a simpler ODE
that corresponds to flowing in the direction of the score of the noisy data distribution, for a fixed
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noise-level. We call this the score-flow ODE. The score flow aims to sample from one of the modes
of the noise-perturbed data distribution. We explore both the probability flow and the score flow
ODEs for denoisers with minimal representation cost that perfectly fit the training data. Our analysis
reveals that, for small noise levels, the trajectories of both flows is the same for a given initialization.
However, the scheduler induces “early stopping”, which determines whether the probability flow
converges to training samples or to other points on the data manifold. This analysis provides insights
into the stability and convergence properties of these processes.

Our contributions We investigate the probability and the score flow of shallow ReLU neural
network denoisers in the context of interpolating noisy samples with minimal cost, specifically in the
“low-noise regime”, where noisy samples are well clustered.

• Theoretical: We prove that when the clean training points are orthogonal to one another,
the probability flow and score flow follow a similar trajectory for a given initialization
point. However, while the score flow converges only to a training point or to a sum of
training points, the probability flow can also converge to a point on the boundary of the
hyperbox whose vertices are all partial sums of the training points. This happens due to
“early stopping” induced by the scheduler. We generalize this result to the case where the
training points are the vertices of an obtuse simplex.

• Experimental: We train shallow denoisers that interpolate the training data with minimal
representation cost on orthogonal datasets. We start by empirically demonstrating that the
score flow ODE corresponding to a single such denoiser typically converges either to a sum
of training points, which we call virtual training points, or to a general point on the boundary
of the hyperbox (it converges to a training point only in rare occasions). We then show that
the probability flow ODE, which uses a sequence of denoisers for varying noise levels, also
converges to virtual points and to the boundary of the hyperbox, albeit at a somewhat lower
frequency compared to the training points.

2 SETUP AND REVIEW OF PREVIOUS RESULTS

We study the denoising problem, where we observe a vector y ∈ Rd that is a noisy observation of
x ∈ Rd, i.e. y = x+ ϵ, such that x and ϵ are statistically independent and ϵ is Gaussian noise with
zero mean and covariance matrix σ2I . The MSE loss of any denoiser h(y) is

LMSE (h) = Ex,y ∥h (y)− x∥2 , (1)
where the expectation is over the joint probability distribution of x and y. The minimizer of the MSE
loss is the MMSE estimator

hMMSE (y) = Ex|y [x|y = y] . (2)
In practice, since the true data distribution is unknown, we use empirical risk minimization with
regularization. Consider a dataset consisting of M noisy samples for each of the N clean data points
xn such that yn,m = xn + ϵn,m, n = 1, . . . , N , m = 1, . . . ,M . Then, one typically aims to
minimize the loss

L (θ) =
1

MN

M∑
m=1

N∑
n=1

∥hθ (yn,m)− xn∥2 + λC(θ) , (3)

where θ are the parameters of the denoiser model hθ and C(θ) is a regularization term. Similarly to
(Ongie et al., 2020; Zeno et al., 2023), we focus on a shallow ReLU network with a skip connection
as the parametric model of interest, given by

hθ(y) =

K∑
k=1

ak[w
⊤
k y + bk]+ + V y + c , (4)

where θ = ({θk}Kk=1; c,V ) with θk = (bk,ak,wk) ∈ R × Rd × Rd and c ∈ Rd,V ∈ Rd×d and
the regularization term is a ℓ2 penalty on the weights, but not on the biases and skip connections, i.e.,

C(θ) =
1

2

K∑
k=1

(
∥ak∥2 + ∥wk∥2

)
. (5)
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Zeno et al. (2023) showed that in the “low-noise regime”, i.e. when the clusters of noisy samples
around each clean data point are well-separated1, there are multiple solutions minimizing the empirical
MSE (first term in equation 3). Each of these solutions has a different generalization capability. They
studied the solution at which the ℓ2 regularization of equation 5 is minimized.
Definition 1. Let hθ : Rd → Rd denote a shallow ReLU network of the form of equation 4. For any
function h : Rd → Rd realizable as a shallow ReLU network, we define its representation cost as

R(h) = inf
θ:h=hθ

C (θ) = inf
θ:h=hθ

K∑
k=1

∥ak∥ s.t. ∥wk∥ = 1, ∀k , (6)

and a minimizer of this cost, i.e., a ‘min-cost’ solution, as

h∗ ∈ argmin
h

R(h) s.t. h(yn,m) = xn ∀n,m . (7)

In the multivariate case, finding an exact min-cost solution for finitely many noise realizations is
generally intractable. Therefore, Zeno et al. (2023) simplified equation 7 by assuming that h(y) = xn

for all y in an open ball centered at xn. Specifically, letting B(xn, ρ) denote the ball of radius ρ
centered at xn, we simplify notations by writing this constraint as h(B(xn, ρ)) = {xn}. Consider
minimizing the representation cost under this constraint, that is, solving

h∗
ρ (y) ∈ argmin

h
R(h) s.t. h(B(xn, ρ)) = {xn}, ∀n. (8)

Even this surrogate problem is still challenging to solve explicitly in the general case. Nonetheless, it
can be solved for two specific configurations of training data points, which serve as prototypes for
more general configurations. The first case is when all the data points form an obtuse simplex, i.e.,
the generalization of an obtuse triangle to higher dimensions, and the second case is when the data
points form an equilateral triangle (see Appendix B).

3 THE PROBABILITY FLOW AND THE SCORE FLOW

Once we have an explicit solution for the neural network denoiser, we estimate the score function
by leveraging the connection between the MMSE denoiser and the score function (Robbins, 1956;
Miyasawa et al., 1961; Stein, 1981),

hMMSE (y) = y + σ2∇ log p (y) , (9)

where p (y) is the probability density function of the noisy observation. From this relation, we can
estimate the score function ∇ log p (y) as

s (y) =
h∗
ρ(y)− y

σ2
, (10)

where h∗
ρ(y) is the minimum norm denoiser. In diffusion models, a stochastic process is typically

used to sample new images. However, to generate unseen images from the data distribution, Song
et al. (2021a) introduced a deterministic sampling process—the probability flow ODE (ordinary
differential equation) (Song et al., 2021b; Karras et al., 2022).

We assume in this paper the variance exploding (VE) case, for which the probability flow ODE is
given by

∀t ∈ [0, T ] :
dyt

dt
= −1

2

dσ2
t

dt
∇ log p (yt, σt) , (11)

where the score is estimated using the neural network denoiser ∇ log p (yt, σt) ≈ s (yt, σt), and
σt =

√
t is the scheduler. The minus sign in the probability flow ODE arises due to the reverse time

variable: we initialize at yT , and finish at y0, a sample from the data distribution. In Appendix A we
show that by using time re-scaling arguments the probability flow ODE is equivalent to the following
ODE

dyr

dr
= h∗

ρ
g
−1
r

(yr)− yr, (12)

1The noise level in the low-noise regime, though small, is not negligible and has been noted as practically
“useful” (Zeno et al., 2023), e.g. for diffusion sampling (Raya & Ambrogioni, 2023).
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where gr = − log σr, assuming the radius of the noise balls satisfies ρt = ασt for some α > 0.

Additionally, we will also analyze the score flow, which is a simplified case of equation 12 where
ρ does not depend on t. Analyzing the score flow can be helpful in understanding the dynamics of
the probability flow. The score flow represents the sampling process from one of the modes of the
(multi-modal) distribution of y. The score flow is initialized at y0 and for t > 0 follows

dyt

dt
= ∇ log p (y) . (13)

Using the estimated score function and time re-scaling r = 1
σ2 t we obtain the score flow

dyr

dr
= h∗

ρ(yr)− yr . (14)

Notably, in contrast to the probability flow ODE, the min-cost denoiser here is independent of t.

4 THE PROBABILITY AND SCORE FLOW OF MIN-COST DENOISERS

In this section, we consider training sets that model different types of data manifolds, and state for
each type the possible convergence points of the score and probability flows of min-cost solutions. As
the score flow is a specific instance of probability flow (after time re-scaling) in which the variance
profile is fixed, the difference between the convergence points of these two flows thus illuminates the
effect of the variance reduction scheduling σt (and thus the ρt schedule) on the generated sample.

Specifically, we will consider datasets in which Zeno et al. (2023) found the min-cost solution h∗
ρ

analytically: (1) orthogonal points, (2) points that form an obtuse angle with one of the points, and
(3) a specific case of 3 training points forming an equilateral triangle.

We begin with the following simple, yet general, observation on the dynamics of score flow. For this
dynamics, the stability condition for a stationary point y is that any eigenvalue of the Jacobian matrix
of the score function with respect to the input y, i.e., λ (J (y)) satisfies

Re{λ (J (y))} < 0 . (15)

We next show that in any model that perfectly fits an open ball of radius ρ > 0 around the training
points (and thus also interpolates the training set), the clean data points are stable stationary points of
the score flow. This implies that, when initialized near these points, the process can converge to the
clean data points.
Proposition 1. Let ρ > 0 be arbitrary. Let h (y) be a denoiser that satisfies h(B(xn, ρ)) = {xn}
for all n ∈ [N ] (and thus interpolates the training data). Then, any training point y ∈ {xn}Nn=1 is a
stable stationary point of equation 13 where we estimate the score using s (y) = h(y)−y

σ2 .

Proof. For all y ∈ {xn}Nn=1 we get that s (y) = 0 since the denoiser interpolates the training data.
In addition, for all y ∈ int (B(xn, ρ))) the Jacobian matrix is

J (y) = − 1

σ2
I , (16)

therefore the stability condition of equation 15 holds.

This result implies that, when the score function is differentiable and the training points are the only
stationary points, the score flow will converge to the training points with probability 1.

4.1 ORTHOGONAL DATASETS

For simplicity, we begin with the case of a dataset composed of orthogonal points. Specifically,
suppose that we have N training points {xn}N−1

n=0 where x0 = 0 and the remaining training points
are orthogonal, i.e., x⊤

i xj = 0 for all i, j > 0 with i ̸= j. 2 This approximates the behavior of data
in many generic distributions (e.g., standard normal), which becomes more orthogonal in higher

2The result holds for the general case where x0 is non-zero, provided that (xi − x0)
⊤ (xj − x0) = 0.
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dimensions. Let un = xn/∥xn∥ for all n = 1, ..., N − 1 . A minimizer of equation 8, h∗
ρ, is given

by (Zeno et al., 2023, proof of Theorem 3)

h∗
ρ(y) =

N−1∑
n=1

∥xn∥
∥xn∥ − 2ρ

(
[u⊤

n y − ρ]+ − [u⊤
n y − (∥xn∥ − ρ)]+

)
un. (17)

We prove (Appendix B.1) the set of stationary points is the set of all possible sums of training points.
Theorem 1. Suppose that the training points {x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Then,
the set of the stable stationary points of equation 13 is A = {∑n∈I xn | I ⊆ [N − 1]}.

This implies that the stationary points are the vertices of a hyperbox. Next, we prove (in Appendix
B.2) that the score flow converges to the vertex of the hyperbox closest to the initialization y0. Also,
for some y0, score flow first converges to the hyperbox boundary, then to a specific vertex.
Theorem 2. Suppose that the training points {x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Consider
the score flow where we estimate the score using s (y) =

h∗
ρ(y)−y

σ2 and an initialization point y0. If
∀i ∈ [N − 1] : u⊤

i y0 ̸= ∥xi∥
2 , then

• We converge to the closest vertex of the hyperbox to the initialization y0.

• If the closest point to y0 on the hyperbox is a point on its boundary which is not a vertex,
then ∀ϵ < mini |u⊤

i y0| there exists ρ0 (ϵ) and T0 (ϵ, ρ) , T1 (ρ) such that for all ρ < ρ0 (ϵ)
and all T ∈ [T0 (ϵ, ρ) , T1 (ρ)], the point yT is not a stable stationary point and at most at
distance ϵ from the boundary of the hyperbox.

Next, we consider the probability flow. For tractable analysis, we approximate the score estimator for
small noise levels (i.e., for all minn∈[N−1]

ρt

∥xn∥ ≪ 1) via Taylor’s approximation to obtain

s (y, t) =
1

σ2
t

(
N−1∑
n=1

unϕ(u
⊤
n y)−

(
I −

N−1∑
n=1

unu
⊤
n

)
y

)
(18)

where

ϕ(z) =


−z z < ρt

ρt

(
2

∥xn∥z − 1
)

ρt < z < ∥xn∥ − ρt

∥xn∥ − z z > ∥xn∥ − ρt

. (19)

With this approximation, one can show the probability flow and the score flow have a similar trajectory
(for small ρ), if they have the same initialization point. However, the ρt scheduler in probability flow
induces “early stopping”. This can lead to the probability flow to converge to a non-vertex boundary
point (in contrast to score flow), or to influence the speed of convergence to a stationary point. We
show this in the following result for the probability flow (proved in Appendix B.3)
Theorem 3. Suppose that the training points {x0,x1,x2, ...,xN−1} ⊂ Rd are orthogonal. Consider
the probability flow where σt =

√
t, we estimate the score using equation 18, and yT is the

initialization point. If ∀i ∈ [N − 1] : u⊤
i yT ̸= ∥xi∥

2 , then

• If the closest point to yT on the hyperbox is a vertex, then we converge to this vertex.

• If the closest point to yT on the hyperbox is not a vertex, then ∃τ(yT , ρT ) such that we
converge to the closest vertex to the initialization point yT if T > τ(yT , ρT ), and we
converge to a point on the boundary of the hyperbox if T < τ(yT , ρT ).

Theorem 3 shows that the probability flow converges to a vertex of the hyperbox or a point on the
boundary of the hyperbox. We consider this hyperbox boundary as an implicit data manifold—the
diffusion model samples from this hyperbox boundary even though we did not assume an explicit
sampling model that generated the training data, such as a distribution supported on the manifold.
However, in some cases probability flow ODE can converge to specific points in this manifold: the
training points, or sums of training points (“virtual points”).
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This result aligns well with empirical findings that diffusion models can memorize individual training
examples and generate them during sampling (Carlini et al., 2023). In addition, an empirical result
shows that Stable Diffusion (Rombach et al., 2022) can reproduce training data by piecing together
foreground and background objects that it has memorized (Somepalli et al., 2023). This behavior
resembles our result that the probability flow can also converge to sums of training points. In Stable
Diffusion we observe a “semantic sum” of training points; however, our analysis focuses on the
probability flow of a simple 1-hidden-layer model, while in deep neural networks summations in
deeper layers can translate into more intricate semantic combinations.

4.2 OBTUSE-ANGLE DATASETS

We continue with the case of a non-orthogonal dataset. Specifically, suppose the convex hull of the
training points {x0,x1, ...,xN−1} ⊂ Rd is a (N − 1)-simplex such that x0 forms an obtuse angle
with all other vertices; we assume WLOG that x0 = 0. We refer to this as an obtuse simplex. Let
un = xn/∥xn∥ for all n = 1, ..., N − 1. In this case, the minimizer h∗

ρ is still given by equation 17.

In Figure 1, we illustrate the normalized score flow for the case of an obtuse 2-simplex (see Figure 6
in Appendix E for the unnormalized score flow). The normalized score function is the score function
multiplied by the log of the norm of the score and divided by the norm of the score. As shown, the
training points are stationary points. Next, we prove (in Appendix B.4) that, in the general case of
N training points, the set of stable stationary points is a subset of the set of all partial sums of the
training points. Additionally, we demonstrate that when the angles between data points are nearly
orthogonal, a stable stationary point corresponding to the sum of the points exists.
Theorem 4. Suppose the convex hull of the training points {x0,x1, ...,xN−1} ⊂ Rd is an obtuse
simplex. Then, the set A of the stable stationary points of equation 13 satisfies {xn}N−1

n=0 ⊆
A ⊆ {∑n∈I xn | I ⊆ {0, 1, · · · , N − 1}}. In addition, the point

∑
n∈I xn, where I ⊆

{0, 1, · · · , N − 1} and |I| ≥ 2 if 0 /∈ I and |I| ≥ 3 if 0 ∈ I, is a stable stationary point if

mink∈I

{∑
i∈I\{k} u

⊤
k ui ∥xi∥

}
> −ρ.

The condition mink∈I
∑

i∈I\{k} u
⊤
k ui ∥xi∥ > −ρ holds for almost orthogonal dataset (and ρ > 0).

Next, we prove (in Appendix B.5) that in the general case with N training points, for small noise
levels (i.e., small ρ) and an initialization point close to the chords connecting the origin to each
training point (xn), the score flow first converges to a point along a chord connecting the origin and
another training point, and then to an edge of the chord (0 or xn, depending on initialization).
Theorem 5. Suppose the convex hull of the training points {x0,x2, ...,xN−1} ⊂ Rd is an obtuse
simplex. Given an initial point y0 such that ρ < u⊤

i y0 < ∥xi∥ − ρ and u⊤
j y0 < ρ for all j ̸= i,

consider the score flow where we estimate the score using s (y) =
h∗

ρ(y)−y

σ2 . Then we converge to the
closest edge of the chord. In addition, for all ϵ ∈ (0,u⊤

i y0) there exists ρ0 (ϵ) and T0(ϵ, ρ), T1(ρ)
such that for all ρ < ρ0 (ϵ) the point yT is not a stable stationary point and at most at distance ϵ
from the line between x1 and xi for T0(ϵ, ρ) < T < T1(ρ).

We next turn to the probability flow. To this end, we assume that the initial point yT is such that
ρT < u⊤

i yT < ∥xi∥ − ρT and u⊤
j yT < ρ for all j ̸= i. We again use Taylor’s approximation in the

small-noise level regime (specifically, for all i ∈ [N − 1] ρt

∥xn∥ ≪ 1), to obtain the following score
estimation at a point y such that ρt < u⊤

i y < ∥xi∥ − ρt and u⊤
j y < ρt for all j ̸= i is

s (y, t) =
1

σ2
t

(((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρtui

)
. (20)

We now have the following result regarding probability flow (proved in Appendix B.6)
Theorem 6. Suppose the convex hull of the training points {x0,x2, ...,xN−1} ⊂ Rd is an obtuse
simplex. Given an initial point yT such that ρT < u⊤

i yT < ∥xi∥−ρT and u⊤
j yT < ρT for all j ̸= i.

Consider the probability flow where σt =
√
t and we estimate the score using equation 20. Then,

∃τ(yT , ρT )) such that we converge to a point on the line connecting x1 and xi if T < τ(yT , ρT )
and if T ≥ τ(yT , ρT ) we converge to the closest point in the set {x0,xi} to yT .

Theorem 6 shows that the probability flow converges to a point on the chord or to one of the edges of
the chord. In this scenario, we consider the chords as the implicit data manifold.
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Figure 1: The normalized score function of obtuse and acute simplex. The red dots are the training
points x1,x2,x3. The black lines are the ReLU boundaries. In Figure (a) we plot the score function
of an obtuse triangle. In Figure (b) we plot an equilateral triangle.

4.3 AN EQUILATERAL TRIANGLE DATASET

Finally, for completeness, we consider the score flow in the case where the training points form the
vertices of an equilateral triangle (as this is the last remaining dataset case for which the min-cost
denoiser is analytically solvable (Zeno et al., 2023)). We prove (in Appendix B.7) that, given an
initialization point near the edge of the triangle, the score flow first converges to the face of the
triangle (the implicit data manifold here) and then to the vertex closest to the initialization point y0.
Proposition 2. Suppose the convex hull of the training points x1,x2,x3 ∈ Rd is an equilateral
triangle. Given an initial point y0 such that i ∈ {1, 2} − ∥xi∥

2 + ρ < u⊤
i y0 < ∥xi∥ − ρ and

u⊤
3 y < −∥x3∥

2 + ρ, consider the score flow where we estimate the score using s (y) =
h∗

ρ(y)−y

σ2 .
Then we converge to the closest vertex to the y0. In addition, for all 0 < ϵ < (u1 + u2)

⊤
y0 − ∥x∥

2
there exists ρ0 (ϵ) and T0 (ρ, ϵ) , T1 (ρ) such that for all ρ < ρ0 (ϵ) the point yT is not a stable
stationary point and at most ϵ distance from the line between x1 and x2 for T0 (ρ, ϵ) < T < T1 (ρ).

Without loss of generality, we can permute the training points indices {1, 2, 3} in the above result.
The probability flow for this case can be also analyzed, similarly to what we did in previous cases.

5 SIMULATIONS

In this section, we demonstrate the findings of Theorems 1, 2 and 3 in shallow neural networks.
In practical settings, the continuous probability flow ODE given by equation 11 is discretized to S
timesteps, as

yt−1 = yt + (σ2
t − σ2

t−1)
(h∗

ρt
(yt)− yt)

2σ2
t

, t = T, . . . , 1 , (21)

where h∗
ρt
(yt) is modeled as a series of S denoisers (usually with weight sharing), which are applied

consecutively to gradually denoise the signal. In this setting, the sampling should theoretically be
initialized at T = ∞, however in practice it is initialized from a finite timestep T , which is chosen
such that σT ≫ ∥xi∥ for all i. Similarly, the score-flow of equation 13 is discretized as

yt+1 = yt + γ
(h∗

ρt0
(yt)− yt)

σ2
t0

, t = 0, 1, . . . , (22)

where γ is some step size and here t0 is a fixed timestep (so that all iterations are with the same
denoiser). Note that here t increases along the iterations, and since we use a single denoiser, there is
no constraint on the number of iterations we can perform.

It should be noted that while our theorems characterize only the low-noise regime, here we simulate a
more practical sampling process, which starts the sampling from large noise. Namely, the initialization
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(yT in equation 21 and y0 in equation 22) is drawn from a Gaussian with large σ. Thus, our theoretical
analysis becomes relevant only once the dynamics enter the low-noise regime.

To demonstrate our results for the case of an orthogonal dataset, we use orthonormal training samples,
set σt =

√
t, and choose T = 100 to ensure an effectively high noise at the beginning of the

sampling process. We train a set of S = 150 denoisers, ensuring 50 equally-spaced noise levels in
the “low-noise regime” and 100 equally-spaced noise levels outside it. We train our networks on data
in dimension d = 30, with M = 500 noisy samples per training sample, taking the dimension of the
hidden layer of the networks to be K = 300.

To be consistent with our theory, which assumes the denoiser achieves exact interpolation over the
noisy training samples, we use a non-standard training protocol to enforce close-to-exact interpolation.
Specifically, we pose the denoiser training as the equality constrained optimization problem

min
θ

C(θ) s.t. hθ(yn,m) = xn, ∀n,m (23)

which we optimize using the Augmented Lagrangian (AL) method (see, e.g., (Nocedal & Wright,
2006)). Specifically, we define

LAL(θ,Q, µ) := C(θ) +
1

MN

M∑
m=1

N∑
n=1

µ

2
∥hθ (yn,m)− xn∥2 + ⟨q(n,m),hθ (yn,m)− xn⟩ (24)

where µ ∈ R>0, q(n,m) ∈ Rd represents a vector of Lagrange multipliers, and Q ∈ Rd×MN is
the matrix whose columns are q(n,m) for all m = 1, ...,M , n = 1, ..., N . Then, starting from an
initialization of µ0 > 0 and Q0 = 0, for k = 0, 1, ...,K we perform the iterative updates:

θk+1 = argmin
θ

LAL(θk,Qk, µk) (25)

q
(n,m)
k+1 = q

(n,m)
k + µk(hθ (yn,m)− xn), ∀n,m (26)

µk+1 = ηµk, (27)

where η > 1 is a fixed constant. The solution of equation 25 is approximated by following standard
training using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10−4 for 104

iterations. We additionally take η = 3 and K = 7, and decrease the learning rate by 0.5 after each
iterative update.

0% 20% 40% 60% 80% 100%

Pairs

Triplets

Quadruplets

L∞ Distance < 0.2

Figure 2: Existence of stable virtual training
points. We run fixed-point iterations on a sin-
gle denoiser, starting from all possible pair-wise,
triplet-wise, and quadruplet-wise combinations of
training samples. The plot shows the percentage
of points that converged within an L∞ distance of
0.2 to the original, virtual, input point.

We start by demonstrating the existence of vir-
tual training points, that is, stable stationary
points that are sums of training points, as pre-
dicted by Theorem 1. We take a denoiser from
the “low-noise regime” (σt = 0.095 in this ex-
ample) and run 10 fixed-point iterations on all
the predicted virtual points that consist of com-
binations of pairs, triplets and quadruplets of
the training points. In Figure 2 we plot the per-
centage of these runs that converged within an
L∞ distance of 0.2 to the predicted virtual point.
As can be seen, 98.6% of the predicted virtual
points composed of pairs of training points are
stable in practice, and the stability of virtual
points decreases as higher-numbers of combina-
tions are considered. Nevertheless, the absolute
number of stable virtual points increases sub-
stantially as higher-numbers of combinations
are considered. Specifically, in the same example a total of 429, 3390, and 6965 stationary points
were found for the pairs, triplet and quadruplet combinations. The increase in the absolute numbers is
due to the higher number of higher-order sums. The decrease in percentages is due to small deviations
in the ReLU boundaries of the trained denoiser compared to the theoretical optimal denoiser. These
deviations have a greater impact on stationary points that involve sums of more training points.

Next, we explore the full dynamics of the diffusion process. We start with the score flow for a
single denoiser from timestep t0, which corresponds to noise level σt0 = 0.095. We randomly
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(a) Score Flow.
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(b) Probability Flow.

Figure 3: Projection to three dimensions and convergence types frequency of randomly sampled
points. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points from
R30, for both sampling using the score flow (3a) and a regular diffusion process (3b). For each, we
plot on the right the percentage of points that converged to either a virtual point, a training point, or to
the boundaries of the hyperbox, out of all points. On the left, we plot the sampling results projected
to three dimensions, along with the path a single point took until convergence. In score flow, all
points converged to either virtual points or to boundaries of the hyperbox, which is evident in the
point clusters in the locations of the projected virtual points. For probability flow, the bias induced by
the “large-noise regime” denoisers diffusion causes more samples to converge around the the training
points and their adjacent boundaries. Nevertheless, a large percentage of samples still converge in
the vicinity of virtual points. The paths the points take towards the hyperbox draws them first to the
closest boundary, and then, if the steps sizes and amount permit, travel along the edges towards the
closest stable stationary points.

sample 500 points from N (0, 100I), and apply 3000 score-flow iterations to each, with a step size of
γ = 5 · 10−4. The right hand side of Figure 3a shows the percentage of points that converged within
an L∞ distance of 0.2 to either virtual points, training points, or a boundary of the hyperbox. On the
left hand side of Figure 3a, we plot the projection of all samples on three dimensions. Out of 500
samples, almost all points converged to virtual points, which is expected in random initialization
due to their larger number, compared to the training points. The rest of the points converged to the
hyperbox’s boundaries. The path the points take towards the hyperbox first draws them to the closest
boundary, and then they drift along the boundary towards the closest stable stationary point.

Finally, we examine a full diffusion process with the probability ODE. Here we follow equation 21
using S = 150 trained denoisers, starting again from 500 randomly sampled points from N (0, σT I).
Our results hold where the noise level is small compared to the norm of the training samples.
Therefore, denoisers of large noise levels are not expected to have stable virtual points. In probability
flow most noise levels are large compared to this norm, as the sampling process begins with a large
variance (in the VE case). Specifically, in our example only the last 50 denoisers have small noise
levels. Yet, as can be seen on the right hand side of Figure 3b, a large percentage of the samples
produced are virtual points. In contrast to the score flow case, the start of the sampling process here
attracts most samples towards the mean of the training points, as any optimal-MSE denoiser would,
which creates a biased starting point to the the sampling process in the “low-noise regime”. From this
regime onwards, the points travel along the boundaries of the hyperbox towards their nearest stable
points, which is usually a training point. This behaviour is demonstrated on the left side of Figure 3b,
where the projected path of a random point is drawn starting from the 90th step.

Please refer to Appendix E for comparisons of additional thresholds, and to Appendix C and D for
discussions on the effects of the training set size and the minimum norm constraint.

6 RELATED WORK

Memorization and Generalization in Deep Generative Models Several recent works have sought
to explain the transition from memorization to generalization in deep generative models, both from
a theoretical and empirical perspective. One early line of work in this vein studied memorization
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in over-parametrized (non-denoising) autoencoders (Radhakrishnan et al., 2019; 2020). This work
shows that over-parameterized autoencoders trained to low cost are locally contractive about each
training sample, such that training images can be recovered by iteratively applying the autoencoder to
noisy inputs. A theoretical explanation of this phenomenon using a neural tangent kernel analysis is
given in (Jiang & Pehlevan, 2020). More recent work has also shown that state-of-the-art diffusion
models exhibit a similar form of memorization, such that extraction of training samples is possible
by identifying stable stationary points of the diffusion process (Carlini et al., 2023). Additionally,
when trained on few images, several works have shown that the outputs of diffusion models are
strongly biased towards the training set, and thus fail to generalize (Somepalli et al., 2023; Yoon
et al., 2023; Kadkhodaie et al., 2024). A recent empirical study suggests that memorization and
generalization in diffusion models are mutually exclusive phenomenon, and successful generation
occurs only when memorization fails (Yoon et al., 2023; Zhang et al., 2023). Beyond these empirical
studies, recent work has put forward theoretical explanations for generalization in score-based models.
In (Pidstrigach, 2022), the authors show that score-based models can learn manifold structure in the
data generating distribution. A complementary perspective is provided by Kadkhodaie et al. (2024),
which argues that diffusion models implicitly encode geometry-adaptive harmonic representations.

Representation costs and neural network denoisers Several other works have investigated
overparameterized autoencoding/denoising networks with minimal representation cost (i.e., minimial
ℓ2-norm of parameters). Function space characterizations of min-norm solutions of shallow fully
connected neural networks are given in (Savarese et al., 2019; Ongie et al., 2020; Parhi & Nowak,
2021; Shenouda et al., 2023); extensions to deep networks and emergent bottleneck structure are
considered in (Jacot, 2022; Jacot et al., 2022; Jacot, 2023; Wen & Jacot, 2024). The present work
relies on the shallow min-norm solutions derived by Zeno et al. (2023) for specific configurations of
data points, but goes beyond this work in studying the dynamics of its associated flows.

A recent study investigates properties of shallow min-norm solutions to a score matching objective
(Zhang & Pilanci, 2024), building off of a line of work that studies min-norm solutions from a
convex optimization perspective (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020; Sahiner et al.,
2021; Wang & Pilanci, 2021). In the case of univariate data, an explicit min-norm solution of the
score-matching objective is derived, and convergence results are given for Langevin sampling with
the neural network-learned score function. Additionally, in the multivariate case, general min-norm
solutions to the score-matching loss are characterized as minimizers of a quadratic program. Our
results differ from (Zhang & Pilanci, 2024) in that we study different optimization formulations
(denoising loss versus score-matching loss) and inference procedures (probability- and score-flow
versus Langevin dynamics). Our results focus on high-dimensional data belonging to a simplex,
while Zhang & Pilanci (2024) give convergence guarantees only in the case of univariate data.

7 DISCUSSION

Conclusions. We explored the probability flow ODE of shallow neural networks with minimal
representation cost. We showed that for orthogonal dataset and obtuse-angle dataset the probability
flow and the score flow follows the same trajectory given the same initialization point and small noise
level. The scheduler in probability flow induces “early stopping”, which results in converging to a
boundary point instead of a specific vertex (as in score flow) or speed up convergence to a specific
vertex. One possible extension of this work is to analyze the probability flow ODE in the case of
variance-preserving processes. This is an important case since practical diffusion models more often
use variance-preserving forward and backward processes.

Limitations. A key limitation of our analysis is the assumption (inherited from Zeno et al. (2023))
that the denoiser interpolates data across a full d-dimensional ball centered around each clean training
sample, where d represents the input dimension. In real-world scenarios, the number of noisy samples
is typically smaller than the input dimension d. A more accurate approach might involve assuming that
the denoiser interpolates over an (M − 1)-dimensional disc around each training sample, reflecting
the norm concentration of Gaussian noise in high-dimensional spaces. Furthermore, for mathematical
tractability, our analysis focuses on a single hidden layer model.
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ETHICS STATEMENT

This paper presents a theoretical analysis of diffusion models under specific constraints, aiming
to enhance the understanding of generative models. This may lead to greater transparency when
using these models. Moreover, we anticipate that insights gained from these simpler cases will shed
light on the memorization and generalization behaviors in large-scale diffusion models, which pose
privacy concerns. Lastly, we note the neural network examined in this paper is a shallow one, whereas
practical contemporary implementations almost always involve deep networks. Naturally, addressing
deep networks from the outset would pose an impassable barrier. In general, our guiding principle for
research works that aim to understand new or not-yet-understood phenomena is that we should first
study it in the simplest model that shows it, so as not to get distracted by possible confounders, and
to enable a detailed analytic understanding. For example, when exploring or teaching a statistical
problem issues, we would typically start with linear regression, understand the phenomena in this
simple case, and then move on to more complex models. Thus, we hope the example we set in this
paper will help promote this guiding principle for research and teaching.

REPRODUCIBILITY STATEMENT

The paper fully discloses all the information needed for reproducing the results. We provide full and
detailed proofs for all claims in the paper in Appendices A and B. The details of the experimental
results are detailed in Section 5, including hyper-parameters and training configuration. Additionally,
code will be published upon acceptance.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp. 5253–5270, 2023. 6, 10

Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, and Chun-Yi Lee. On investigating the conservative
property of score-based generative models. In International Conference on Machine Learning
(ICML), 2023. 1

Tolga Ergen and Mert Pilanci. Convex geometry of two-layer ReLU networks: Implicit autoencoding
and interpretable models. In International Conference on Artificial Intelligence and Statistics, pp.
4024–4033. PMLR, 2020. 10

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 1

Arthur Jacot. Implicit bias of large depth networks: a notion of rank for nonlinear functions. In The
Eleventh International Conference on Learning Representations, 2022. 10

Arthur Jacot. Bottleneck structure in learned features: Low-dimension vs regularity tradeoff. Ad-
vances in Neural Information Processing Systems, 36:23607–23629, 2023. 10

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and general-
ization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf. 1

Arthur Jacot, Eugene Golikov, Clément Hongler, and Franck Gabriel. Feature learning in l2-
regularized DNNs: Attraction/repulsion and sparsity. Advances in Neural Information Processing
Systems, 35:6763–6774, 2022. 10

Yibo Jiang and Cengiz Pehlevan. Associative memory in iterated overparameterized sigmoid au-
toencoders. In International conference on machine learning, pp. 4828–4838. PMLR, 2020.
10

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffu-
sion models arises from geometry-adaptive harmonic representations. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=ANvmVS2Yr0. 10, 26

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. NeurIPS, 2022. 3

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 3, 2015. 8

Hila Manor and Tomer Michaeli. On the posterior distribution in denoising: Application to uncertainty
quantification. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=adSGeugiuj. 1

Koichi Miyasawa et al. An empirical bayes estimator of the mean of a normal population. Bull. Inst.
Internat. Statist, 38(181-188):1–2, 1961. 1, 3

Jorge Nocedal and Stephen J Wright. Penalty and augmented lagrangian methods. Numerical
Optimization, pp. 497–528, 2006. 8

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1lNPxHKDH. 2,
10

12

https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=ANvmVS2Yr0
https://openreview.net/forum?id=ANvmVS2Yr0
https://openreview.net/forum?id=adSGeugiuj
https://openreview.net/forum?id=H1lNPxHKDH


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. Journal of Machine Learning Research, 22(43):1–40, 2021. 10

Jakiw Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Information
Processing Systems, 35:35852–35865, 2022. 10

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020. 10

A Radhakrishnan, KD Yang, M Belkin, and C Uhler. Memorization in overparameterized autoen-
coders. In Deep Phenomena Workshop, International Conference on Machine Learning, 2019.
10

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Overparameterized neural
networks implement associative memory. Proceedings of the National Academy of Sciences, 117
(44):27162–27170, 2020. 10

Gabriel Raya and Luca Ambrogioni. Spontaneous symmetry breaking in generative diffusion
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=lxGFGMMSVl. 3

Herbert Robbins. An empirical bayes approach to statistics. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, 1954-1955, volume 1, pp. 157–163.
Berkeley and Los Angeles: University of California Press, 1956. 1, 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022. 6

A Sahiner, T Ergen, J Pauly, and M Pilanci. Vector-output ReLU neural network problems are
copositive programs: Convex analysis of two layer networks and polynomial-time algorithms. In
International Conference on Learnining Representations (ICLR), 2021. 10

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm
networks look in function space? In Conference on Learning Theory, pp. 2667–2690. PMLR,
2019. 10

Joseph Shenouda, Rahul Parhi, Kangwook Lee, and Robert D Nowak. Vector-valued variation
spaces and width bounds for DNNs: Insights on weight decay regularization. arXiv preprint
arXiv:2305.16534, 2023. 10

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015. 1

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048–6058, 2023. 6, 10,
26

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a. URL https://openreview.net/
forum?id=St1giarCHLP. 1, 3

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b. URL https://openreview.net/forum?
id=PxTIG12RRHS. 1, 3

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, 9(6):1135–1151, 1981. 1, 3

13

https://openreview.net/forum?id=lxGFGMMSVl
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yifei Wang and Mert Pilanci. The convex geometry of backpropagation: Neural network gradient
flows converge to extreme points of the dual convex program. In International Conference on
Learning Representations, 2021. 10

Yuxiao Wen and Arthur Jacot. Which frequencies do CNNs need? emergent bottleneck structure in
feature learning. arXiv preprint arXiv:2402.08010, 2024. 10

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K Ryu. Diffusion probabilistic models
generalize when they fail to memorize. In ICML 2023 Workshop on Structured Probabilistic
Inference/Generative Modeling, 2023. 10

Chen Zeno, Greg Ongie, Yaniv Blumenfeld, Nir Weinberger, and Daniel Soudry. How do minimum-
norm shallow denoisers look in function space? In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
gdzxWGGxWE. 2, 3, 4, 5, 7, 10, 15

Fangzhao Zhang and Mert Pilanci. Analyzing neural network-based generative diffusion models
through convex optimization. arXiv preprint arXiv:2402.01965, 2024. 10

Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Liyue Shen, and Qing Qu. The emergence of
reproducibility and consistency in diffusion models. 2023. 10

14

https://openreview.net/forum?id=gdzxWGGxWE
https://openreview.net/forum?id=gdzxWGGxWE


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS OF RESULTS IN SECTION 3

The probability flow ODE is given by

dyt

dt
= −1

2

dσ2
t

dt
∇ log p (yt, σt) (28)

= −σt
dσt

dt
∇ log p (yt, σt) . (29)

First, we apply change of variable as follows

r = g (t) = − log σt (30)
dr

dt
= − 1

σt

dσt

dt
(31)

dt

dr
=

(
− 1

σt

dσt

dt

)−1

. (32)

Therefore,

dyt
dr

=
dyt
dt

dt

dr
=

(
−σt

dσt

dt
∇ log p (yt, σt)

)(
− σt

dσt

dt

)
(33)

= σ2
t∇ log p (yt, σt) (34)

Next, we estimate the score function using a neural network denoiser, and substitute t = g−1 (r) to
obtain

dyr
dr

= h∗
ρ(g−1(r))(yr)− yr . (35)

B PROOFS OF RESULTS IN SECTION 4

In this section we use the following Propositions from (Zeno et al., 2023).
Proposition 3. Suppose that the convex hull of the training points {x1,x2, ...,xN} ⊂ Rd is a (N−1)-
simplex such that x1 forms an obtuse angle with all other vertices, i.e., (xj − x1)

⊤(xi − x1) < 0
for all i ̸= j with i, j > 1. Then the minimizer h∗

ρ of equation 8 is unique and is given by

h∗
ρ(y) = x1 +

N∑
n=2

unϕn(u
⊤
n (y − x1)) (36)

where un = xn−x1

∥xn−x1∥ , ϕn(t) = sn([t− an]+ − [t− bn]+), with an = ρ, bn = ∥xn − x1∥ − ρ, and
sn = ∥xn − x1∥/(bn − an) for all n = 2, ..., N .
Proposition 4. Suppose the convex hull of the training points x1,x2,x3 ∈ Rd is an equilateral
triangle. Assume the norm-balls Bn := B(xn, ρ) centered at each training point have radius
ρ < ∥xn − x0∥/2, n = 1, 2, 3, where x0 = 1

3 (x1 + x2 + x3) is the centroid of the triangle. Then a
minimizer h∗

ρ of equation 8 is given by

h∗
ρ(y) = u1ϕ1(u

⊤
1 (y − x0)) + u2ϕ2(u

⊤
2 (y − x0)) + u3ϕ3(u

⊤
3 (y − x0)) + x0, (37)

where ϕn(t) = sn([t − an]+ − [t − bn]+) with un = xn−x0

∥xn−x0∥ , an = − 1
2∥xn − x0∥ + ρ, bn =

∥xn − x0∥ − ρ, and sn = ∥xn − x0∥/(bn − an).

B.1 PROOF OF THEOREM 1

Proof. In the case of orthogonal dataset where for all i ̸= j x⊤
i xj = 0 and x0 = 0, the score

function is

s (y) =
h∗
ρ(y)− y

σ2
(38)

=

∑N−1
i=1 en

∥xi∥
∥xi∥−2ρ ([yi − ρ]+ − [yi − (∥xi∥ − ρ)]+)− y

σ2
. (39)
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The Jacobian matrix is

Jij (y) =

∥xi∥
∥xi∥−2ρ∆i (y) δi,j − δi,j

σ2
, (40)

where ∆n (y) indicates if only one of the ReLU functions is activated. In matrix form, we obtain

J (y) =
1

σ2

(
diag

( ∥x1∥
∥x1∥ − 2ρ

∆1 (y) , · · · ,
∥xN−1∥

∥xN−1∥ − 2ρ
∆N−1 (y)

)
− I

)
, (41)

where ∆n (y) ∈ {0, 1}. In this case, the stability condition is

Re{λ (J (y))} = λ (J (y)) < 0 . (42)

Note that for ∆i (y) = 1

λ (J (y)) =
∥xi∥

∥xi∥ − 2ρ
∆i (y)− 1 > 0 . (43)

Therefore, a stationary point is stable if and only if for all i ∈ [N − 1] ∆i (y) = 0. We define
the set A = {∑n∈I xn|I ∈ P([N − 1])}. Note that the set of points where the score is zero and
∆i (y) = 0 for all i ∈ [N − 1] is A.

B.2 PROOF OF THEOREM 2

Proof. We assume WLOG that for all i ∈ [N − 1] ui = ei. We can analyze the ODE equation 14
along each orthogonal direction separately. In each direction, we divide the ODE into the following
cases:

If yi ≤ ρ or i > N − 1, the score function is

si (yi) = − yi
σ2

. (44)

Therefore, according to Lemma 1,

(yt)i = (y0)ie
− t

σ2 (45)

and we converge to zero.

If yi ≥ ∥xi∥ − ρ, the score function is

si (yi) =
∥xi∥ − yi

σ2
. (46)

Therefore, according to Lemma 1,

(yt)i = (y0)ie
− t

σ2 + ∥xi∥
(
1− e−

t
σ2

)
(47)

= (y0 − ∥xi∥) e−
t

σ2 + ∥xi∥ (48)

and we converge to ∥xi∥.

Finally, if ρ < yi < ∥xi∥ − ρ, the score function is

si (yi) =
1

σ2

(( ∥xi∥
∥xi∥ − 2ρ

− 1

)
yi −

∥xi∥ ρ
∥xi∥ − 2ρ

)
. (49)

Therefore, according to Lemma 1,

(yt)i = (y0)ie

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2
+

∥xi∥
2

(
1− e

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2

)
(50)

=

(
(y0)i −

∥xi∥
2

)
e

(
∥xi∥

∥xi∥−2ρ
−1

)
t

σ2
+

∥xi∥
2

. (51)
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Here, if (y0)i =
∥xi∥
2 we converge to ∥xi∥

2 ; if (y0)i >
∥xi∥
2 then we converge to ∥xi∥; if (y0)i <

∥xi∥
2 then we converge to zero.

There are multiple initializations in which the closest point on the hyperbox is a point on the boundary
which is not a vertex. We first consider the case where there exist a non empty set I ⊂ [N − 1] such
that for all i ∈ I ρ < (y0)i < ∥xi∥− ρ, and for all j ∈ [N ] \ I (y0)j < ρ or (y0)j > ∥xi∥− ρ. We
define ∆Ti (ρ) time to reach the edge of the partition, i.e. ∥xi∥−ρ (when (y0)i > ∥xi∥−ρ) starting
from the initialization point, and ∆T̃j (ρ, ϵ) time to reach ϵ distance from zero or ∥xi∥ starting from
the initialization point:

∆Ti (ρ) = σ2 ∥xi∥ − 2ρ

2ρ
log

(
∥xi∥
2 − ρ

(y0)i − ∥xi∥
2

)
(52)

∆T̃j (ρ, ϵ) = σ2 log

(
(y0)i
ϵ

)
. (53)

Since ρ = ασ we get that

∆Ti (ρ) = ρ
∥xi∥ − 2ρ

2α2
log

(
∥xi∥
2 − ρ

(y0)i − ∥xi∥
2

)
(54)

∆T̃j (ρ, ϵ) =
( ρ
α

)2
log

(
(y0)i
ϵ

)
. (55)

Note that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = max
j

∆T̃j (ρ, ϵ) < T < T1 = min
i

∆Ti (ρ) , (56)

since ∃ρ0 (ϵ) such that(ρ0
α

)2
log

(
(y0)i
ϵ

)
< ρ0

∥xi∥ − 2ρ0
2α2

log

(
∥xi∥
2 − ρ0

(y0)i − ∥xi∥
2

)
(57)

log

(
(y0)i
ϵ

)
<

∥xi∥ − 2ρ0
2ρ0

log

(
∥xi∥
2 − ρ0

(y0)i − ∥xi∥
2

)
. (58)

We can similarly derive the time interval during which yT is at most ϵ distance from the boundary
of the hyperbox and is not at a stationary point for additional initializations. Specifically, for all
i ∈ [N − 1] ρ < (y0)i < ∥xi∥ − ρ is such an initialization point.

B.3 PROOF OF THEOREM 3

First, we prove the following lemma.
Lemma 1. consider the following affine ODE

dyt
dt

= ayt + b (59)

with initial point yT , where a ̸= 0. The solution is

y = ea(t−T )

(
yT − b

a

(
e−a(t−T ) − 1

))
. (60)

Proof. We verify directly that this is indeed the solution, since

dyt
dt

= aea(t−T )

(
yT − b

a

(
e−at − 1

))
+ ea(t−T )be−a(t−T ) (61)

= aea(t−T )

(
yT − b

a

(
e−(t−T )t − 1

))
+ b = ayt + b (62)

yT =

(
yT − b

a
(1− 1)

)
= yT . (63)
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Next, we prove the main Theorem.

Proof. We assume WLOG that for all i ∈ [N − 1] ui = ei. We can analyze the score flow along
each orthogonal direction separately. In each direction, we divide the ODE to the following cases:

If i /∈ [N − 1], then equation 12 is

dyr
dr

= −y . (64)

Note that the initial point is at r0 = − log
√
T . Using Lemma 1, we obtain

(yr)i = (yT )i e
−1(r+log

√
T) . (65)

Since r = − log
√
t, we further obtain

(yt)i = (yT )i e
(log

√
t−log

√
T) = (yT )i e

(
log

√
t
T

)
= (yT )i

√
t

T
. (66)

Therefore, we obtain (y0)i = 0.

We now consider now the case where i ∈ [N − 1].

In the case where yi < ρt, equation 12 is

dyr
dr

= −y . (67)

So, similarly to the previous case, we obtain (y0)i = 0.

In the case where yi > ∥xi∥ − ρt, equation 12 is

dyr
dr

= ∥xi∥ − y . (68)

Note that the initial point is at r0 = − log
√
T . Using Lemma 1 we obtain

(yr)i = e−1(r+log
√
T)
(
(yT )i + ∥xi∥

(
e−1(r+log

√
T) − 1

))
(69)

= ∥xi∥+ ((yT )i − ∥xi∥) e−1(r+log
√
T) . (70)

Since r = − log
√
t, we further obtain

(yt)i = ∥xi∥+ ((yT )i − ∥xi∥) e(log
√
t−log

√
T) = (71)

= ∥xi∥+ ((yT )i − ∥xi∥)
√

t

T
. (72)

Therefore, we obtain (y0)i = ∥xi∥.

In the case where ρt < yi < ∥xi∥ − ρt, equation 12 is

dyr
dr

= ρg−1
r

(
2

∥xi∥
y − 1

)
. (73)

Note that

ρt = ασt = α
√
t (74)

g−1
r = e−2r . (75)

Therefore,

ρr = αe−r (76)

so we obtain the following ODE:

dyr
dr

= αe−r

(
2

∥xi∥
y − 1

)
. (77)
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Next, we apply additional time re-scaling

k = −αe−r (78)
dk

dr
= αe−r = ρr (79)

dr

dk
= α−1er = ρ−1

r . (80)

So, we get the following ODE:

dyr
dk

=
dyr
dr

dr

dk
= αe−r

(
2

∥xi∥
y − 1

)
α−1er =

2

∥xi∥
y − 1 (81)

dyk
dk

=
2

∥xi∥
y − 1 . (82)

Note that the initial point is at k0 = −α
√
T . Using Lemma 1 we obtain

(yk)i = e
2

∥xi∥ (
k+α

√
T)
(
(yT )i +

∥xi∥
2

(
e
− 2

∥xi∥ (
k+α

√
T) − 1

))
(83)

=
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
k+α

√
T)

. (84)

Since k = −αe−r and r = − log
√
t, we obtain

(yr)i =
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
−αe−r+α

√
T)

(85)

(yt)i =
∥xi∥
2

+

(
(yT )i −

∥xi∥
2

)
e

2

∥xi∥ (
−α

√
t+α

√
T)

. (86)

So, we obtain (y0)i = ∥xi∥
2 +

(
(yT )i −

∥xi∥
2

)
e

2α
√

T

∥xi∥ . Given an initialization point yT , let I ⊆
[N − 1] be a non empty set such that ρ < (yT )i < ∥xi∥ − ρ for all i ∈ I and either (yT )i < ρ or
(yT )i > ∥xi∥ − ρ for all j ∈ [N − 1] \ I. Then, if

T > max
i∈I

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (87)

we converge to the closest point in the set A = {∑n∈I xn | I ⊆ [N − 1]} to the initialization point
yT , where {xn}N−1

n=0 is the training set. We instead converge to the closest boundary of the hyperbox
to the initialization point yT if

T < max
i∈I

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
. (88)

B.4 PROOF OF THEOREM 4

Proof. In the case where the convex hull of the training points is an (N − 1)-simplex, such that x0

forms an obtuse angle with all other vertices and x0 = 0, the score function is

s (y) =
h∗
ρ(y)− y

σ2
(89)

=

∑N−1
n=1

∥xn∥
∥xn∥−2ρun

(
[u⊤

n y − ρ]+ − [u⊤
n y − (∥xn∥ − ρ)]+

)
− y

σ2
. (90)

The Jacobian matrix is

Jij (y) =

∑N−1
n=1

∥xn∥
∥xn∥−2ρ (un)i (un)j ∆n (y)− δi,j

σ2
, (91)
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where ∆n (y) indicates if only one of the ReLU functions is activated. In matrix form we obtain

J (y) =
1

σ2

(
UU⊤ − I

)
, (92)

where

U =
(
∆1 (y)

√
γ1u1, · · · ,∆N−1 (y)

√
γN−1uN−1

)
(93)

γn =
∥xn∥

∥xn∥ − 2ρ
(94)

∆n (y) ∈ {0, 1} . (95)

Note that the Jacobian matrix is a real and symmetric matrix therefore it has real eigenvalues. In this
case, the stability condition is

Re{λ (J (y))} = λ (J (y)) < 0 . (96)

For any a ∈ Rd

a⊤J (y)a ≤ λmax (J (y))a⊤a . (97)

This holds in particular for a ∈ Sd−1, therefore

λmax (J) ≥ a⊤ 1

σ2

(
UU⊤ − I

)
a (98)

=
1

σ2

(∥∥a⊤U
∥∥2
2
− 1
)
. (99)

If we choose a = un such that ∆n (y) ̸= 0, then
∥∥a⊤U

∥∥2
2
> 1, since γn > 1. Therefore, a

stationary point is stable if and only if for all n ∈ {1, · · · , N − 1}∆i (y) = 0. Note that if y is such
that ∆n (y) = 0 for all n ∈ {1, · · · , N − 1}, then there exists I ∈ P(0, 1, · · · , N − 1) such that

f∗(y) =
∑
n∈I

xn . (100)

Therefore, y∗ =
∑

n∈I xn is a stationary point if and only if for all i ∈ {1, · · · , N−1}∆i (y
∗) = 0.

Note that the set of stable stationary points is not empty, since for all i ∈ [N ] the point y∗ = xi is a
stable stationary point because f∗ (y∗) = xi, and thus ∆n (y

∗) = 0 for all n ∈ {1, · · · , N − 1}.

The condition for the point
∑

n∈I xn where I ⊆ [N ] and |I| ≥ 2 if 0 /∈ I and |I| ≥ 3 if 0 ∈ I to
be a stable stationary point, is that for all ∀k ∈ I∑

i∈I
u⊤
k xi > ∥xk∥ − ρ , (101)

which is equivalent to that for all ∀k ∈ I∑
i∈I\{k}

u⊤
k xi > −ρ . (102)

This set of inequality is equivalent to the condition

min
k∈I

 ∑
i∈I\{k}

u⊤
k ui ∥xi∥

 > −ρ . (103)

B.5 PROOF OF THEOREM 5

First, we prove the following lemma.
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Lemma 2. Consider the following system of affine ODE

dyt

dt
= Ayt + b , (104)

with the initial condition y0, where A ∈ Rd×d is a non singular matrix. The solution is

yt = eAt
(
y0 −A−1

(
e−At − I

)
b
)
. (105)

In the case where A is also symmetric, the solution can be written as

yt =

d∑
i=1

vi

(
v⊤
i y0

)
eλit −

d∑
i=1

vi

(
v⊤
i b
)
λ−1
i

(
1− eλit

)
, (106)

where
∑d

i=1 λiviv
⊤
i is the eigenvalue decomposition of the matrix A.

Proof. We verify directly that this is indeed the solution, since

dyt

dt
= AeAt

(
y0 −A−1

(
e−At − I

)
b
)
+ eAte−Atb = Ayt + b (107)

y0 = I
(
y0 −A−1 (I− I) b

)
= y0 . (108)

In the case where A is also symmetric,

eAt =

∞∑
k=0

1

k!
(At)

k
= V

( ∞∑
k=0

1

k!
tkΛk

)
V ⊤ (109)

= V diag
(
eλ1t, · · · , eλdt

)
V ⊤ =

d∑
i=1

eλitviv
⊤
i (110)

e−At =

d∑
i=1

e−λitviv
⊤
i . (111)

Therefore,

yt = eAt
(
y0 −A−1

(
e−At − I

)
b
)

(112)

=

d∑
i=1

viv
⊤
i e

λit

y0 −
d∑

k=1

vkv
⊤
k λ

−1
i

d∑
j=1

vjv
⊤
j

(
e−λjt − 1

)
b

 (113)

=

d∑
i=1

viv
⊤
i e

λit

(
y0 −

d∑
k=1

vkλ
−1
k v⊤

k

(
e−λkt − 1

)
b

)
(114)

=

d∑
i=1

vi

(
v⊤
i y0

)
eλit −

d∑
i=1

vi

(
v⊤
i b
)
λ−1
i

(
1− eλit

)
. (115)

Next, we prove Theorem 5.

Proof. We assume WLOG that x0 = 0. Given the initial point y0 such that y0 such that ρ < u⊤
i y0 <

∥xi∥ − ρ and u⊤
j y0 < ρ for all j ̸= i, the score is given by

s (y) =
1

σ2

( ∥xi∥
∥xi∥ − 2ρ

ui

(
u⊤
i y − ρ

)
− y

)
(116)

=
1

σ2

(( ∥xi∥
∥xi∥ − 2ρ

uiu
⊤
i − I

)
y − ∥xi∥ ρ

∥xi∥ − 2ρ
ui

)
. (117)
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According to Lemma 2, the score flow in the partition ρ < u⊤
i y < ∥xi∥ − ρ and u⊤

j y < ρ for all
j ̸= i is

yt =

d∑
k=1

vk

(
v⊤
k y0

)
eλk

t
σ2 −

d∑
k=1

vk

(
v⊤
k b
)
λ−1
k

(
1− eλk

t
σ2

)
, (118)

where the matrix A =
(

∥xi∥
∥xi∥−2ρuiu

⊤
i − I

)
. The eigenvalue decomposition of A is

A = V ΛV ⊤ (119)

V = (ui w1 · · · wd−1) (120)

Λ = diag

(
2ρ

∥xi∥ − 2ρ
,−1, · · · ,−1

)
, (121)

where wj ∈ u⊥
i . Since,( ∥xi∥

∥xi∥ − 2ρ
uiu

⊤
i − I

)
ui =

( ∥xi∥
∥xi∥ − 2ρ

− 1

)
ui (122)

=
2ρ

∥xi∥ − 2ρ
ui (123)( ∥xi∥

∥xi∥ − 2ρ
uiu

⊤
i − I

)
wj = −wj , (124)

and b = − ∥xi∥ρ
∥xi∥−2ρui. So, we get

yt = ui

((
u⊤
i y0

)
e

2ρ

∥xi∥−2ρ
t

σ2 +
∥xi∥
2

(
1− e

2ρ

∥xi∥−2ρ
t

σ2

))
+

d∑
k=2

vk

(
v⊤
k y0

)
e−

t
σ2 . (125)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide
it into the following cases:

If u⊤
i y0 = ∥xi∥

2 , then

yt = ui
∥xi∥
2

+

d∑
k=2

vk

(
v⊤
k y0

)
e−

t
σ2 . (126)

Therefore, we converge to the point y∞ = ui
∥xi∥
2 .

If u⊤
i y0 > ∥xi∥

2 , then we converge to y∞ = ui ∥xi∥, and if u⊤
i y0 < ∥xi∥

2 then we converge to
y∞ = x1 = 0 (since then the score function is ∥xi∥−y

σ2 or − y
σ2 ).

We assume WLOG that u⊤
i y0 > ∥xi∥

2 . We define ∆Tui (ρ) time to reach the edge of the partition,
i.e. ∥xi∥ − ρ starting from the initialization point, and ∆Tvk (ρ, ϵ) time to reach ϵ distance from zero
(the data manifold) starting from the initialization point.

∆Tui
(ρ) = σ2 ∥xi∥ − 2ρ

2ρ
log

(
∥xi∥
2 − ρ

u⊤
i y0 − ∥xi∥

2

)
(127)

∆Tvk (ρ, ϵ) = σ2 log

(
v⊤
k y0

ϵ

)
. (128)

Since ρ = ασ, we get that

∆Tui
(ρ) = ρ

∥xi∥ − 2ρ

2α2
log

(
∥xi∥
2 − ρ

u⊤
i y0 − ∥xi∥

2

)
(129)

∆Tvk
(ρ, ϵ) =

( ρ
α

)2
log

(
v⊤
k y0

ϵ

)
. (130)

Similarly to B.2, we get that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = max
k

∆Tvk (ϵ) < T < ∆Tui (ρ) . (131)
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B.6 PROOF OF THEOREM 6

Proof. The estimated score function at the initialization is

σ2
t s (y, t) =

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρtui . (132)

Next, we project the estimated score along ui and the orthogonal direction, so we get

uiu
⊤
i σ

2
t s (y, t) =

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − uiu

⊤
i

)
y − ρtui (133)

= uiρt

(
2

∥xi∥
u⊤
i y − 1

)
(134)

(
I − uiu

⊤
i

)
σ2
t s (y, t) =

(
I − uiu

⊤
i

)((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − ρt

(
I − uiu

⊤
i

)
ui

(135)

=

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y −

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − uiu

⊤
i

)
y

(136)

=

((
1 +

2

∥xi∥
ρt

)
uiu

⊤
i − I

)
y − 2

∥xi∥
ρtuiu

⊤
i (137)

=
(
uiu

⊤
i − I

)
y . (138)

Therefore, the projected score onto ui is
ρt

(
2

∥xi∥
u⊤

i y−1

)
σ2
t

, and the projected score function onto

wj ∈ u⊥
i is −w⊤

j y

σ2
t

, so we get the same estimated score as in Theorem 3 (we can analyze the score
flow along each orthogonal direction separately). Therefore, along wj we get

w⊤
j yt = w⊤

j yT e
(log

√
t−log

√
T) = w⊤

j yT e

(
log

√
t
T

)
= (yT )i

√
t

T
. (139)

So, we obtain w⊤
j y0 = 0. Along ui we get

u⊤
i yt =

∥xi∥
2

+

(
u⊤
i yT − ∥xi∥

2

)
e

2

∥xi∥ (
−α

√
t+α

√
T)

, (140)

so we obtain w⊤
j y0 = ∥xi∥

2 +
(
u⊤
i yT − ∥xi∥

2

)
e

2α
√

T

∥xi∥ . Then, if

T ≥
(∥xi∥

2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (141)

we converge to the closest point in the set {x0,xi} to the initialization point yT since the estimated
score is equal to − y

σ2
t

or ∥xi∥−y
σ2
t

and we converge to 0 or ∥xi∥ (as in Theorem 3), and if

T <

(∥xi∥
2α

)2

log2

(
∥xi∥
2

(yT )i −
∥xi∥
2

)
, (142)

we converge to a point on the line connecting x0 and xi.

B.7 POOF OF PROPOSITION 2

Proof. We assume WLOG that x0 = 0. Note that since the convex hull of the training points is an
equilateral triangle, then ∥xi∥ = ∥x∥. Given the initial point y0 such that i ∈ {1, 2} − ∥x∥

2 + ρ <
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u⊤
i y < ∥x∥ − ρ and u⊤

3 y < −∥x∥
2 + ρ, the score is given by

s (y) =
1

σ2

(
∥x∥

3
2 ∥x∥ − 2ρ

2∑
i=1

(
uiu

⊤
i y +

1

2
xi − uiρ

)
− y

)
(143)

=
1

σ2

( ∥x∥
3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
y (144)

+
1

σ2

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

)
u1 +

∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

)
u2

)
. (145)

According to Lemma 2, the score flow in the partition i ∈ {1, 2} − ∥x∥
2 + ρ < u⊤

i y < ∥x∥ − ρ and
u⊤
3 y < −∥x∥

2 + ρ is

yt =

2∑
k=1

vk

(
v⊤
k y0

)
eλk

t
σ2 −

2∑
k=1

vk

(
v⊤
k b
)
λ−1
k

(
1− eλk

t
σ2

)
, (146)

where the matrix A =
(

∥x∥
3
2∥x∥−2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
. The eigenvalue decomposition of A is

A = V ΛV ⊤ (147)

V =
( u1−u2√

2(1−u⊤
1 u2)

u1+u2√
2(1+u⊤

1 u2)

)
(148)

Λ = diag

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1− u⊤

1 u2

)
− 1,

∥x∥
3
2 ∥x∥ − 2ρ

(
1 + u⊤

1 u2

)
− 1

)
, (149)

since,( ∥x∥
3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
(u1 − u2) =

∥x∥
3
2 ∥x∥ − 2ρ

(
u1 + u2u

⊤
2 u1 − u1u

⊤
1 u2 − u2

)
− (u1 − u2)

(150)

=

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1− u⊤

2 u1

)
− 1

)
(u1 − u2)

(151)( ∥x∥
3
2 ∥x∥ − 2ρ

(
u1u

⊤
1 + u2u

⊤
2

)
− I

)
(u1 + u2) =

∥x∥
3
2 ∥x∥ − 2ρ

(
u1 + u2u

⊤
2 u1 + u1u

⊤
1 u2 + u2

)
− (u1 + u2)

(152)

=

( ∥x∥
3
2 ∥x∥ − 2ρ

(
1 + u⊤

2 u1

)
− 1

)
(u1 + u2) ,

(153)

and b = ∥x∥
3
2∥x∥−2ρ

(
1
2 ∥x∥ − ρ

)
u1 +

∥x∥
3
2∥x∥−2ρ

(
1
2 ∥x∥ − ρ

)
u2. We assume WLOG that,

u1 =

(
0
1

)
, u2 =

(√
3
2

− 1
2

)
, u3 =

(
−

√
3
2

− 1
2

)
, (154)

and we get

v1 =
1√
3
(u1 − u2) (155)

v2 = u1 + u2 = −u3 (156)

λ1 =
3
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1 > 0 (157)

λ2 = −
(
1−

1
2 ∥x∥

3
2 ∥x∥ − 2ρ

)
< 0 . (158)
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yt =
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
∥x∥−2ρ

−1

) t
σ2

σ2 (159)

+ (u1 + u2)
(
(u1 + u2)

⊤
y0

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2 (160)

− (u1 + u2)

( ∥x∥
3
2 ∥x∥ − 2ρ

1

2
∥x∥ − ρ

)( 1
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1

)−1
(
1− e

−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2

)
.

(161)

Note that,( ∥x∥
3
2 ∥x∥ − 2ρ

(
1

2
∥x∥ − ρ

))( 1
2 ∥x∥

3
2 ∥x∥ − 2ρ

− 1

)−1

=
∥x∥

(
1
2 ∥x∥ − ρ

)
3
2 ∥x∥ − 2ρ

3
2 ∥x∥ − 2ρ

−∥x∥+ 2ρ
(162)

=
∥x∥

(
1
2 ∥x∥ − ρ

)
−∥x∥+ 2ρ

= −∥x∥
2

. (163)

Therefore,

yt =
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
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)
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(
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e
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1−

1
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∥x∥

3
2
∥x∥−2ρ

)
t

σ2 (165)
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)(
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=
1√
3
(u1 − u2)

(
1√
3
(u1 − u2)

⊤
y0

)
e

(
3
2
∥x∥

3
2
∥x∥−2ρ
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)
t

σ2 (167)

+ (u1 + u2)

((
(u1 + u2)

⊤
y0 −

∥x∥
2

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2
+

∥x∥
2

)
. (168)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide
it into the following cases:

If 1√
3
(u1 − u2)

⊤
y0 = 0, then

yt = (u1 + u2)

((
(u1 + u2)

⊤
y0 −

∥x∥
2

)
e
−
(
1−

1
2
∥x∥

3
2
∥x∥−2ρ

)
t

σ2
+

∥x∥
2

)
, (169)

and we converge to the point y∞ = (u1 + u2)
∥x∥
2 .

If 1√
3
(u1 − u2)

⊤
y0 > 0, then we converge to y∞ = x1, and if 1√

3
(u1 − u2)

⊤
y0 < 0, then we

converge to y∞ = x2.

We assume WLOG that 1√
3
(u1 − u2)

⊤
y0 > 0. We define ∆Td (ρ, ϵ) as the time to reach ϵ distance

from the data manifold (the line connecting the training points x1 and x2) starting from initialization
point y0, and ∆Te (ρ) the time to reach the edge of the partition starting from initialization point y0.
We assume WLOG that (u1 + u2)

⊤
y0 > ∥x∥

2 and (u1 + u2)
⊤
y0 − ∥x∥

2 > ϵ

∆Td (ρ, ϵ) =
σ2

1
2∥x∥

3
2∥x∥−2ρ

− 1
log

(
ϵ

(u1 + u2)
⊤
y0 − ∥x∥

2

)
(170)

∆Te (ρ) =
σ2

3
2∥x∥

3
2∥x∥−2ρ

− 1
log

 1
2 ∥x∥ − ρ

1√
3
(u1 − u2)

⊤
y0

 . (171)
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Figure 4: Convergence types frequency of randomly sampled points in diffusion sampling for
different N . We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R30 for diffusion sampling, using different training set sizes, N . We plot the percentage of
points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox,
out of all points. The generalization increases with N , drawing a larger percentage of samples to
converge in the vicinity of virtual points and the boundaries of the hyperbox.

Since ρ = ασ, we get that

∆Td (ρ, ϵ) =
ρ2

α2
(

1
2∥x∥

3
2∥x∥−2ρ

− 1
) log

(
ϵ

(u1 + u2)
⊤
y0 − ∥x∥

2

)
(172)

∆Te (ρ) =
ρ2

α2
(

3
2∥x∥

3
2∥x∥−2ρ

− 1
) log

 1
2 ∥x∥ − ρ

1√
3
(u1 − u2)

⊤
y0

 . (173)

Similar to B.2 we get that ∃ρ0 (ϵ) > 0 such that ∀ρ < ρ0 (ϵ, )

T0 = ∆Td (ρ, ϵ) < T < T1 = ∆Te (ρ) . (174)

C THE EFFECT OF THE NUMBER OF TRAINING SAMPLES

The effect of the training set size has been explored in several past works (Somepalli et al., 2023;
Kadkhodaie et al., 2024), as explored in detail in Section 6. Here we continue the analysis from
Section 5 to investigate the effect of changing N , the training set size, on the full dynamics of the
diffusion process with the probability ODE. Specifically, we repeat the experiment from Section 5
while reducing N . All the hyperparameters are kept the same, except for M which we increase to
2000 for N = 10 only, to prevent over-fitting in the large-noise regime. Figure 4 shows the percentage
of points that converged within an L∞ distance of 0.2 to either virtual points, training points, or a
boundary of the hyperbox, for the different N values. The generalization increases with N , drawing
a larger percentage of samples to converge in the vicinity of virtual points, or to boundaries of the
hyperbox. This aligns with the results of Kadkhodaie et al. (2024).

When considering the effect of oversampling duplications, previous works observed that diffusion
models tend to overfit more to duplicate training points than to other training points (Somepalli
et al., 2023). However, here we study the regime in which the model perfectly fits all the training
points. In practice, if duplicate training points would cause the neural network to fit them better, at
the expense of the other training points. Then, we expect our analysis to effectively hold, but only for
the training points that are well-fitted and their associated virtual points. Therefore, this mirrors the
case of decreasing N , and will cause more convergence to the duplicated training points and increase
memorization.
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Figure 5: Convergence types frequency of randomly sampled points in diffusion sampling for
training with AL method, weight decay, and without weight decay. We run the discrete ODE
formulation of equation 21 for 500 randomly sampled points from R30 for diffusion sampling, using
different training configurations. We plot the percentage of points that converged to either a virtual
point, a training point, or to the boundaries of the hyperbox, out of all points. The minimum norm
constraint is necessary for inducing the bias towards virtual training points and the boundaries of the
hyperbox. Additionally, standard training protocol using weight decay regularization simulates well
the minimum norm denoiser, which is achieved by the use of the AL method.

D THE MINIMUM NORM ASSUMPTION

Theorems 2, 3, 4, 5 and 6 all hold in the case of a minimum norm denoiser, in which the denoiser
achieves exact interpolation over the noisy training samples. To enforce a consistent denoiser, we
used a non-standard training protocol in Section 5. Specifically, we optimize an equality constrained
optimization problem using the Augmented Lagrangian method. Here we verify the the robustness of
our results and the necessity of the minimum norm assumption by repeating the experiment from
Section 5 when using standard training, with and without the use of weight decay. Specifically, all
the hyper parameters and Adam optimizer are kept the same, and only the loss function changes to
directly optimize equation 3. Training with weight decay should result in a denoiser that is similar
to the min-norm solution. Figure 5 shows the percentage of points that converged within an L∞
distance of 0.2 to either virtual points, training points, or a boundary of the hyperbox, for the different
training configurations. The use of weight decay in a standard training protocol induces a similar bias
to that achieved by the using Augmented Lagrangian method.

E ADDITIONAL SIMULATIONS

Figure 1 shows the normalized score flow for the case of an obtuse 2-simplex. The normalization
was done for visualization purposes only, since the norm of the score decreases as it approaches
the ReLU boundaries. In Figure 6 we illustrate the unnormalized score flow. Figure 7 shows the
trajectory of score flow of the exact score function, and the green line is trajectory of the score flow
of the approximated score function as can be seen the trajectories are practically identical.

We next repeat the statistical analysis done in Section 5 for different thresholds. Figure 8 demonstrates
the existence of virtual points, in an analogous way to Figure 2, for the L2 metric. Figures 9 and 10
offer additional insights to the right side of Figure 3a. Specifically, in Figure 9 we compare the results
of the convergence types frequency of randomly sampled points with score flow when using different
thresholds of the L∞ distance. In Figure 10 we instead use the L2 metric. Similarly, Figures 11 and
12 depict additional comparisons to the right side of Figure 3b, for both the L∞ and L2 distance
metrics.
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Figure 6: The score function of obtuse and acute simplex. The red dots are the training points
x1,x2,x3. The black lines are the ReLU boundaries. In figure (a) we plot the score function of
obtuse simplex (Proposition 3). In figure (b) we plot acute simplex (Proposition 4)
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Figure 7: The score function of orthogonal dataset. The purple line is the trajectory of the score flow
of the exact score function, and the green line is the trajectory of the score flow of the approximated
score function (equation 18) in the case where σ = 0.03, ρ = 0.09. Both trajectories are very similar.
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Figure 8: Existence of stable virtual training points. We run fixed-point iterations on a single
denoiser, starting from all possible pair-wise, triplet-wise, and quadruplet-wise combinations of
training samples. The plot shows the percentage of points that converged within an L2 distance of
0.2 to the original, virtual, input point.
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Figure 9: Convergence types frequency of randomly sampled points for score flow based on L∞
proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R30 for sampling using the score flow. We plot the percentage of points that converged to either
a virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L∞ proximity for different thresholds.
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Figure 10: Convergence types frequency of randomly sampled points for score flow based on L2

proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R30 for sampling using the score flow. We plot the percentage of points that converged to either
a virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L2 proximity for different thresholds.
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Figure 11: Convergence types frequency of randomly sampled points for probability flow based
on L∞ proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled
points from R30 for probability flow. We plot the percentage of points that converged to either a
virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L∞ proximity for different thresholds.
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Figure 12: Convergence types frequency of randomly sampled points for probability flow based
on L2 proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled
points from R30 for probability flow. We plot the percentage of points that converged to either a
virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L2 proximity for different thresholds.
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