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ABSTRACT

While diffusion models can generate high-quality images through the probability
flow process, the theoretical understanding of this process is incomplete. A key
open question is determining when the probability flow converges to the training
samples used for denoiser training and when it converges to more general points on
the data manifold. To address this, we analyze the probability flow of shallow ReLU
neural network denoisers which interpolate the training data and have a minimal
£2 norm of the weights. For intuition, we also examine a simpler dynamics which
we call the score flow, and demonstrate that, in the case of orthogonal datasets, the
score flow and probability flow follow similar trajectories. Both flows converge
to a training point or a sum of training points. However, due to early stopping
induced by the scheduler, the probability flow can also converge to a general point
on the data manifold. This result aligns with empirical observations that diffusion
models tend to memorize individual training examples and reproduce them during
testing. Moreover, diffusion models can combine memorized foreground and
background objects, indicating they can learn a "semantic sum" of training points.
We generalize these results from the orthogonal dataset case to scenarios where
the clean data points lie on an obtuse simplex. Simulations further confirm that
the probability flow converges to one of the following: a training point, a sum of
training points, or a point on the data manifold.

1 INTRODUCTION

In diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), new images
are sampled from the data distribution through an iterative process. Beginning with a random
initialization, the model gradually denoises the image until a final image emerges. At their core,
diffusion models learn the data distribution by estimating the score function of a Gaussian-blurred
version of the data distribution. The connection between the score function and the denoiser, often
called Tweedie’s identity (Robbins, 1956; Miyasawa et al., 1961; Stein, 1981), holds only under
optimal Bayes estimation. Moreover, for the estimated score to be a true gradient field, the denoiser
must have a symmetric positive semidefinite Jacobian matrix (Chao et al., 2023; Manor & Michaeli,
2024). However, in practice, neural network denoisers are used, and their Jacobian matrix is generally
non-symmetric, raising open questions about the convergence of the sampling process in score-based
diffusion algorithms.

Diffusion models typically use a stochastic sampling process, which can be described by a stochastic
differential equation (SDE) (Song et al., 2021b). Alternatively, a deterministic version of the sampling
process can also be used, formulated as an ordinary differential equation (ODE) (Song et al., 2021a),
called the probability flow ODE. We aim to theoretically analyze the probability flow, in order to
illuminate this complex sampling process. However, practical diffusion architectures are typically
deep and not fully connected, making it difficult to obtain theoretical guarantees without making
additional strong assumptions (e.g., assuming a linearized regime like the neural tangent kernel (Jacot
et al., 2018)). Therefore, in this paper we focus on diffusion models based on shallow ReLU neural
network denoisers. These are both simple enough to allow for a theoretical investigation and rich
enough to offer valuable insights.

To gain intuition into the dynamics of the probability flow ODE, we also explore a simpler ODE
that corresponds to flowing in the direction of the score of the noisy data distribution, for a fixed
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noise-level. We call this the score-flow ODE. The score flow aims to sample from one of the modes
of the noise-perturbed data distribution. We explore both the probability flow and the score flow
ODEs for denoisers with minimal representation cost that perfectly fit the training data. Our analysis
reveals that, for small noise levels, the trajectories of both flows is the same for a given initialization.
However, the scheduler induces “early stopping”, which determines whether the probability flow
converges to training samples or to other points on the data manifold. This analysis provides insights
into the stability and convergence properties of these processes.

Our contributions We investigate the probability and the score flow of shallow ReLU neural
network denoisers in the context of interpolating noisy samples with minimal cost, specifically in the
“low-noise regime”’, where noisy samples are well clustered.

* Theoretical: We prove that when the clean training points are orthogonal to one another,
the probability flow and score flow follow a similar trajectory for a given initialization
point. However, while the score flow converges only to a training point or to a sum of
training points, the probability flow can also converge to a point on the boundary of the
hyperbox whose vertices are all partial sums of the training points. This happens due to
“early stopping” induced by the scheduler. We generalize this result to the case where the
training points are the vertices of an obtuse simplex.

* Experimental: We train shallow denoisers that interpolate the training data with minimal
representation cost on orthogonal datasets. We start by empirically demonstrating that the
score flow ODE corresponding to a single such denoiser typically converges either to a sum
of training points, which we call virtual training points, or to a general point on the boundary
of the hyperbox (it converges to a training point only in rare occasions). We then show that
the probability flow ODE, which uses a sequence of denoisers for varying noise levels, also
converges to virtual points and to the boundary of the hyperbox, albeit at a somewhat lower
frequency compared to the training points.

2 SETUP AND REVIEW OF PREVIOUS RESULTS

We study the denoising problem, where we observe a vector y € R? that is a noisy observation of
x € R ie. y = x + €, such that x and e are statistically independent and € is Gaussian noise with
zero mean and covariance matrix o2I. The MSE loss of any denoiser h(y) is

Luse (R) = Exy R (y) — x|, (1)

where the expectation is over the joint probability distribution of x and y. The minimizer of the MSE
loss is the MMSE estimator

hyivse (y) = ]Ex|y [X|y = y] : 2
In practice, since the true data distribution is unknown, we use empirical risk minimization with
regularization. Consider a dataset consisting of M noisy samples for each of the IV clean data points
T, such that Y, ,, = Tp + €pm, n = 1,...,N, m = 1,..., M. Then, one typically aims to
minimize the loss

”h’0 (yn,m) - fEnH2 + )‘C(a) ) 3)
1

where 6 are the parameters of the denoiser model hy and C(6) is a regularization term. Similarly to
(Ongie et al., 2020; Zeno et al., 2023), we focus on a shallow ReLU network with a skip connection
as the parametric model of interest, given by
K
ho(y) =D aklwiy+bili +Vy+e, @
k=1
where 0 = ({0, }5_,;¢, V) with 0, = (bg, ag,wy) € R x R x R?and ¢ € R, V € R™? and
the regularization term is a £2 penalty on the weights, but not on the biases and skip connections, i.e.,
K
C(9) = (laxll* + llwx () - ®)
k=1

N —
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Zeno et al. (2023) showed that in the “low-noise regime”, i.e. when the clusters of noisy samples
around each clean data point are well-separated', there are multiple solutions minimizing the empirical
MSE (first term in equation 3). Each of these solutions has a different generalization capability. They
studied the solution at which the ¢ regularization of equation 5 is minimized.

Definition 1. Let hy : RY — R? denote a shallow ReLU network of the form of equation 4. For any
function h : R — R? realizable as a shallow ReLU network, we define its representation cost as

K

R(h)= inf C(0)= inf ; lak|l st. [lwil| =1, Vk, 6)

and a minimizer of this cost, i.e., a ‘min-cost’ solution, as

h* € argm}in R(h) s.t. h(Yn,m) = xn Yn,m. @)

In the multivariate case, finding an exact min-cost solution for finitely many noise realizations is
generally intractable. Therefore, Zeno et al. (2023) simplified equation 7 by assuming that h(y) = @,
for all y in an open ball centered at x,,. Specifically, letting B(,,, p) denote the ball of radius p
centered at x,,, we simplify notations by writing this constraint as h(B(x,, p)) = {x, }. Consider
minimizing the representation cost under this constraint, that is, solving

h; (y) € argm}inR(h) st. h(B(xn,p)) = {z,}, Vn. (8)

Even this surrogate problem is still challenging to solve explicitly in the general case. Nonetheless, it
can be solved for two specific configurations of training data points, which serve as prototypes for
more general configurations. The first case is when all the data points form an obtuse simplex, i.e.,
the generalization of an obtuse triangle to higher dimensions, and the second case is when the data
points form an equilateral triangle (see Appendix B).

3 THE PROBABILITY FLOW AND THE SCORE FLOW

Once we have an explicit solution for the neural network denoiser, we estimate the score function
by leveraging the connection between the MMSE denoiser and the score function (Robbins, 1956;
Miyasawa et al., 1961; Stein, 1981),

hause (y) =y +0°Viogp(y) ©)
where p (y) is the probability density function of the noisy observation. From this relation, we can
estimate the score function V log p (y) as
_hi(y) -y

2 9

s(y) (10)

g

where b (y) is the minimum norm denoiser. In diffusion models, a stochastic process is typically
used to sample new images. However, to generate unseen images from the data distribution, Song
et al. (2021a) introduced a deterministic sampling process—the probability flow ODE (ordinary
differential equation) (Song et al., 2021b; Karras et al., 2022).

We assume in this paper the variance exploding (VE) case, for which the probability flow ODE is
given by
d’yt 1 dO't2

vt € (0,77 a —iﬁvh‘%}?(yta%) ) an

where the score is estimated using the neural network denoiser V logp (y, 0¢) ~ s (y:, 0¢), and
o, = v/t is the scheduler. The minus sign in the probability flow ODE arises due to the reverse time
variable: we initialize at yr, and finish at yg, a sample from the data distribution. In Appendix A we
show that by using time re-scaling arguments the probability flow ODE is equivalent to the following
ODE

dyr .

=h r) — Yry 12
i pgr,l(y) Y (12)

IThe noise level in the low-noise regime, though small, is not negligible and has been noted as practically
“useful” (Zeno et al., 2023), e.g. for diffusion sampling (Raya & Ambrogioni, 2023).
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where g, = — log o,-, assuming the radius of the noise balls satisfies p; = ao for some a > 0.

Additionally, we will also analyze the score flow, which is a simplified case of equation 12 where
p does not depend on ¢. Analyzing the score flow can be helpful in understanding the dynamics of
the probability flow. The score flow represents the sampling process from one of the modes of the
(multi-modal) distribution of y. The score flow is initialized at yy and for £ > 0 follows

dy:
— =VI . 13
3 = Viegr(y) (13)
Using the estimated score function and time re-scaling r = %t we obtain the score flow
dy,
=h3(y,) — yr. 14
3 = ) -y (14)

Notably, in contrast to the probability flow ODE, the min-cost denoiser here is independent of £.

4 THE PROBABILITY AND SCORE FLOW OF MIN-COST DENOISERS

In this section, we consider training sets that model different types of data manifolds, and state for
each type the possible convergence points of the score and probability flows of min-cost solutions. As
the score flow is a specific instance of probability flow (after time re-scaling) in which the variance
profile is fixed, the difference between the convergence points of these two flows thus illuminates the
effect of the variance reduction scheduling o; (and thus the p; schedule) on the generated sample.

Specifically, we will consider datasets in which Zeno et al. (2023) found the min-cost solution h7,
analytically: (1) orthogonal points, (2) points that form an obtuse angle with one of the points, and
(3) a specific case of 3 training points forming an equilateral triangle.

We begin with the following simple, yet general, observation on the dynamics of score flow. For this
dynamics, the stability condition for a stationary point y is that any eigenvalue of the Jacobian matrix
of the score function with respect to the input y, i.e., A (J (y)) satisfies

Re{A(J (y))} <0. (15)

We next show that in any model that perfectly fits an open ball of radius p > 0 around the training
points (and thus also interpolates the training set), the clean data points are stable stationary points of
the score flow. This implies that, when initialized near these points, the process can converge to the
clean data points.

Proposition 1. Let p > 0 be arbitrary. Let h (y) be a denoiser that satisfies h(B(x,, p)) = {xn}
N

for all n € [N] (and thus interpolates the training data). Then, any training point y € {x,}h_, isa
stable stationary point of equation 13 where we estimate the score using s (y) = %

Proof. Forally € {x,}_, we get that s (y) = 0 since the denoiser interpolates the training data.
In addition, for all y € int (B(x,, p))) the Jacobian matrix is

therefore the stability condition of equation 15 holds. [

This result implies that, when the score function is differentiable and the training points are the only
stationary points, the score flow will converge to the training points with probability 1.

4.1 ORTHOGONAL DATASETS

For simplicity, we begin with the case of a dataset composed of orthogonal points. Specifically,
suppose that we have N training points {a,, }"_ ' where 2y = 0 and the remaining training points
are orthogonal, i.e., z, x; = 0 for all 4, > 0 with i # j. > This approximates the behavior of data
in many generic distributions (e.g., standard normal), which becomes more orthogonal in higher

2The result holds for the general case where @ is non-zero, provided that (z; — o) ' (z; — xo) = 0.
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dimensions. Let u,, = @, /||@,| foralln = 1,..., N — 1. A minimizer of equation 8, h*, is given
by (Zeno et al., 2023, proof of Theorem 3)

Z IImnﬁnH% ([uny = pl+ = [ugy = (lzall = p)l+) wn- a7

We prove (Appendix B.1) the set of stationary points is the set of all possible sums of training points.

Theorem 1. Suppose that the training points {xo, 1, T2, ...,xn_1} C R? are orthogonal. Then,
the set of the stable stationary points of equation 13 is A= {>_ 72, | Z C [N —1]}.

This implies that the stationary points are the vertices of a hyperbox. Next, we prove (in Appendix
B.2) that the score flow converges to the vertex of the hyperbox closest to the initialization yg. Also,
for some vy, score flow first converges to the hyperbox boundary, then to a specific vertex.

Theorem 2. Suppose that the training points {xo, 1, T2, ..., xy_1} C R are orthogonal. Consider

. . h
the score flow where we estimate the score using s (y) = &

ViE[N—l]:u;yo#@,then

and an initialization point yg. If

* We converge to the closest vertex of the hyperbox to the initialization yy.

e I[fthe closest point to yq on the hyperbox is a point on its boundary which is not a vertex,
then Ve < min; |u] yo| there exists pg (¢) and Ty (¢, p) , Ty (p) such that for all p < pg ()
and all T € [Ty (e, p), Th (p)], the point yr is not a stable stationary point and at most at
distance € from the boundary of the hyperbox.

Next, we consider the probability flow. For tractable analysis, we approximate the score estimator for
small noise levels (i.e., for all min,,c[y_q) ”;’—*H < 1) via Taylor’s approximation to obtain

- L

where
—Z z < Pt
o) = o (22— 1) <2< lwal = (19)
[@n]l — 2 2> [|l@n]| — pr

With this approximation, one can show the probability flow and the score flow have a similar trajectory
(for small p), if they have the same initialization point. However, the p; scheduler in probability flow
induces “early stopping”. This can lead to the probability flow to converge to a non-vertex boundary
point (in contrast to score flow), or to influence the speed of convergence to a stationary point. We
show this in the following result for the probability flow (proved in Appendix B.3)

Theorem 3. Suppose that the training points {xq, €1, T2, ..., xn_1} C R are orthogonal. Consider
the probability flow where oy = /1, we estimate the score using equation 18, and yr is the
initialization point. If Vi € [N — 1] : u/ yr # Hml” , then

* [f'the closest point to yr on the hyperbox is a vertex, then we converge to this vertex.

* If the closest point to yr on the hyperbox is not a vertex, then 37 (yr, pr) such that we
converge to the closest vertex to the initialization point yr if T > 7(yr, pr), and we
converge to a point on the boundary of the hyperbox if T < 7(yr, pr).

Theorem 3 shows that the probability flow converges to a vertex of the hyperbox or a point on the
boundary of the hyperbox. We consider this hyperbox boundary as an implicit data manifold—the
diffusion model samples from this hyperbox boundary even though we did not assume an explicit
sampling model that generated the training data, such as a distribution supported on the manifold.
However, in some cases probability flow ODE can converge to specific points in this manifold: the
training points, or sums of training points (“virtual points”).
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This result aligns well with empirical findings that diffusion models can memorize individual training
examples and generate them during sampling (Carlini et al., 2023). In addition, an empirical result
shows that Stable Diffusion (Rombach et al., 2022) can reproduce training data by piecing together
foreground and background objects that it has memorized (Somepalli et al., 2023). This behavior
resembles our result that the probability flow can also converge to sums of training points. In Stable
Diffusion we observe a “semantic sum” of training points; however, our analysis focuses on the
probability flow of a simple 1-hidden-layer model, while in deep neural networks summations in
deeper layers can translate into more intricate semantic combinations.

4.2 OBTUSE-ANGLE DATASETS

We continue with the case of a non-orthogonal dataset. Specifically, suppose the convex hull of the
training points {xg, z1,...,xy_1}+ C R%isa (N — 1)-simplex such that 2, forms an obtuse angle
with all other vertices; we assume WLOG that ¢y = 0. We refer to this as an obtuse simplex. Let
Uy, = Ty /||, | foralln = 1,..., N — 1. In this case, the minimizer h}, is still given by equation 17.

In Figure 1, we illustrate the normalized score flow for the case of an obtuse 2-simplex (see Figure 6
in Appendix E for the unnormalized score flow). The normalized score function is the score function
multiplied by the log of the norm of the score and divided by the norm of the score. As shown, the
training points are stationary points. Next, we prove (in Appendix B.4) that, in the general case of
N training points, the set of stable stationary points is a subset of the set of all partial sums of the
training points. Additionally, we demonstrate that when the angles between data points are nearly
orthogonal, a stable stationary point corresponding to the sum of the points exists.

Theorem 4. Suppose the convex hull of the training points {xo, x1, ...,2x_1} C R% is an obtuse
simplex. Then, the set A of the stable stationary points of equation 13 satisfies {mn}ivz_ol C
AC {>,ezxn | T € {0,1,---,N — 1}}. In addition, the point ) _; ,, where T C
{0,1,--- ,N —1} and |Z| > 2if0 ¢ T and |Z| > 3 if 0 € I, is a stable stationary point if

mingez | Xier (1} ulu; ||zl p > —p.

The condition mingez 3, c 1\ (1) u] u; ||x;]| > —p holds for almost orthogonal dataset (and p > 0).

Next, we prove (in Appendix B.5) that in the general case with N training points, for small noise
levels (i.e., small p) and an initialization point close to the chords connecting the origin to each
training point (x,,), the score flow first converges to a point along a chord connecting the origin and
another training point, and then to an edge of the chord (0 or «,,, depending on initialization).
Theorem 5. Suppose the convex hull of the training points {xo, 2, ..., 2x_1} C R% is an obtuse
simplex. Given an initial point yo such that p < w; yo < ||z;| — p and u;'—yo < pforall j #1i,
consider the score flow where we estimate the score using s (y) = % Then we converge to the
closest edge of the chord. In addition, for all € € (0,u; yo) there exists po (€) and Ty (¢, p), T1 (p)
such that for all p < pg (€) the point yr is not a stable stationary point and at most at distance €
from the line between x4 and z; for Ty(e, p) < T < T1(p).

We next turn to the probability flow. To this end, we assume that the initial point y7 is such that
or < u] yr < ||z;|| — pr and ujTyT < pfor all j # 7. We again use Taylor’s approximation in the

small-noise level regime (specifically, for all ¢ € [N — 1] Hﬂ/v)itl\ < 1), to obtain the following score

estimation at a point y such that p; < u; y < ||z;|| — p; and ujTy < pyforall j #iis

s(y,t) = % 1+ L_pt ww, —I)y—pu;) . (20)
o; [l

We now have the following result regarding probability flow (proved in Appendix B.6)

Theorem 6. Suppose the convex hull of the training points {xo, 2, ..., 2x_1} C R% is an obtuse
simplex. Given an initial point yr such that pr < u yr < ||| — pr and u;»'—yT < prforall j #1i.
Consider the probability flow where oy = \/t and we estimate the score using equation 20. Then,
37 (yr, pr)) such that we converge to a point on the line connecting x1 and x; if T < 7(yr, pr)
and if T > 7(yr, pr) we converge to the closest point in the set {xo, x;} to yr.

Theorem 6 shows that the probability flow converges to a point on the chord or to one of the edges of
the chord. In this scenario, we consider the chords as the implicit data manifold.
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Figure 1: The normalized score function of obtuse and acute simplex. The red dots are the training
points @1, 2, 3. The black lines are the ReLU boundaries. In Figure (a) we plot the score function
of an obtuse triangle. In Figure (b) we plot an equilateral triangle.

4.3 AN EQUILATERAL TRIANGLE DATASET

Finally, for completeness, we consider the score flow in the case where the training points form the
vertices of an equilateral triangle (as this is the last remaining dataset case for which the min-cost
denoiser is analytically solvable (Zeno et al., 2023)). We prove (in Appendix B.7) that, given an
initialization point near the edge of the triangle, the score flow first converges to the face of the
triangle (the implicit data manifold here) and then to the vertex closest to the initialization point yg.

Proposition 2. Suppose the convex hull of the training points x1,xy, €3 € R? is an equilateral

triangle. Given an initial point yqo such that i € {1,2} — M +p < ulyo < |lzi| — pand
: . ; . R*(y)—
ujy < —@ + p, consider the score flow where we estimate the score using s (y) = %

Then we converge to the closest vertex to the yo. In addition, for all 0 < e < (uq + UQ)T Yo — @

there exists po (€) and Ty (p,€) ,T1 (p) such that for all p < po (€) the point yr is not a stable
stationary point and at most € distance from the line between x1 and xo for Ty (p, ) < T < T (p).

Without loss of generality, we can permute the training points indices {1, 2, 3} in the above result.
The probability flow for this case can be also analyzed, similarly to what we did in previous cases.

5 SIMULATIONS

In this section, we demonstrate the findings of Theorems 1, 2 and 3 in shallow neural networks.
In practical settings, the continuous probability flow ODE given by equation 11 is discretized to S
timesteps, as

(hz,, (yt) — ye)

t=T,...,1 21
20_t2 ) ) ) ) ( )

Y1 =y + (07 — 07 1)
where b7, (y:) is modeled as a series of S denoisers (usually with weight sharing), which are applied
consecutively to gradually denoise the signal. In this setting, the sampling should theoretically be
initialized at T' = oo, however in practice it is initialized from a finite timestep 7', which is chosen
such that o > ||;|| for all . Similarly, the score-flow of equation 13 is discretized as

(hy, (yt) —yt)
P
yt+1:yt+7t°g—2, t=0,1,..., (22)
to
where v is some step size and here ¢y is a fixed timestep (so that all iterations are with the same
denoiser). Note that here ¢ increases along the iterations, and since we use a single denoiser, there is
no constraint on the number of iterations we can perform.

It should be noted that while our theorems characterize only the low-noise regime, here we simulate a
more practical sampling process, which starts the sampling from large noise. Namely, the initialization
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(yr in equation 21 and yg in equation 22) is drawn from a Gaussian with large . Thus, our theoretical
analysis becomes relevant only once the dynamics enter the low-noise regime.

To demonstrate our results for the case of an orthogonal dataset, we use orthonormal training samples,
set 0y = +/t, and choose T = 100 to ensure an effectively high noise at the beginning of the
sampling process. We train a set of S = 150 denoisers, ensuring 50 equally-spaced noise levels in
the “low-noise regime” and 100 equally-spaced noise levels outside it. We train our networks on data
in dimension d = 30, with M = 500 noisy samples per training sample, taking the dimension of the
hidden layer of the networks to be K = 300.

To be consistent with our theory, which assumes the denoiser achieves exact interpolation over the
noisy training samples, we use a non-standard training protocol to enforce close-to-exact interpolation.
Specifically, we pose the denoiser training as the equality constrained optimization problem

mein C(0) s.it. ho(Ynm) = Tn, Yn,m (23)
which we optimize using the Augmented Lagrangian (AL) method (see, e.g., (Nocedal & Wright,
2006)). Specifically, we define

| M N i

Lar(0,Q,p) :=C(0) + — > Z S 1o (Unm) = @all® + (@™ o (Ynm) — x0) 24)

where ;1 € Ry, g™ € R? represents a vector of Lagrange multipliers, and Q € R¥>*MN jg
the matrix whose columns are g™ for all m = 1,..., M, n = 1, ..., N. Then, starting from an
initialization of pg > 0 and Q¢ = 0, for k = 0, 1, ..., K we perform the iterative updates:

Opt+1 = al“gemin Lar 0k, Qr, fx) (25)
a7 = q"™ + (R (Yum) — T0), Vn,m (26)
Mkl = Nk, (27)

where 77 > 1 is a fixed constant. The solution of equation 25 is approximated by following standard
training using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 10~* for 10*
iterations. We additionally take » = 3 and K = 7, and decrease the learning rate by 0.5 after each
iterative update.

We start by demonstrating the existence of vir-

tual training points, that is, stable stationary L+, Distance < 0.2

points that are sums of training points, as pre-

dicted by Theorem 1. We take a denoiser from

the “low-noise regime” (o; = 0.095 in this ex- Triplets

ample) and run 10 fixed-point iterations on all

the predicted virtual points that consist of com- Quadruplets

binations of pairs, triplets and quadruplets of o
. . . 0%

the training points. In Figure 2 we plot the per-

centage of these runs that converged within an  Fjgure 2: Existence of stable virtual training
Lo distance of 0.2 to the predicted virtual point. pejnts. We run fixed-point iterations on a sin-
As can be seen, 98.6% of the predicted virtual  gle denoiser, starting from all possible pair-wise,
points composed of pairs of training points are  triplet-wise, and quadruplet-wise combinations of
stable in practice, and the stability of virtual (raining samples. The plot shows the percentage
points decreases as higher-numbers of combina-  of points that converged within an L. distance of
tions are considered. Nevertheless, the absolute (.2 to the original, virtual, input point.

number of stable virtual points increases sub-

stantially as higher-numbers of combinations

are considered. Specifically, in the same example a total of 429, 3390, and 6965 stationary points
were found for the pairs, triplet and quadruplet combinations. The increase in the absolute numbers is
due to the higher number of higher-order sums. The decrease in percentages is due to small deviations
in the ReLLU boundaries of the trained denoiser compared to the theoretical optimal denoiser. These
deviations have a greater impact on stationary points that involve sums of more training points.

Pairs

20%  40%  60%  80%  100%

Next, we explore the full dynamics of the diffusion process. We start with the score flow for a
single denoiser from timestep ¢, which corresponds to noise level o, = 0.095. We randomly
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100% 100%
Near Boundary Boundary Near Training Pt. Boundary
s Near Virtual Pt. . Near Boundary
* Sampling Path 80% o Near Virtual Pt. . 80%
2 » Sampling Path & 2
60%
Training Pts.
40%
2.0 20% %
0.0 0.0 L, Distance < 0.2 L Distance < 0.2
(a) Score Flow. (b) Probability Flow.

Figure 3: Projection to three dimensions and convergence types frequency of randomly sampled
points. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points from
R39, for both sampling using the score flow (3a) and a regular diffusion process (3b). For each, we
plot on the right the percentage of points that converged to either a virtual point, a training point, or to
the boundaries of the hyperbox, out of all points. On the left, we plot the sampling results projected
to three dimensions, along with the path a single point took until convergence. In score flow, all
points converged to either virtual points or to boundaries of the hyperbox, which is evident in the
point clusters in the locations of the projected virtual points. For probability flow, the bias induced by
the “large-noise regime” denoisers diffusion causes more samples to converge around the the training
points and their adjacent boundaries. Nevertheless, a large percentage of samples still converge in
the vicinity of virtual points. The paths the points take towards the hyperbox draws them first to the
closest boundary, and then, if the steps sizes and amount permit, travel along the edges towards the
closest stable stationary points.

sample 500 points from A (0, 1001 ), and apply 3000 score-flow iterations to each, with a step size of
v = 5-10~*. The right hand side of Figure 3a shows the percentage of points that converged within
an L distance of 0.2 to either virtual points, training points, or a boundary of the hyperbox. On the
left hand side of Figure 3a, we plot the projection of all samples on three dimensions. Out of 500
samples, almost all points converged to virtual points, which is expected in random initialization
due to their larger number, compared to the training points. The rest of the points converged to the
hyperbox’s boundaries. The path the points take towards the hyperbox first draws them to the closest
boundary, and then they drift along the boundary towards the closest stable stationary point.

Finally, we examine a full diffusion process with the probability ODE. Here we follow equation 21
using S = 150 trained denoisers, starting again from 500 randomly sampled points from N (0, o7 1).
Our results hold where the noise level is small compared to the norm of the training samples.
Therefore, denoisers of large noise levels are not expected to have stable virtual points. In probability
flow most noise levels are large compared to this norm, as the sampling process begins with a large
variance (in the VE case). Specifically, in our example only the last 50 denoisers have small noise
levels. Yet, as can be seen on the right hand side of Figure 3b, a large percentage of the samples
produced are virtual points. In contrast to the score flow case, the start of the sampling process here
attracts most samples towards the mean of the training points, as any optimal-MSE denoiser would,
which creates a biased starting point to the the sampling process in the “low-noise regime”. From this
regime onwards, the points travel along the boundaries of the hyperbox towards their nearest stable
points, which is usually a training point. This behaviour is demonstrated on the left side of Figure 3b,
where the projected path of a random point is drawn starting from the 90™ step.

Please refer to Appendix E for comparisons of additional thresholds, and to Appendix C and D for
discussions on the effects of the training set size and the minimum norm constraint.

6 RELATED WORK

Memorization and Generalization in Deep Generative Models Several recent works have sought
to explain the transition from memorization to generalization in deep generative models, both from
a theoretical and empirical perspective. One early line of work in this vein studied memorization
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in over-parametrized (non-denoising) autoencoders (Radhakrishnan et al., 2019; 2020). This work
shows that over-parameterized autoencoders trained to low cost are locally contractive about each
training sample, such that training images can be recovered by iteratively applying the autoencoder to
noisy inputs. A theoretical explanation of this phenomenon using a neural tangent kernel analysis is
given in (Jiang & Pehlevan, 2020). More recent work has also shown that state-of-the-art diffusion
models exhibit a similar form of memorization, such that extraction of training samples is possible
by identifying stable stationary points of the diffusion process (Carlini et al., 2023). Additionally,
when trained on few images, several works have shown that the outputs of diffusion models are
strongly biased towards the training set, and thus fail to generalize (Somepalli et al., 2023; Yoon
et al., 2023; Kadkhodaie et al., 2024). A recent empirical study suggests that memorization and
generalization in diffusion models are mutually exclusive phenomenon, and successful generation
occurs only when memorization fails (Yoon et al., 2023; Zhang et al., 2023). Beyond these empirical
studies, recent work has put forward theoretical explanations for generalization in score-based models.
In (Pidstrigach, 2022), the authors show that score-based models can learn manifold structure in the
data generating distribution. A complementary perspective is provided by Kadkhodaie et al. (2024),
which argues that diffusion models implicitly encode geometry-adaptive harmonic representations.

Representation costs and neural network denoisers Several other works have investigated
overparameterized autoencoding/denoising networks with minimal representation cost (i.e., minimial
£2-norm of parameters). Function space characterizations of min-norm solutions of shallow fully
connected neural networks are given in (Savarese et al., 2019; Ongie et al., 2020; Parhi & Nowak,
2021; Shenouda et al., 2023); extensions to deep networks and emergent bottleneck structure are
considered in (Jacot, 2022; Jacot et al., 2022; Jacot, 2023; Wen & Jacot, 2024). The present work
relies on the shallow min-norm solutions derived by Zeno et al. (2023) for specific configurations of
data points, but goes beyond this work in studying the dynamics of its associated flows.

A recent study investigates properties of shallow min-norm solutions to a score matching objective
(Zhang & Pilanci, 2024), building off of a line of work that studies min-norm solutions from a
convex optimization perspective (Pilanci & Ergen, 2020; Ergen & Pilanci, 2020; Sahiner et al.,
2021; Wang & Pilanci, 2021). In the case of univariate data, an explicit min-norm solution of the
score-matching objective is derived, and convergence results are given for Langevin sampling with
the neural network-learned score function. Additionally, in the multivariate case, general min-norm
solutions to the score-matching loss are characterized as minimizers of a quadratic program. Our
results differ from (Zhang & Pilanci, 2024) in that we study different optimization formulations
(denoising loss versus score-matching loss) and inference procedures (probability- and score-flow
versus Langevin dynamics). Our results focus on high-dimensional data belonging to a simplex,
while Zhang & Pilanci (2024) give convergence guarantees only in the case of univariate data.

7 DISCUSSION

Conclusions. We explored the probability flow ODE of shallow neural networks with minimal
representation cost. We showed that for orthogonal dataset and obtuse-angle dataset the probability
flow and the score flow follows the same trajectory given the same initialization point and small noise
level. The scheduler in probability flow induces “early stopping”, which results in converging to a
boundary point instead of a specific vertex (as in score flow) or speed up convergence to a specific
vertex. One possible extension of this work is to analyze the probability flow ODE in the case of
variance-preserving processes. This is an important case since practical diffusion models more often
use variance-preserving forward and backward processes.

Limitations. A key limitation of our analysis is the assumption (inherited from Zeno et al. (2023))
that the denoiser interpolates data across a full d-dimensional ball centered around each clean training
sample, where d represents the input dimension. In real-world scenarios, the number of noisy samples
is typically smaller than the input dimension d. A more accurate approach might involve assuming that
the denoiser interpolates over an (M — 1)-dimensional disc around each training sample, reflecting
the norm concentration of Gaussian noise in high-dimensional spaces. Furthermore, for mathematical
tractability, our analysis focuses on a single hidden layer model.

10
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ETHICS STATEMENT

This paper presents a theoretical analysis of diffusion models under specific constraints, aiming
to enhance the understanding of generative models. This may lead to greater transparency when
using these models. Moreover, we anticipate that insights gained from these simpler cases will shed
light on the memorization and generalization behaviors in large-scale diffusion models, which pose
privacy concerns. Lastly, we note the neural network examined in this paper is a shallow one, whereas
practical contemporary implementations almost always involve deep networks. Naturally, addressing
deep networks from the outset would pose an impassable barrier. In general, our guiding principle for
research works that aim to understand new or not-yet-understood phenomena is that we should first
study it in the simplest model that shows it, so as not to get distracted by possible confounders, and
to enable a detailed analytic understanding. For example, when exploring or teaching a statistical
problem issues, we would typically start with linear regression, understand the phenomena in this
simple case, and then move on to more complex models. Thus, we hope the example we set in this
paper will help promote this guiding principle for research and teaching.

REPRODUCIBILITY STATEMENT

The paper fully discloses all the information needed for reproducing the results. We provide full and
detailed proofs for all claims in the paper in Appendices A and B. The details of the experimental
results are detailed in Section 5, including hyper-parameters and training configuration. Additionally,
code will be published upon acceptance.
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A PROOFS OF RESULTS IN SECTION 3

The probability flow ODE is given by

dy: 1do?
At A va | 2
dt TRTRA 8)
do
= —atd—;VIng(yt,Ut) . (29)
First, we apply change of variable as follows
r=g(t)=—logo; (30)
dr 1 doy
—_— = 31
de¢ Ot de ( )
dt 1do,\ "
— = -——— . 32
dr ( Ot dt ) ( )
Therefore,
dyt dyt dt dO’t Ot
—— =-——=|—-0,—VI — 33
dr dt dr Ot dt \% ng(yt,o't) % ( )
= 07V logp (yi,01) (34)

Next, we estimate the score function using a neural network denoiser, and substitute t = g~* () to
obtain

dy; *
e a0~ @

B PROOFS OF RESULTS IN SECTION 4

In this section we use the following Propositions from (Zeno et al., 2023).

Proposition 3. Suppose that the convex hull of the training points {x,, xs, ...,xy} C RYisa (N—1)-
simplex such that x forms an obtuse angle with all other vertices, i.e., (x; — x1)" (x; — 1) <0
foralli # j with i,j > 1. Then the minimizer h}, of equation 8 is unique and is given by

N
ho(y) =21+ Y undn(u, (y — 1)) (36)
n=2

where u,, = Hf):ﬁ%ﬁ”, On(t) = sn([t — anls — [t = bp]y), with an, = p, by, = ||@n — T1|| — p, and

Sn = ||@n — x1]|/(bn, — ay) foralln = 2,..., N.
Proposition 4. Suppose the convex hull of the training points x1,xy, €3 € R? is an equilateral
triangle. Assume the norm-balls B, := B(x,,p) centered at each training point have radius
p <|lxn —xo||/2, n =1,2,3, where xg = (@1 + @2 + ®3) is the centroid of the triangle. Then a
minimizer hy, of equation 8 is given by

hi(y) = w11 (u) (y — @) + uada(ug (Y — @o)) + usds(ug (y — o)) + @0, (37)

where ¢,,(t) = sp([t — an]s — [t — bp]y) wWith u,, = ﬁ, an = —3|@n — @0l + p, by =
Zn — ol = p. and sn, = ||[Tn — ol| /(br — an).

B.1 PROOF OF THEOREM 1

Proof. In the case of orthogonal dataset where for all i # j asjacj = 0 and g = 0, the score
function is

hi(y) —
s(y) = 7P(Z)2 4 (38)
S et (=l — i = (2l =l -y .

o2
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The Jacobian matrix is

llzill A (y) i — 6is
z—2p 5 7 O
Jig (y) = P ,

(40)
g

where A,, (y) indicates if only one of the ReLU functions is activated. In matrix form, we obtain

L (& | [ ) )
J(y) =5 (diag | o A (), = o AN -I), @
where A, (y) € {0,1}. In this case, the stability condition is
Re{A (J (1)} = A (J () < 0. )
Note that for A; (y) =1
)\(J(y)):MAi(y)_1>0. “3)
llzil| — 2p

Therefore, a stationary point is stable if and only if for all i € [N — 1] A; (y) = 0. We define
the set A = {>° .7 ®,|Z € P([N — 1])}. Note that the set of points where the score is zero and
A;(y)=0foralli € [N —1]is A. O

B.2 PROOF OF THEOREM 2

Proof. We assume WLOG that for all i € [N — 1] u; = e;. We can analyze the ODE equation 14
along each orthogonal direction separately. In each direction, we divide the ODE into the following
cases:

Ify; < pori> N — 1, the score function is

si(yi) = =55 - (44)
Therefore, according to Lemma 1,
(Ye)i = (Yo)ie™ =2 (45)
and we converge to zero.
If y; > ||x;|| — p, the score function is
Lill — Yi
or ) = ('12 (46)
Therefore, according to Lemma 1,
(y)i = (wodie 7 + il (1— e ) )
e
= (o — llzill) e™ =% + [l (48)
and we converge to ||x;||.
Finally, if p < y; < ||&;|| — p, the score function is
1 [l i p
5'(3/'):<(—1 Yi— o o) (49)
S o2 \\leill - 2p C el - 20
Therefore, according to Lemma 1,
leill 1 ¢ ) l=ill 1) e
(ye)i = <yo)ie<uwin—2p D ”“2”“ (1 (i) ) (50)
lll :
T; Tz, L) oz T;
= <(y0)i el 5 ”) €<”Il” i >°2 + flail 5 | . (51)
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Here, if (yo); ”2—“ if (yo)i > HZQ—H then we converge to ||z;|]; if (yo); <

[l ||
2

we converge to

— =]l
=2
then we converge to zero.

There are multiple initializations in which the closest point on the hyperbox is a point on the boundary
which is not a vertex. We first consider the case where there exist a non empty set Z C [N — 1] such
that forall i € Z p < (yo); < ||@;i]| — p, and forall j € [N]\Z (yo); < por (yo); > ||x:l| — p. We
define AT; (p) time to reach the edge of the partition, i.e. ||z;|| — p (Wwhen (yq); > ||x;|| — p) starting
from the initialization point, and AT} (p, €) time to reach e distance from zero or ||x;|| starting from
the initialization point:

ll:]]
;|| — 2p 5P
P (Yo)i — S
AT (p,€) = 0 log <(y°)> : (53)
€
Since p = ao we get that
[l |
]l — 2o ol p
AT (p) =p—5 5 log | —— (54)
' 202 (yo); — 1z
7 _(P)? (Yo)
AT} (p,€) = (a) log (6 ) . (55)
Note that 3pg (€) > 0 such that Vp < pg (e, )
To = max ATj (p,e) < T < Ty = min AT; (p) , (56)
J 7
since Jpg (€) such that
[l ]|
2 i il =2 S
« € 2a (yo)i — %
ll:]]
i ill —2 -
€ po (Yo)i — 5

We can similarly derive the time interval during which yr is at most € distance from the boundary
of the hyperbox and is not at a stationary point for additional initializations. Specifically, for all
i €[N —1] p < (yo)i < ||&:|| — pis such an initialization point. O

B.3 PROOF OF THEOREM 3

First, we prove the following lemma.
Lemma 1. consider the following affine ODE

d
Tt =ayi+b (59)
with initial point yr, where a # 0. The solution is
b
y = et=1) (yT . (e_“(t_T) - 1)) . (60)
Proof. We verify directly that this is indeed the solution, since
d b
e _ ealt=T) (yT — 2 (et — 1)) 4 ealt=T)pe—a(t=T) 61)
dt a
b
= qet=T) (yT ~ (ef(th)t — 1)) +b=ay;+b (62)
b
yT:(yT_a(1_1)> =yr- (63)
O
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Next, we prove the main Theorem.

Proof. We assume WLOG that for all ¢ € [N — 1] u; = e;. We can analyze the score flow along
each orthogonal direction separately. In each direction, we divide the ODE to the following cases:

If i ¢ [N — 1], then equation 12 is
dy
dr
Note that the initial point is at 7o = — log v/7". Using Lemma 1, we obtain

(yr)i — (yT)i 6—1(r+log \/T) .

Since r = — log \V/t, we further obtain

e(log Vi—log \/T)

(ye); = (yr); = (yr);

Therefore, we obtain (yo), = 0.
We now consider now the case where ¢ € [N — 1].
In the case where y; < p¢, equation 12 is

dy, _
dr
So, similarly to the previous case, we obtain (yo), = 0.

In the case where y; > ||z;|| — pt, equation 12 is

dy,
2 il -~y
Note that the initial point is at 7o = — log /7. Using Lemma | we obtain

e(log \/%) = ('!/T)z

t

T

(), = e~ YD) (), + ]| (e 4108 VT) - 1))

= @]l + ((yr); — |]|) e (e vVT) |

Since r = — log \/t, we further obtain

(), = laill + ((yr), — [l ) ellos VimtosVT)

|mm+«mmpmm¢7.

Therefore, we obtain (yo), = |||

In the case where p; < y; < ||z;|| — pt, equation 12 is

dy, 2 1
dr P \Ja]V )

Note that
pr = aoy = aV/t
grl=e?
Therefore,
pr=cae "

so we obtain the following ODE:
dyr _ or (2y _ 1)
dr [ '
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(68)

(69)

(70)

(71)

(72)

(73)

(74)
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Next, we apply additional time re-scaling

k=—ae™" (78)
dk
oo =0 (79)
dr 1 _
T = (80)
So, we get the following ODE:
dy, dy,dr _ 2 1 2
= _—= r — 1 r = — 1 81
== () e = e e
d 2
Sk (82)

di [l

Note that the initial point is at kg = —a+/T". Using Lemma | we obtain

(), = el V) <(yT)7; + —”:';"H (e—w(kwﬁ) - 1)) (83)
= Nl ((ym - ”‘””) T (™). (84)

2 2

Since k = —ae™" and r = — log v/%, we obtain
(w), = 120 ((yT)i - x;”) (e (e eV T) (35)

2aVT
So, we obtain (yo), = ngﬁ“ + ((yT) - l‘?”) e =il . Given an initialization point yr, let Z C

[N — 1] be a non empty set such that p < (yr),; < ||x;|| — p for all i € 7 and either (yr); < p or
(yr); > ||@i|| — pforall j € [N — 1]\ Z. Then, if

EARY 5!
T > max () log? ﬁ ; (87)
i€l 2c0 (yr); — 1=l

we converge to the closest point in the set A = {>° 7@, | Z C [N — 1]} to the initialization point

yr, where {a;n}ffgol is the training set. We instead converge to the closest boundary of the hyperbox
to the initialization point y if

||:C|| 2 |EA
T < max () log? ﬁ . (88)
1€L 2 (yT)’L — 7’

O

B.4 PROOF OF THEOREM 4

Proof. In the case where the convex hull of the training points is an (N — 1)-simplex, such that x
forms an obtuse angle with all other vertices and xy = 0, the score function is

hi(y)—y

s(y) = ’JT (89)

S e, (fuly — s — [y — (J2al = p))4) —w
_ . . (90)

ag
The Jacobian matrix is
St izl (), (un) ; A () — 65

Jij (y) = 1 flznll—2p : J J ’ 1)

a
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where A,, (y) indicates if only one of the ReLU functions is activated. In matrix form we obtain

1
J(y)=—(UU"-1I), (92)
where
U= (A1 (y) vru, - Ano1 (¥) VIN—1un—1) (93)
x|
p = el 94
" Tl - 20 e
An (y) €{0,1}. (95)

Note that the Jacobian matrix is a real and symmetric matrix therefore it has real eigenvalues. In this
case, the stability condition is

Re{A(J (y))} = A(J (y)) <0. (96)
For any a € R?¢
a'J(y)a < Amax (J (y))a'a. o7

This holds in particular for a € S9-1 therefore

Amax (J) > aT$ (UUT -I)a (98)
1 2
=~ (lavll;-1) - (99)

If we choose @ = wu,, such that A,, (y) # 0, then HaTUHz > 1, since ~,, > 1. Therefore, a

stationary point is stable if and only if foralln € {1,--- , N — 1} A; (y) = 0. Note that if y is such
that A, (y) = 0foralln € {1,--- , N — 1}, then there exists Z € P(0,1,--- , N — 1) such that

Fly)=Y @n. (100)
ne’l

Therefore, y* = ) 7 T, is a stationary point if and only if foralli € {1,--- , N -1} A; (y*) = 0.
Note that the set of stable stationary points is not empty, since for all ¢ € [N] the point y* = x; is a
stable stationary point because f* (y*) = x;, and thus A,, (y*) =0foralln € {1,--- ,N — 1}.

The condition for the point ), x, where Z C [N]and |Z| > 2if0 ¢ Zand |Z| > 3if0 € Z to
be a stable stationary point, is that for all Vk € 7

>l > ] - p, (101)
€L

which is equivalent to that for all Vk € 7

Z ug @ > —p. (102)
i€Z\{k}

This set of inequality is equivalent to the condition

j T . . J—
min > ufullal p > —p. (103)
i€Z\{k}

B.5 PROOF OF THEOREM 5

First, we prove the following lemma.
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Lemma 2. Consider the following system of affine ODE

dy:
— =Ay;+0b,
dt Yt
with the initial condition yo, where A € R is a non singular matrix. The solution is

y=e(yo— A (e -1)b) .

In the case where A is also symmetric, the solution can be written as

sz v yo) Z”z v/ D) A (1 -

where Zf-l:l )\iviv: is the eigenvalue decomposition of the matrix A.

Proof. We verify directly that this is indeed the solution, since

d(zt AeA?t (yo A1 (efAt — I) b) +eAte™ Ay = Ay, + b

yo=I(yo— A" I-1)b) =yo.

In the case where A is also symmetric,

Therefore,

d d
= Zviv;—ek”t Yo — kav,;r/\;l ZUJ'UJT (e—’\jt —~1)b
i=1 k=1 =1
= Zvlv et (yo — ka)\ *)"“t 1) b)
=1
d
z_: Zvl v, b (1 —et ) )

Next, we prove Theorem 5.

(104)

(105)

(106)

(107)
(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

Proof. We assume WLOG that 2y = 0. Given the initial point yo such that yg such that p < u yo <

|lz;|| — p and ujTyo < pforall j # i, the score is given by
1 [l T )
s(y)=— (ui u;y—p) -y
7 Tl -2 (¥ )
1 [l | T ) i p )
== ||l——=uwu, —IT)y——mu; | .
o? ((II%II —2p | — 2p
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According to Lemma 2, the score flow in the partition p < u, y < ||z;|| — p and uJTy < p for all

jFiis

ka (v o) ka (vl b) Act (1—e™77) (118)

where the matrix A = (Hm‘[_“lc‘i”zp wiu] — I ) The eigenvalue decomposition of A is
A=VAVT (119)
V=(u w - wg_1) (120)
2
A = diag (p,1,~-~ ,1) , (121)
il —2p
where w; € uf- Since,
(”mi”uiuiT - I) u; = (”m” — 1> u; (122)
il — 2p il — 2p
2
= (123)
il —2p
(W%u: — I) w; = —wj, (124)
and b = — “_,L‘iﬂ’;pui. So, we get

Y= u ((u yo)euwm 2 +”¢;”< _Tlm7 >)+ka vlyo)e 7. (125)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide
it into the following cases:

If u;»'—yo = @, then

Qw‘ ~

d
= ui@ + Z'uk ('U,Iyo) e (126)
k=2

llzall

Therefore, we converge to the point Yoo = u;~5—.

If u/ yo > Hm—Q”, then we converge to Yoo = u; ||x;||, and if u; yo < @ then we converge to
Yoo = €1 = 0 (since then the score function is ”ZU# or —%).

We assume WLOG that u, yo > @ We define AT, (p) time to reach the edge of the partition,
i.e. ||z;|| — p starting from the initialization point, and AT, (p, €) time to reach e distance from zero
(the data manifold) starting from the initialization point.

[l
ill —2 5~
ATy (p) = o212l =20 (2 =P (127)
: 2 ul yo — 121
2 v, Yo
AT, (p,€) = o*log (k) . (128)
€
Since p = a0, we get that
llc: |
il — 2p, S p
(PN (U Yo
AT, (p,€) = (a) log ( : ) . (130)
Similarly to B.2, we get that Ipg (¢) > 0 such that Vp < po (¢, )
Ty = max AT, (6) < T < AT, (p) - (131)
O
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B.6 PROOF OF THEOREM 6

Proof. The estimated score function at the initialization is

2
s(y,t) = ((1 + MPt) wiu, — I) Y — piu; . (132)
K]
Next, we project the estimated score along u; and the orthogonal direction, so we get
2
wiu; ols (y,t) = ((1 + ||:c-||pt> wiw; — i, > Y — piu; (133)
2
= w;py (u]y— 1) (134)
4|

(I —uu)o}s(y.t)=(I—um;) ( 1+ j|pt> wiu, —I) y—pe (I —uu] ) u,
i

(135)
2
(<1+ pt> uﬂ;j—I)y—((l—i—pt) uzu;r—ulu;'—)y
(B (B3]
(136)
2
((1 + pt> ulu;r — I) Yy — —ptuiuj (137)
(Bl (Bl

= (wu! —I)y (138)

o (Er n“ v1)

.
. w, Yy .
w; € ui is — >, so we get the same estimated score as in Theorem 3 (we can analyze the score

Therefore, the projected score onto w; is , and the projected score function onto

flow along each c;rthogonal direction separately). Therefore, along w; we get
o —lo log /% t
w;ryt = w]TyTe(l g Vt—1 g\/T) = w;ryTe( gﬁ) = (yT)i 1/ T . (139)

So, we obtain w, yo = 0. Along u; we get

u;Fyt _ ”‘TQZ” + <u;FyT ”‘ZZ”) el \( a\f—i-a\/»)’ (140)
SO we obtalnw Yo = Il H + (uT - M) 2\?1? Then. if
0= Jyr e en, i

lzll\?, o A5l
a (yT)i - T2

we converge to the closest point in the set {x, x;} to the initialization point yr since the estimated

w and we converge to 0 or ||z;|| (as in Theorem 3), and if

||xi||)2 ) < L )
< log" | —=———— |, (142)
( 2a (yr), = 45+

we converge to a point on the line connecting ¢ and x;. O

score is equal to —-% or
Tt

B.7 POOF OF PROPOSITION 2

Proof. We assume WLOG that 3 = 0. Note that since the convex hull of the training points is an
equilateral triangle, then ||z;|| = ||z||. Given the initial point yo such thati € {1,2} — @ +p<
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uly < ||z| - pand uj y <

llz| + p, the score is given by
2

1 [[|] Tyt

s = — | =" uu; Y+ ST
(v) 2 (§|$||—QPZ iU Y i

‘ B '—Uip) _}’>
i=1
B 1( |
o2 \ 2

(143)
T T
UIU + U2Uy —-I) Y (144)
gllwl\*%( ' )
1 ( ] < HwH !
t— 5 el =p ) ur+ Slel—p)uz) . (145)
o \ 3=l - 2p \2 3 llzll =2 \2
According to Lemma 2, the score flow in the partition ¢ € {1,2} — =
ul Hw\l
jy <15l +pis

H—&-p<u y < ||z|| — pand

9
E’Uk v} Yo) k7T

where the matrix A = (

Z v, 'vk (1 — e
[E4

T T
Tlol 3, (WUl + U2tz

) , (146)
A=VAVT

U —U utu
V = <\/2(117u;u2) \/2(11+u1:uz))

(147)
(148)

A = diag <||a:|| (1 — uTug) -1 =]
3 il =20 ' ’

14+u{u)—1]),
af —z; () 1)
[
(H(c_2p ('Uzl'uir + UQU;F) -1 (U1 — 'UIQ)
2

) I ) The eigenvalue decomposition of A is

since,

(149)

=g (u1 + uzu;ul — ululTuz — Ug) — (u1 — u2)
5l —2p
(150)
|| T )
=+ —— (1—-uguy) —1) (u; —us2)
(§||m||2p( 2 w)
(151)
x T
(3 ] (wiu] +usuj) I> (uy +ug) = 57— —— =] (w1 + usuy ur + uruy up + uz) — (uy + us)
5 el —2 5 el —2
(152)
|| T )
=|———14uyu;) — 1) (ug +u2),
(§||w||2/)( 2 )
and b = 5] z|

oty (3 12l = p) s + gyt

(1
Sllzl—2p \2

(153)
||| — p) uz. We assume WLOG that
0 V3 RVE]
up=\(q), uw={2/), us={ ¢ |, (154)
2 2
and we get
1
v = ﬁ (u1 — ’LLQ) (155)
Vo = U1 + Uy = —u3 (156)
W Blell
. ~1>0 (157)
3 llell —2p
1
)\2:_(1_32”$”> <0.
3 llell = 2p

(158)
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3 _t
1 1 I 1ETRY- 1
Yt = % (uy — ug) <\/§ (ug — ug)T y0> e<%”w"’2" ) o (159)
(e
+ (w1 + u2) ((U1 +u2)Tyo)e ( %nmufzp)? (160)
-1 Sl
| 1 )( 5 Iz ) (- ) %
—(uy+w) | +=—— || —p ) | =2 —1 1—e glzll=20 ) %
(w4 2>(§|w—2p2” =0 )\ Tl — 2
(161)
Note that,
-1
(s (iet-0)) Lo )l (lall =) $lel =20
3 el —2p \2 3 ) —2p Slell—=20  —llzl +2p
_lelGl=l=p) _ Nzl e
—lzll +2p 2
Therefore,
3
1 1 . (3§nwut 71>%
Y= —= (U1 —u2) | —= (ug —u2) yo |e\2I=l=2 )~ (164)
V3 (ﬁ
AR 1L
(uy +UQ (ul +’u2 )e < %“w“72p>02 (165)
Sl .
( |:c||>< ()) 166)
3
1 1 - (3§nwn 71>%
= —=(u1 —uz) | —= (w1 —ug) yo |e\2l==2 /< (167)
V3 V3

Liel Y\
+ (w1 + u2) <<(u1 +un) Yo — ”2”) e (17 %”m”-%) 7 4 ”926”> . (168)

Note that we can analyze the score flow along each orthogonal direction separately. Next, we divide
it into the following cases:

If % (ug — 'UQ)T yo = 0, then

Sl
—(1-= t
Yy = (ug + uo) <((ul ) Yo — ”w|> e ( %”“‘”*2") "

2

]
5 ) ) (169)

and we converge to the point Yo, = (u1 + u2) @

If % (ug — uz)T yo > 0, then we converge to Yy, = x1, and if % (ug — uQ)T Yo < 0, then we
converge to Yoo = T2.

We assume WLOG that % (w1 — u2) ' yo > 0. We define AT} (p, €) as the time to reach € distance

from the data manifold (the line connecting the training points &, and x5) starting from initialization
point Yo, and AT, (p) the time to reach the edge of the partition starting from initialization point yg.

We assume WLOG that (uq + ’UQ)T Yo > Hg—” and (uq + ug)T Yo — ”’”“ > €
o2 €
ATy (p,e) = Tl log - Tz (170)
ExD -1 (ug +u2) yo— 5+
Sllzll—2p
2 3 |l —
o p
ATe(p) = Sl 1 E (2 Y (71
Tel-2p V3 T 2) Yo
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(a) N = 10. (b) N = 15. (¢) N = 20. (d) N = 25. (e) N = 30.

Figure 4: Convergence types frequency of randomly sampled points in diffusion sampling for
different N. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R3° for diffusion sampling, using different training set sizes, N. We plot the percentage of
points that converged to either a virtual point, a training point, or to the boundaries of the hyperbox,
out of all points. The generalization increases with N, drawing a larger percentage of samples to
converge in the vicinity of virtual points and the boundaries of the hyperbox.

Since p = ao, we get that

2
ATy (pre) = ——i o (( + )‘ET 53 ) "
o (s — 1) T
9 1
-, el - p
AT, (p) = 02 ( T 1) &) L (uy — ug)T Yo (173)
el V3

Similar to B.2 we get that 3pg (€) > 0 such that Vp < pg (e, )
Ty = ATy (p,e) < T < Ty = AT, (p) . (174)

C THE EFFECT OF THE NUMBER OF TRAINING SAMPLES

The effect of the training set size has been explored in several past works (Somepalli et al., 2023;
Kadkhodaie et al., 2024), as explored in detail in Section 6. Here we continue the analysis from
Section 5 to investigate the effect of changing IV, the training set size, on the full dynamics of the
diffusion process with the probability ODE. Specifically, we repeat the experiment from Section 5
while reducing N. All the hyperparameters are kept the same, except for M which we increase to
2000 for N = 10 only, to prevent over-fitting in the large-noise regime. Figure 4 shows the percentage
of points that converged within an L, distance of 0.2 to either virtual points, training points, or a
boundary of the hyperbox, for the different NV values. The generalization increases with N, drawing
a larger percentage of samples to converge in the vicinity of virtual points, or to boundaries of the
hyperbox. This aligns with the results of Kadkhodaie et al. (2024).

When considering the effect of oversampling duplications, previous works observed that diffusion
models tend to overfit more to duplicate training points than to other training points (Somepalli
et al., 2023). However, here we study the regime in which the model perfectly fits all the training
points. In practice, if duplicate training points would cause the neural network to fit them better, at
the expense of the other training points. Then, we expect our analysis to effectively hold, but only for
the training points that are well-fitted and their associated virtual points. Therefore, this mirrors the
case of decreasing NV, and will cause more convergence to the duplicated training points and increase
memorization.
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(a) AL method, A = 1.  (b) Weight decay, A = 0.25. (c) No weight decay.

Figure 5: Convergence types frequency of randomly sampled points in diffusion sampling for
training with AL method, weight decay, and without weight decay. We run the discrete ODE
formulation of equation 21 for 500 randomly sampled points from R3° for diffusion sampling, using
different training configurations. We plot the percentage of points that converged to either a virtual
point, a training point, or to the boundaries of the hyperbox, out of all points. The minimum norm
constraint is necessary for inducing the bias towards virtual training points and the boundaries of the
hyperbox. Additionally, standard training protocol using weight decay regularization simulates well
the minimum norm denoiser, which is achieved by the use of the AL method.

D THE MINIMUM NORM ASSUMPTION

Theorems 2, 3, 4, 5 and 6 all hold in the case of a minimum norm denoiser, in which the denoiser
achieves exact interpolation over the noisy training samples. To enforce a consistent denoiser, we
used a non-standard training protocol in Section 5. Specifically, we optimize an equality constrained
optimization problem using the Augmented Lagrangian method. Here we verify the the robustness of
our results and the necessity of the minimum norm assumption by repeating the experiment from
Section 5 when using standard training, with and without the use of weight decay. Specifically, all
the hyper parameters and Adam optimizer are kept the same, and only the loss function changes to
directly optimize equation 3. Training with weight decay should result in a denoiser that is similar
to the min-norm solution. Figure 5 shows the percentage of points that converged within an L,
distance of 0.2 to either virtual points, training points, or a boundary of the hyperbox, for the different
training configurations. The use of weight decay in a standard training protocol induces a similar bias
to that achieved by the using Augmented Lagrangian method.

E ADDITIONAL SIMULATIONS

Figure | shows the normalized score flow for the case of an obtuse 2-simplex. The normalization
was done for visualization purposes only, since the norm of the score decreases as it approaches
the ReLU boundaries. In Figure 6 we illustrate the unnormalized score flow. Figure 7 shows the
trajectory of score flow of the exact score function, and the green line is trajectory of the score flow
of the approximated score function as can be seen the trajectories are practically identical.

We next repeat the statistical analysis done in Section 5 for different thresholds. Figure 8 demonstrates
the existence of virtual points, in an analogous way to Figure 2, for the Ly metric. Figures 9 and 10
offer additional insights to the right side of Figure 3a. Specifically, in Figure 9 we compare the results
of the convergence types frequency of randomly sampled points with score flow when using different
thresholds of the L., distance. In Figure 10 we instead use the Ly metric. Similarly, Figures 11 and
12 depict additional comparisons to the right side of Figure 3b, for both the L., and L, distance
metrics.
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Figure 6: The score function of obtuse and acute simplex. The red dots are the training points
1,2, x3. The black lines are the ReLU boundaries. In figure (a) we plot the score function of
obtuse simplex (Proposition 3). In figure (b) we plot acute simplex (Proposition 4)
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Figure 7: The score function of orthogonal dataset. The purple line is the trajectory of the score flow
of the exact score function, and the green line is the trajectory of the score flow of the approximated
score function (equation 18) in the case where 0 = 0.03, p = 0.09. Both trajectories are very similar.

Lo Distance < 0.2

Pairs
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Figure 8: Existence of stable virtual training points. We run fixed-point iterations on a single
denoiser, starting from all possible pair-wise, triplet-wise, and quadruplet-wise combinations of
training samples. The plot shows the percentage of points that converged within an Lo distance of
0.2 to the original, virtual, input point.
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Figure 9: Convergence types frequency of randomly sampled points for score flow based on L,
proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R3° for sampling using the score flow. We plot the percentage of points that converged to either
a virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L proximity for different thresholds.
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Figure 10: Convergence types frequency of randomly sampled points for score flow based on L,
proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled points
from R3° for sampling using the score flow. We plot the percentage of points that converged to either
a virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L proximity for different thresholds.
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Figure 11: Convergence types frequency of randomly sampled points for probability flow based
on L, proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled
points from R3C for probability flow. We plot the percentage of points that converged to either a
virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
L proximity for different thresholds.
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Figure 12: Convergence types frequency of randomly sampled points for probability flow based
on L, proximity. We run the discrete ODE formulation of equation 21 for 500 randomly sampled
points from R3° for probability flow. We plot the percentage of points that converged to either a
virtual point, a training point, or to the boundaries of the hyperbox, out of all points, based on their
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L proximity for different thresholds.
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