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A Design choices for reinforcement learning

Table A1: Design choices made in representation learning for reinforcement learning. Act, Aug,
Mom, Proj and Comp respectively show whether action conditioning, augmentation, momentum,
projection heads, and compression were used. P/J determines whether the representation learning is
an initial (P)retraining step, or is (J)ointly learned alongside reinforcement learning. R/C/B/N in the
Task column refer to Reconstruction, Contrastive, Bootstrap, or None. Note that different papers may
use different sets of augmentations.

Algorithm Task RL alg. Context Target Act Aug Mom Proj Comp P/J
World models [16] R CMA-ES ot ot, ot+1 3 7 7 7 7 P
DVRL [30] R A2C ot ot+k 3 7 7 7 7 J
PlaNet [17] R MPC + CEM o1:t ot+1:T , rt+1:T 3 7 7 7 7 J
SLAC [31] R SAC ot ot+1 3 7 7 7 7 J
Poke [32] R - ot, ot+1 at - 7 7 7 7 -
RAD [4] N PPO, SAC ot - - 3 - - 7 J
DrQ [5] N DQN, SAC ot - - 3 - - 7 J
CURL [18] C DQN, SAC ot ot 7 3 3 7 7 J
CPC [12] C A2C ot ot+k 7 7 7 7 7 J
Bottleneck [33] C A2C ot ot+k 3 7 7 7 7 J
DRIML [34] C C51 ot ot+k 3 7 7 7 7 J
PI-SAC [3] C SAC ot ot+k, rt+k 3 3 3 3 3 J
ATC [19] C SAC, PPO ot ot+k 7 3 3 3 7 P
PBL [35] B PopArt-IMPALA o1:t ot+k 3 7 7 3 7 J
SPR [36] B DQN ot ot+1:T 3 3 3 3 7 J
M-CURL [37] C DQN, SAC o1:t ot 7 3 3 7 7 J
PlayVirtual [38] B DQN, SAC ot ot+1:T 3 3 3 3 7 J

B Additional information on experiment setup

B.1 Environment setup

DMC. The training set for each DMC task consist of 250 trajectories produced by an expert policy
trained with RAD [4]. For each of our methods we report the mean return for the final policy, which
ranges between 0 and 1,000.

Procgen. For each Procgen task, we reserve 100 environment seeds as “training levels”, then use
a separate 100 seeds as “testing levels” to evaluate generalization. The training set for each task
consists of 110K frames produced by applying RAD’s trained agent to the training levels. We report
mean returns on the train and test levels separately in our results.

MAGICAL. We give the IL and RepL algorithms access to five human demonstrations from the
demo variant, then provide RepL with an additional 150,000 time steps of random rollouts (1,250 to
3,750 trajectories, depending on the environment). This simulates situations where human expert
demonstrations are expensive to collect, but robot exploration is relatively cheap. For space reasons,
we report mean scores averaged across all variants, which range between 0 and 1; full results are in
Appendix G.

B.2 RepL algorithms

As is discussed in the main text, we evaluated 5 RepL algorithms. SimCLR and TemporalCPC
are contrastive baselines: SimCLR must assign similar representations to augmented copies of
the same observation, and different representations to augmented copies of different observations.
TemporalCPC must additionally account for dynamics by assigning similar representations to any
pair of frames that are separated by a gap of ∆t time steps (we use ∆t = 8). Like SimCLR, the VAE
attempts to represent one frame at a time, without using temporal offsets. We also include methods
that explicitly condition on or generate actions: dynamics predicts the next observation given the
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current observation and action, while inverse dynamics predicts which action was used to transition
between two adjacent states. Note that we do not use momentum, projection heads, or compression
in our final experiments, since our preliminary experiments did not show a significant advantage to
doing so.

C Related benchmarking work in RL and IL

Table A2: Summary of previous works comparing different representation learning (repL) algorithms
on imitation learning (IL) and reinforcement learning (RL). These works differ along a few axis on
whether they provide a design breakdown of repL algorithms, their area of focus, the number of
benchmarks covered, the number of algorithms experimented, whether they evaluate image-based
environments, and whether they compare their results with an image augmentation baseline.

Research Design Breakdown Area # of Benchmarks # of Algo. Image env. Aug
ACL [26] 3 RL, IL 1 10 7 7
DrQ [5] 7 RL 1 6 3 3
RAD [4] 7 RL 3 8 3 3
EIRLI (ours) 3 IL 3 7 3 3

To the best of our knowledge, there are three existing work that survey RepL methods on imitation
learning and reinforcement learning. We summarize their differences in Table A2. ACL [26] provided
a design breakdown of different RepL algorithms too, and they found that many RepL algorithms
perform poorly on imitation learning but can provide extra benefits for offline RL. DrQ [5] and RAD
[4] both discussed the effect of image augmentation in reinforcement learning in great detail, and
showed that with well-tuned image augmentations, a standard reinforcement learning framework can
outperform many self-supervised learning methods on RL.

D Hyperparameter details

Hyperparameter Value Tuning range
All algorithms

Optimizer Adam -
LR 10−4 10−6–10−2

Training batches 5,000 -
Representation dim. 128 64–256

VAE, dyn., inv. dyn.
Batch size 64 -
Augmentations - -

VAE
VAE β 10−6 10−7–1.0

SimCLR, TCPC
Batch size 384 64–512
Augmentations trans. rot., blur, col. jit. -

TCPC
Temporal offset 8 steps -

Table A3: Hyperparameters for representation learning. Note that for joint training, BC and RepL
use the same optimizer, and thus have the same learning rate.
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Hyperparameter Value Tuning range
All benchmarks

Optimizer Adam -
LR 10−4 -
Entropy coeff. 10−3 -
`2 reg. coeff. 10−5 -
Augmentations trans., rot., blur, col. jit. -

All benchmarks, pretraining
Batch size 32 -

All benchmarks, joint training
Batch size 64 -

dm_control and Procgen, pretraining and joint training
Training batches 1M 1M–4M

MAGICAL, pretraining
Training batches 20k 5k–20k

MAGICAL, joint training
Training batches 30k -

Table A4: Hyperparameters for behavioral cloning. Sections marked “pretraining” show the hyperpa-
rameters used for BC after pretraining; sections marked “joint training” apply to BC during joint
training. Representation learning hyperparameters, such as the batch size, are covered separately in
Table A3.

Environments and datasets For each dm_control environment, we generated synthetic demonstra-
tion data using RAD with default algorithm hyperparameters [4].2 Environment configurations (such
as action repeat, frame stack, etc.) were the same for both RAD and our IL algorithms. Specifically:

• In cheetah-run, we used an action repeat of 4, resulting in a trajectory length of 1000/4 =
250. Our demonstration dataset consisted of 250 trajectories (62,500 time steps) from the
RAD demonstration agent, with a mean return of ≈827 (recall that return ranges between 0
and 1,000 for all DMC environments).

• In finger-spin, we used an action repeat of 2, resulting in a trajectory length of 1000/2 = 500.
Our dataset again consisted of 250 trajectories (125,000 time steps) sampled from the RAD
demonstration agent, with mean return of ≈963.

• In reacher-easy, we used an action repeat of 8, resulting in a trajectory length of 1000/8 =
125. Our dataset of 250 trajectories (31,250 time steps) had mean return ≈977, and was
again generated by RAD.

For all DMC environments, we used a frame stack of 3.

As with DMC, we generated expert demonstrations for Procgen using a policy trained with RAD.3
We used the easy variants of all environments, with a frame stack of 3 and no action repeat. We used
a demonstration dataset of around 114,000 timesteps for each agent. The mean trajectory lengths and
returns are as follows:

• For CoinRun, trajectories averaged 26 steps, and the demonstrator had an average return of
8.7.

• For Fruitbot, trajectories had an average length of 442, and the demonstrator attained a mean
return of 29.75.

• For Jumper, trajectories had an average length of 76, and mean return of 8.7.

2https://github.com/MishaLaskin/rad
3https://github.com/pokaxpoka/rad_procgen
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Hyperparameter DMC Procgen MAGICAL Tuning range
Policy (PPO)

# parallel envs 32 32 32 -
Time steps per round 8 10 7 4–12
Epochs per round 12 9 7 4–12
Adam minibatch size 48 48 48 -
Initial Adam step size 10−4 10−4 2.5× 10−4 5× (10−5–10−4)
Final Adam step size Linearly annealed to 0 over training -
Discount γ 0.99 0.6 0.99 0.6–1
GAE λ 0.8 0.6 0.76 0.6–0.9
Entropy bonus 10−8 5× 10−6 4.5× 10−8 10−10–10−3

Advantage clip ε 0.02 0.01 0.006 0.001–0.1
Grad. clip `2 norm 1 1 1 -
Augmentations - - - -

Discriminator
Batch size 48 48 48 -
Adam step size 10−3 2.5× 10−3 5.7× 10−4 5× (10−4–10−3)
Disc. steps per round 6 2 2 1–8

Augmentations Erase, blur,
noise, rot.

Col. jit.,
flip LR, blur,
noise, rot.,

trans.

Col. jit.,
erase, flip LR,

blur, noise,
rot.

Col. jit.,
erase, flip LR,

blur, noise,
rot., trans.

Misc.
Total env. steps of training 5× 105 5× 105 5× 105 -
Reward norm. std. dev. 0.01 0.01 0.01 -

Table A5: Hyperparameters for GAIL experiments. We use the word “round” to describe the repeated
sequence of data collection, followed by PPO updates on the collected data, followed by discriminator
updates on both demonstrations and rollouts. Representation learning hyperparameters, such as the
batch size, are covered separately in Table A3.

For each MAGICAL environment, we used a fixed subset of five demonstration trajectories (initially
selected at random) from the human dataset provided with the benchmark [6]. We used egocentric
views with a frame stack of four and no action repeat. Because there was no action repeat, trajectory
lengths remained at the defaults for the benchmark suite: 40 for MoveToRegion, 80 for MoveToCorner,
120 for MatchRegions. For each benchmark, we used between 25 and 28 demonstration trajectories,
and the demonstrator attained the maximum return of 1.0 (on a 0.0–1.0 scale) in each trajectory. In
addition to demonstrations, our MAGICAL experiments also used random rollout datasets of 150,000
timesteps, all generated by uniformly sampling from the action set at each time step. This equates to
between 1,250 and 3,750 trajectories, depending on the horizon of the task.

RepL hyperparameters Representation learning hyperparameters are given in Table A3. Note that
the contrastive algorithms have slightly different hyperparameters from the other RepL algorithms.
We found that a batch size close to 400 was important for contrastive algorithm performance; setting
this value too low or too high (e.g. 500+) decreased performance. Predictive and reconstructive
algorithms are less sensitive to batch size, so we used a computationally convenient batch size (64).

For the contrastive algorithms, we used a mixture of translation (trans.), rotation (rot.), Gaussian blur
(blur), and color jitter (col. jit.) augmentations. The translation augmentation translates the image by
up to 5% of image dimensions; the rotation augmentation rotates the image by up to 5◦; the Gaussian
blur augmentation applies a Gaussian blur kernel with σ = 1px; and the color jitter augmentation
randomizes the hue by up to 0.15 radians. We did not find the algorithms were highly sensitive to the
choice of augmentations, but these augmentations did appear to perform fractionally better than the
other choices that we considered during manual tuning. For non-contrastive algorithms, we did not
use augmentations.
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For the VAE, we used a mean squared error loss for reconstruction, and down-weighted the KL prior
term by a factor of β. Specifically, our loss was

LVAE =
1

n

n∑
i=1

(xi − yi)2 − βKL(eθ(· | xi)‖N (·; 0, I)) ,

where i indexes over the n elements of the output image. This is equivalent to using a traditional
β-VAE with a fixed variance of σ2 = n

2 for the Gaussian output distribution.

IL hyperparameters Imitation learning hyperparameters are given in Table A4 for BC, and Table A5
for GAIL. IL hyperparameters were the same for both control and RepL runs, except for the network
initialization, where RepL runs initialized from the RepL-trained encoder, while control runs used a
fresh He initialization [39]. We found that DMC and Procgen needed substantially more training than
MAGICAL; we found that MAGICAL performance was plateauing even with an order of magnitude
less training.

Compute information Running one experiment (a single seed of combined RepL and IL) on DMC
and Procgen for 1M batch updates takes about 40 hours on one NVIDIA 1080Ti, and running one for
MAGICAL between 30 minutes (for 20,000-batch control without augmentations) and 10 hours (for a
contrastive method using joint training for 30,000 batches). Generating the results in this paper takes
around 6,600 GPU hours for DMC, 8,800 GPU hours for Procgen, and 26–525 hours for MAGICAL
(assuming 4 seeds per GPU, and 30 minutes to 10 hours per seed).

E Limitations, social impacts, and benchmark license

Limitations The main limitation of our findings is that we only investigate policy learning with
BC. Our findings therefore may not generalise to IL algorithms that learn more than just a policy.
This includes IRL algorithms, which typically learn both a reward function and a policy, as well as IL
algorithms like SQIL [28] that learn a Q function rather than directly learning a policy.

Social impacts We do not foresee any negative near-term social impact from our work.

License We release our codebase and associated data under the MIT license.

F Implementation of components in the codebase

In Section 2 we analyzed several design axes and their components. We elaborate in this section our
current implementation status of these components in the codebase.

Target selection. Different versions of this design choice are implemented by inher-
iting from the TargetPairConstructor class within the codebase. Currently imple-
mented are IdentityPairConstructor, in which the context and target are identical, and
TemporalOffsetPairConstructor, which can be given a desired temporal offset, and config-
ured to optionally return the action as extra context.

Loss type. Different versions of loss functions are implemented by inheriting from
RepresentationLoss. We have already implemented a wide variety of losses, including VAE,
mean squared error, negative log likelihood, CEB, and several contrastive losses.

Augmentation. This design choice is implemented in subclasses of Augmenter. We rely on a
standard library to implement the augmentations. Each subclass augments a different set of inputs:
both the context and target, only the context, or neither the context nor target.

Encoder. Different versions of encoder are implemented by inheriting from the Encoder class
within the codebase. We have implemented encoders that work on individual images, as well as a
RecurrentEncoder.

Decoder. Different versions of decoder are implemented by inheriting from the LossDecoder
class within the codebase. Currently implemented decoders support image reconstruction, action
conditioning, and projection heads.
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G Complete MAGICAL results

Task Dynamics InvDyn SimCLR TemporalCPC VAE BC, augs BC, no augs

MatchRegions-Demo 0.71±0.06 0.72±0.07 0.72±0.06 0.68±0.03 0.70±0.05 0.76±0.05 0.63±0.15
-TestDynamics 0.55±0.09 0.56±0.07 0.56±0.07 0.52±0.01 0.56±0.08 0.66±0.05 0.38±0.12
-TestColour 0.71±0.06* 0.70±0.08* 0.67±0.04* 0.66±0.04* 0.67±0.06* 0.53±0.04 0.30±0.08
-TestShape 0.61±0.06 0.64±0.09 0.62±0.06 0.61±0.04 0.60±0.05 0.70±0.03 0.43±0.13
-TestJitter 0.70±0.06 0.65±0.06 0.66±0.07 0.65±0.04 0.68±0.03 0.68±0.05 0.41±0.13
-TestLayout 0.04±0.01 0.04±0.01 0.04±0.01 0.05±0.01 0.04±0.01 0.05±0.01 0.05±0.03
-TestCountPlus 0.04±0.02 0.04±0.01 0.06±0.03 0.05±0.01 0.04±0.02 0.05±0.02 0.04±0.02
-TestAll 0.04±0.02 0.05±0.02 0.05±0.03 0.06±0.01* 0.04±0.02 0.05±0.01 0.03±0.02
Average 0.42±0.04 0.42±0.04 0.42±0.03 0.41±0.01 0.42±0.03 0.43±0.02 0.28±0.08

MoveToCorner-Demo 0.94±0.08 0.92±0.07 0.88±0.09 0.86±0.10 0.89±0.08 0.86±0.08 0.99±0.01*
-TestDynamics 0.83±0.05 0.87±0.05* 0.85±0.04* 0.80±0.06 0.75±0.04 0.76±0.08 0.68±0.04
-TestColour 0.90±0.10 0.87±0.06 0.86±0.13 0.86±0.06 0.87±0.07 0.75±0.16 0.85±0.07
-TestShape 0.90±0.06 0.88±0.07 0.91±0.05* 0.87±0.02 0.84±0.09 0.84±0.06 0.71±0.10
-TestJitter 0.81±0.09 0.80±0.04 0.84±0.04* 0.79±0.04 0.77±0.04 0.78±0.00 0.58±0.08
-TestAll 0.66±0.13 0.64±0.09 0.65±0.07 0.62±0.06 0.57±0.12 0.67±0.09 0.51±0.13
Average 0.84±0.07 0.83±0.04 0.83±0.04* 0.80±0.02 0.78±0.06 0.78±0.05 0.72±0.04

MoveToRegion-Demo 0.99±0.01 0.99±0.01 1.00±0.01 0.98±0.02 0.99±0.02 1.00±0.00 1.00±0.00
-TestDynamics 0.99±0.01 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01 1.00±0.01 1.00±0.00
-TestColour 0.99±0.02* 0.99±0.01* 1.00±0.00* 0.99±0.01* 0.97±0.04* 0.54±0.08 0.84±0.13*
-TestJitter 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.01 1.00±0.00 0.99±0.01
-TestLayout 0.52±0.05 0.51±0.05 0.45±0.03 0.44±0.07 0.46±0.11 0.64±0.03 0.64±0.11
-TestAll 0.45±0.06* 0.50±0.09* 0.46±0.06* 0.42±0.08* 0.47±0.12* 0.28±0.06 0.38±0.08*
Average 0.82±0.02* 0.83±0.02* 0.82±0.01* 0.81±0.01* 0.81±0.05* 0.74±0.02 0.81±0.04*

Table A6: Complete results for all variants of the evaluated MAGICAL tasks, with BC plus RepL
pretraining. Refer to Table A7 for joint training.

Task Dynamics InvDyn SimCLR TemporalCPC VAE BC, augs BC, no augs

MatchRegions-Demo 0.78±0.03 0.51±0.16 0.73±0.06 0.01±0.01 0.72±0.09 0.78±0.06 0.70±0.04
-TestDynamics 0.62±0.04 0.39±0.14 0.59±0.04 0.01±0.01 0.58±0.05 0.63±0.05 0.40±0.03
-TestColour 0.60±0.03* 0.17±0.07 0.55±0.06* 0.01±0.01 0.48±0.04 0.47±0.08 0.35±0.10
-TestShape 0.71±0.04* 0.36±0.14 0.67±0.05 0.01±0.01 0.68±0.05 0.66±0.04 0.48±0.02
-TestJitter 0.69±0.05 0.36±0.14 0.66±0.04 0.01±0.01 0.65±0.04 0.66±0.06 0.40±0.10
-TestLayout 0.05±0.01 0.04±0.01 0.04±0.01 0.01±0.01 0.05±0.02 0.07±0.01 0.03±0.01
-TestCountPlus 0.04±0.01 0.02±0.01 0.04±0.01 0.01±0.01 0.05±0.03 0.07±0.02 0.04±0.01
-TestAll 0.04±0.01 0.02±0.01 0.03±0.01 0.01±0.01 0.04±0.01 0.07±0.02 0.04±0.03
Average 0.44±0.02 0.23±0.08 0.41±0.02 0.01±0.01 0.41±0.03 0.43±0.03 0.31±0.02

MoveToCorner-Demo 0.86±0.04 0.37±0.25 0.90±0.12 0.03±0.03 0.94±0.05 0.95±0.04 0.99±0.00*
-TestDynamics 0.82±0.07 0.35±0.27 0.86±0.05 0.03±0.03 0.87±0.04 0.82±0.06 0.75±0.09
-TestColour 0.84±0.08 0.25±0.29 0.61±0.17 0.01±0.01 0.73±0.15 0.77±0.15 0.76±0.17
-TestShape 0.84±0.12 0.44±0.27 0.88±0.09 0.02±0.03 0.93±0.05 0.89±0.04 0.76±0.09
-TestJitter 0.76±0.06 0.25±0.18 0.78±0.06 0.02±0.03 0.83±0.07 0.81±0.08 0.55±0.12
-TestAll 0.57±0.11 0.13±0.15 0.53±0.10 0.01±0.01 0.63±0.09 0.57±0.10 0.39±0.21
Average 0.78±0.07 0.30±0.22 0.76±0.05 0.02±0.02 0.82±0.06 0.80±0.05 0.70±0.09

MoveToRegion-Demo 1.00±0.00 0.60±0.34 1.00±0.00 0.81±0.14 1.00±0.00 1.00±0.00 1.00±0.00
-TestDynamics 1.00±0.00 0.55±0.37 1.00±0.00 0.81±0.14 1.00±0.00 1.00±0.00 0.99±0.01
-TestColour 0.64±0.15 0.22±0.15 0.93±0.07* 0.25±0.06 0.69±0.12 0.65±0.13 0.77±0.12
-TestJitter 1.00±0.00 0.49±0.40 1.00±0.00 0.78±0.08 1.00±0.00 1.00±0.00 0.98±0.01
-TestLayout 0.64±0.05 0.17±0.16 0.30±0.06 0.10±0.05 0.68±0.06* 0.61±0.04 0.63±0.06
-TestAll 0.29±0.06 0.10±0.08 0.23±0.04 0.06±0.03 0.28±0.03* 0.23±0.03 0.31±0.08
Average 0.76±0.02 0.35±0.24 0.74±0.01 0.47±0.07 0.77±0.02 0.75±0.02 0.78±0.04

Table A7: Complete results for all variants of the evaluated MAGICAL tasks, with BC plus RepL
joint training. Refer to Table A6 for BC plus RepL pretraining.
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Task Dynamics InvDyn SimCLR TemporalCPC VAE GAIL augs GAIL no augs

MatchRegions-Demo 0.76±0.19 0.59±0.24 0.83±0.09 0.68±0.22 0.51±0.28 0.81±0.10 0.36±0.22
-TestDynamics 0.74±0.17 0.55±0.22 0.79±0.11 0.64±0.25 0.51±0.27 0.77±0.13 0.37±0.22
-TestColour 0.21±0.04 0.18±0.06 0.25±0.04 0.21±0.07 0.14±0.08 0.24±0.03 0.08±0.05
-TestShape 0.72±0.20 0.56±0.22 0.81±0.10 0.61±0.25 0.49±0.26 0.76±0.10 0.35±0.20
-TestJitter 0.73±0.17 0.57±0.20 0.83±0.10 0.67±0.22 0.53±0.28 0.79±0.13 0.38±0.22
-TestLayout 0.11±0.03 0.13±0.04 0.11±0.03 0.15±0.06 0.13±0.06 0.17±0.04 0.12±0.06
-TestCountPlus 0.06±0.03 0.07±0.03 0.09±0.05 0.08±0.04 0.05±0.02 0.08±0.04 0.05±0.02
-TestAll 0.05±0.01 0.06±0.03 0.08±0.02 0.08±0.02 0.06±0.02 0.09±0.04 0.06±0.03
Average 0.42±0.10 0.34±0.12 0.47±0.04 0.39±0.12 0.30±0.15 0.46±0.06 0.22±0.12

MoveToCorner-Demo 0.67±0.09 0.60±0.09 0.67±0.14 0.72±0.15 0.78±0.07* 0.63±0.13 0.62±0.14
-TestDynamics 0.59±0.10 0.58±0.10 0.66±0.09 0.69±0.11 0.76±0.09* 0.65±0.12 0.64±0.16
-TestColour 0.35±0.08 0.32±0.16 0.39±0.09 0.45±0.21 0.51±0.19 0.37±0.10 0.57±0.16*
-TestShape 0.43±0.10 0.43±0.16 0.51±0.09 0.52±0.16 0.54±0.14 0.49±0.12 0.47±0.15
-TestJitter 0.61±0.10 0.54±0.09 0.62±0.12 0.63±0.16 0.74±0.08* 0.62±0.11 0.61±0.16
-TestAll 0.19±0.09 0.21±0.20 0.25±0.14 0.31±0.19 0.38±0.18* 0.20±0.13 0.39±0.16*
Average 0.48±0.09 0.45±0.10 0.52±0.07 0.55±0.15 0.62±0.11* 0.49±0.08 0.55±0.14

MoveToRegion-Demo 0.96±0.04 0.95±0.04 0.95±0.07 0.97±0.03 0.96±0.04 0.96±0.08 0.89±0.09
-TestDynamics 0.94±0.05 0.94±0.05 0.94±0.07 0.97±0.03 0.95±0.04 0.95±0.06 0.82±0.20
-TestColour 0.65±0.16 0.68±0.10 0.69±0.23 0.68±0.12 0.68±0.21 0.67±0.19 0.57±0.21
-TestJitter 0.92±0.06 0.93±0.05 0.96±0.08 0.97±0.04 0.97±0.03 0.94±0.08 0.69±0.25
-TestLayout 0.59±0.09 0.61±0.10 0.59±0.09 0.66±0.06 0.64±0.14 0.65±0.16 0.39±0.18
-TestAll 0.28±0.09 0.36±0.09 0.28±0.08 0.29±0.06 0.32±0.08 0.35±0.10 0.24±0.09
Average 0.72±0.07 0.74±0.04 0.74±0.06 0.76±0.03 0.75±0.07 0.75±0.09 0.60±0.14

Table A8: Complete results for all variants of the evaluated MAGICAL tasks, with GAIL plus RepL
pretraining.
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H.2 Joint Training
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I Additional contrastive learning ablations

Table A9 presents ablations for SimCLR on our three MAGICAL tasks, using BC as the downstream
IL algorithm. In particular, we experiment with:
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Projection heads By default, SimCLR uses a “symmetric” projection strategy that applies the same
projection head to the encoded contexts and encoded target before computing the loss. We
also try using asymmetric projection heads, which are allowed to apply different transforms
to the target and context embeddings, and additionally experiment with removing projection
heads entirely so that we are computing SimCLR loss directly on the encoder representation.

Compression We experiment with compression by replacing the default SimCLR loss with the CEB
loss [40], but leaving all other training and architecture details the same.

Momentum In the momentum ablation, we replace the SimCLR loss and encoder with a MoCo-
style [13] loss and momentum encoder. Again, all other training and architecture details are
left the same as in our SimCLR implementation.

In Table A9, we see that none of these modifications significantly improve performance over standard
SimCLR. For this reason, we expect that using different projection heads, using compression, and
using momentum are unlikely to affect the conclusions of our work.

Task Asymm. proj. No proj. CEB loss Momentum SimCLR

MatchRegions-Demo 0.43±0.03 0.44±0.02 0.42±0.03 0.45±0.04 0.42±0.04
MoveToCorner-Demo 0.78±0.03 0.83±0.03 0.80±0.03 0.83±0.03 0.86±0.06
MoveToRegion-Demo 0.82±0.01 0.80±0.03 0.83±0.02 0.81±0.01 0.81±0.02

Table A9: Ablations for SimCLR variants on MAGICAL. We used SimCLR as a pretraining step for
BC. Significance levels were evaluated relative to vanilla SimCLR (the rightmost column) using a one-
sided Welch’s t-test at p < 0.05, as with our other results. None of these results differ significnatly
from SimCLR, and so none are starred.
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