
Appendices
Table 4: Symbolic notation for EigenPro 3.0 in Algorithm 1. They satisfy m < n, and q < s < n.

Symbol Purpose
n Number of samples
m Batch-size
p Model size
s Nyström approximation subsample size
q Preconditioner level

A PROOFS OF INTERMEDIATE RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition (Nyström extension). For 1 ≤ i ≤ n, let λi be an eigenvalue of K, and ψi its unit
H-norm eigenfunction, i.e., K{ψi} = λiψi. Then λi is also an eigenvalue of K(X,X). Moreover
if ei, is its unit-norm eigenvector, i.e., K(X,X)ei = λiei, we have,

ψi = K(·, X)
ei√
λi

. (37)

Proof. Let ψ ∈ H be an eigenfunction of K. Then by definition of K we have,

λψ = K{ψ} =
n∑

i=1

K(·,xi)ψ(xi). (38)

As the result we can write ψ as below,

ψ =
n∑

i=1

ψ(xi)

λ
K(·,xi). (39)

If we apply covariance operator to the both side of 39 we have,

K{ψ} = K
{

n∑

i=1

ψ(xi)

λ
K(·,xi)

}
=

n∑

i,j=1

ψ(xi)

λ
K(xi,xj)K(·,xj) =

n∑

j=1

ψ(xj)K(·,xj).

(40)

The last equation hold because of equation (38). If we define vector β such that βi =
ψ(xi)
λ , then

40 can be rewritten as,
n∑

i=1

n∑

j=1

βiK(xi,xj)K(·,xi) = λ
n∑

i=1

βiK(·,xi). (41)

Compactly we can write 41 as below,

K(X,X)2β = λK(X,X)β =⇒ K(X,X)β = λβ.

The last implication holds because K(X,X) is invertable. Thus β is an eigenvector of K(X,X). It
remains to determine the scale of β.

Now, norm of ψ can be simplified as

‖ψ‖2H =

〈
n∑

i=1

βiK(·,xi),
n∑

j=1

βjK(·,xj)

〉

H

(42)

=
n∑

i,j=1

βiβj 〈K(·,xi),K(·,xj)〉H = β!K(X,X)β = λ ‖β‖2 . (43)

Since ψ is unit norm, we have ‖β‖ = 1√
λ

. This concludes the proof. !

14



A.2 PROOF OF LEMMA 2

Lemma (Nyström preconditioning). Let a ∈ Rm, then we have that,

Ps {K(·, Xm)a} = K(·, Xm)a−K(·, Xs)QsK(Xs, Xm)a. (44)

Where Qs = Es,q(In − λs,q+1Λ−1
s,q)Λ

−1
s,qE

!
s,q .

Proof. Recall that Ps := I −
∑q

i=1

(
1− λq+1

λq

)
ψi ⊗ ψi. By this definition we can write,

Ps (K(·, XM )α) = K(·, XM )α−
s∑

i=1

(1−
λsq+1

λsi
) 〈ψs

i ,K(·, XM )α〉H ψs
i

= K(·, XM )α−
q∑

i=1

1

λsi
(1−

λsq+1

λsi
) 〈K(·, Xs)ei,K(·, XM )α〉H K(·, Xs)ei

= K(·, XM )α−
q∑

i=1

1

λsi
(1−

λsq+1

λi
) 〈K(·, Xs)ei,K(·, XM )α〉HK(·, Xs)ei

= K(·, XM )α−
q∑

i=1

(1−
λsq+1

λsi
)K(·, Xs)eie

!
i K(Xs, XM )α.

Note that we used proposition 1 for ψ. Now we can compactly write the last expression as below,

Ps (K(·, XM )α) = K(·, XM )α−K(·, Xs)Es,q(In − λs,q+1Λ
−1
s,q)Λ

−1
s,qE

!
s,qK(Xs, XM )α

= K(·, XM )α−K(·, Xs)QsK(Xs, XM )α.

This concludes the proof.

!

B DETAILS ON EigenPro 2.0

Lemma 3. The iteration in Rn

αt+1 = αt+1 − η(In −Q)(K(X,X)αt − y), (45)

where Q = E(In − λq+1Λ−1
q )E!, emulates the following iteration in H.

f t+1 = f t − ηP
{
∇fL(f

t)
}
. (46)

Proof. Recall that∇fL(f t) = K(·, X)(f t(X)−y) from equation (10), and f t(X) = K(X,X)αt.
from equation (19). We define gt := f t(X)− y = K(X,X)αt − y. Following steps of the proof
in Appendix A.2 we have

P{∇fL(f
t)} = K(·, X)gt −

q∑

i=1

(1− λq+1

λi
)K(·, X)e!i eiK(X,X)gt

= K(·, X)gt −K(·, X)E(In − λq+1Λ
−1
q )Λ−1E!K(X,X)gt

(a)
= K(·, X)gt −K(·, X)E(In − λq+1Λ

−1
q )Λ−1E!EΛE!gt

= K(·, X)gt −K(·, X)E(In − λq+1Λ
−1
q )E!gt

= K(·, X)gt −K(·, X)Qgt

= K(·, X)(In −Q)gt.

15



Algorithm 3 EigenPro 2.0(X,y). Solves the linear system K(X,X)θ = y

Require: Data (X,y), Nyström size s, preconditioner level q
α← 0 ∈ Rn % initialization
Xs, (E,D),λq+1,m← EigenPro 2.0_setup(X, s, q)
Set batchsize m← 1

λq+1

while Stopping criterion not reached do
α← EigenPro 2.0_iteration(X,y, Xs,E,D,α,m, η)

end while
return α

EigenPro2_setup(X, s, q)
Require: Data X , Nyström size s, preconditioner size q

Fetch a subsample Xs ⊆ X of size s
(E,Λ)← top-q eigensystem of K(Xs, Xs) % E ∈ Rq×s,Λ = diag(λi) ∈ Rq×q

Dii =
1

sλi

(
1− λq+1

λi

)

β ← max
i

K(xi,xi) ∈ S

m← min
(

β
λq+1

, bsgpu
)

% batch size2

η ←
{

β
2m m < β

λq+1
0.99m

β+(m−1)λq+1
otherwise

% learning rate

return Xs, (E,D), η,m

EigenPro2_iteration(X,y, Xs,E,D,α,m, η)
Require: Data (X,y), Nyström subset Xs, preconditioner (E,D), current estimate α, batchsize
m
Fetch minibatch (Xm,ym) of size m
gm ← K(Xm, X)α− ym % stochastic gradient
αm ← αm − η

mgm % gradient step
αs ← αs +EDE!K(Xs, Xm)gm % gradient correction
return Updated estimte α

Where (a) follows from K(X,X) = EΛE!. Now since f t = K(·, X)αt, equation (46) can be
rewritten,

f t+1 = K(·, X)αt+1 − ηK(·, X)(In −Q)gt

= K(·, X)(αt+1 − η(In −Q)gt).

Replacing gt = K(X,X)αt − y leads to final update rule below,

f t+1 = K(·, X)(αt+1 − η(In −Q)(K(X,X)αt − y)).

This concludes the proof. !

Thus each update constitutes a stochastic gradient step which consists updating m weights corre-
sponding to a minibatch size m, followed by a gradient correction which consists of updating all n
weights.

A higher preconditioner level q also allows for a higher optimal batch size m and hence better GPU
utilization, see Ma et al. (2018) for details.

With this approximation, the gradient correction simplifies drastically, and only s weights need to
be updated.

2bsgpu is the maximum batch-size that the GPU allows.

16



0 4 8 12 16 20 24
20

40

60

80
T

es
t

ac
cu

ra
cy

(%
)

MNIST

0 4 8 12 16 20 24
40

60

80

FashionMnist

0 20 40 60 80 100
20

30

40

50
CIFAR10

0 10 20 30 40 50

40

60

80

CIFAR10*

Number of epochs

Figure 3: Comparison with gradient descent and Falkon: Figure 3 shows the slow convergence
of gradient descent given in (50) compared to our algorithm and FALKON from Rudi et al. (2017).
Note that FALKON involves a matrix inverse for a projection operation and hence converges faster.

C DETAILS ON EXPERIMENTS AND IMPLEMENTATION OF ALGORITHM 1

C.1 COMPUTATIONAL RESOURCES USED

This work used the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns
et al., 2014). We used machines with 2x NVIDIA-V100 GPUs, each with a memory of 32GB, and
4x cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz with a RAM of 100 GB.

C.2 CHOICE OF HYPERPARAMETERS

We choose hyperparameters to minimize computation and maximize GPU utilization. The only
hyperparameters that we need to set are s, q for outer gradient step, and σ, ξ for projection sub-
problem. For σ, ξ, we used the same criteria as Ma & Belkin (2019) to optimally use GPU utilization.
For s, q, we prefer larger q because as it is explained in Ma et al. (2018), larger q allows for larger
learning rate and better condition number. However, in our algorithm we need to approximate the
top q eigensystem of Nyström sub-samples matrix. We used Scipy Virtanen et al. (2020) library
to approximate these eigensystem. The stability and precision of these approximations depends on
how large is the ratio of s

q . Empirically we need this ratio to be larger than 10. On the other hand
increasing s will increase setup cost, computation cost and memory cost. We take steps below to
choose q and s,

1. We first choose s as big as our GPU memory allow
2. We choose q ≈ s

10

3. We set batch size and learning rate automatically using the new top eigenvalue as it is
explained in Ma & Belkin (2019) and Ma et al. (2018).

D CLASSICAL APPROACH TO LEARNING KERNEL NETWORKS WITH GD

If you plug in the form of (4) into (1), we get

minimize
α

L(α) =
n∑

i=1

L(
p∑

j=1

K(xi, zj)αj , yi) + λ

〈
p∑

j=1

K(·, zj),
p∑

j=1

K(·, zj)
〉

H

(47)

=
n∑

i=1

L(I(i)
n K(X,Z)α, yi) + λα!K(Z,Z)α, (48)

where I(i)
n is the ith row of identity In. For the square loss this is

minimize
α

‖K(X,Z)α− y‖2 + λα!K(Z,Z)α. (49)

Gradient descent on this problem for the square loss yields the update equation,
αt+1 = αt − ηK(Z,X)((K(X,Z)αt − y)− ηλK(Z,Z)α. (50)

17


