Appendices

Table 4: Symbolic notation for EigenPro 3.0 in Algorithm 1. They satisfy m < n,and ¢ < s < n.

Symbol Purpose
n Number of samples
m Batch-size
P Model size
s Nystrom approximation subsample size
q Preconditioner level

A PROOFS OF INTERMEDIATE RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition (Nystrom extension). For 1 < ¢ < n, let A; be an eigenvalue of C, and ; its unit
H-norm eigenfunction, i.e., KC {1;} = A\;1b;. Then), is also an eigenvalue of K (X, X). Moreover
if e;, is its unit-norm eigenvector, i.e., K (X, X)e; = \;e;, we have,

€;

= K(, X . 37
3 (- X) Now 37

Proof. Let 1y € H be an eigenfunction of /. Then by definition of K we have,
Xp = KA} =D K(@) (). (38)

i=1
As the result we can write 1) as below,

Y= Z @K(', z;). (39)

If we apply covariance operator to the both side of 39 we have,

K v =/<{Z WK(-,M}
i=1

S O i) = 3 0l K Cay),

%

Jj=1 j=1
(40)
The last equation hold because of equation (38). If we define vector 3 such that 3; = 1/’(; "’), then
40 can be rewritten as,
S BiK(mi @) K(xi) =AY BEK(,xi). (41)
i=1 j=1 i=1

Compactly we can write 41 as below,
K(X,X)’8=XK(X,X)B = K(X,X)B=)8.

The last implication holds because K (X, X) is invertable. Thus 3 is an eigenvector of K (X, X). It
remains to determine the scale of 3.

Now, norm of ¢ can be simplified as

i=1 j=1

H
= 3 BB (K (@), K () = BTE (X X)B = MBI 3)
Q=1
Since 1) is unit norm, we have ||3| = % This concludes the proof. O

14

A.2 PROOF OF LEMMA 2

Lemma (Nystrom preconditioning). Let @ € R™, then we have that,

Ps {K(7 Xm)a} = K('» Xm)a - K('7 XS)QSK(st Xm)a- (44)

Where Q = E o(I, — As g1 A 5)ALE] .

Proof. Recall that Py :=7 — Y7 | (1 — q+1) 1; ® ;. By this definition we can write,

s A®
P (K (-, Xan)a) = K, Xap)a = Y (1= “2E0) (08, K (-, Xap)a) gy 07
i=1 ¢
1, Y

=K(,Xm)a—)Y 0) (K Xe K(Xana g K(, Xoe;

= K Xara— 30 500 2250 (R X e, K Xa)a) oK X

= K(-, Xp)o — zq:u — SO K (L X ese] K (X, X

Note that we used proposition 1 for). Now we can compactly write the last expression as below,

Po (K(X)) = K(, Xpp)a — K(+, Xo) Es (I — Asgr18,0)A s 0B K (X, Xap)x
=K(, Xy)o— K(-, X,)Q:K (X, X))

This concludes the proof.

O
B DETAILS ON EigenPro 2.0
Lemma 3. The iteration in R™
o't =o't (I, - Q)(K(X,X)a! —y), (45)
where Q = E(I,, — \g11A;')E", emulates the following iteration in H.
f =t =P VL)) (46)
Proof. Recall that V¢L(f') = (:)(FUx) y) from equation (10), and f*(X) = K(X, X)a!
from equation (19). We define g* := f(X) — y = K(X, X)a! — y. Following steps of the proof
in Appendix A.2 we have

PLVSL(} = K X)g' = 30 = 21K (, X)e] e,k (X, X)g!

K(X)g"'— K(,X)E(I, — A\g1 A, VAT ETK(X, X)g'

—
o
N

K(,X)g"'— K(, X)E(I, — >\q+1A;1)A71ETEAETgt

= K(-X)g' = K(- X)E(I, = A1\,)E ' g'
=K(,X)g"' - K(.X)Qg"
= K(, X)(I Q)gt.

15

Algorithm 3 EigenPro 2.0(X, y). Solves the linear system K (X, X)0 =y

Require: Data (X, y), Nystrom size s, preconditioner level ¢
a+—0eR” > initialization
X, (E, D), \g+1, m < EigenPro 2.0_setup(X, s, ¢)
Set batchsize m <

Ag+1
while Stopping criterion not reached do

o « EigenPro2.0_iteration(X, y, X, E, D, ¢, m,n)
end while
return o

EigenPro2_setup(X, s, q)

Require: Data X, Nystrom size s, preconditioner size ¢
Fetch a subsample X, C X of size s

(E, A) < top-q eigensystem of K (X, X) > E e R7*% A = diag(\;) € R1*9

D, =& (1-%2)

B+ max K(z;,x;) € S

m 4 min (ﬁ, bsgpu> > batch size®

n 2m m s ’\f“ > learning rate
T +(2i9—917;l,\ " otherwise

return X, (E,D),n,m

EigenPro2_iteration(X,y, X;, E, D, &, m,n)
Require: Data (X,vy), Nystrom subset X, preconditioner (E, D), current estimate c, batchsize

m

Fetch minibatch (X, y,,,) of size m

gm — K(Xm, X))o — Yy > stochastic gradient
Q& — Lgp > gradient step
a; ¢+ a, + EDETK(X,, X,n)gm > gradient correction

return Updated estimte «

Where (a) follows from K (X, X) = EAET. Now since f* = K (-, X)at, equation (46) can be
rewritten,

i = K(, X))o =K (-, X)(I, — Q)g’
= K(, X) (o — (I, — Q)g").

Replacing g* = K (X, X)a! — y leads to final update rule below,

ft+1 - K(’vX)(at+1 - 77(In - Q)(K(X,X)Ott - y))

This concludes the proof.]

Thus each update constitutes a stochastic gradient step which consists updating m weights corre-
sponding to a minibatch size m, followed by a gradient correction which consists of updating all n
weights.

A higher preconditioner level q also allows for a higher optimal batch size m and hence better GPU
utilization, see () for details.

With this approximation, the gradient correction simplifies drastically, and only s weights need to
be updated.

stgpu is the maximum batch-size that the GPU allows.

16

MNIST FashionMnist CIFARI10 CIFAR10*

—_— 50

~ ,F: 7fg
S 80 80
oy 401
é 60, 60* 60’ //
Q]
2 401 30 —
= 20+—~L O 202 407/ T

0 4 8 12162024 0 4 8 12162024 0 20 40 60 80 100 0 10 20 30 40 50

Number of epochs

=== GD w/ random centers GD w/ k-means centers wmmmm EP3 w/random centers wsss= EP3 w/k-means centers wmsmm Falkon

Figure 3: Comparison with gradient descent and Falkon: Figure 3 shows the slow convergence
of gradient descent given in (50) compared to our algorithm and FALKON from ().
Note that FALKON involves a matrix inverse for a projection operation and hence converges faster.

C DETAILS ON EXPERIMENTS AND IMPLEMENTATION OF ALGORITHM 1

C.1 COMPUTATIONAL RESOURCES USED

This work used the Extreme Science and Engineering Discovery Environment (XSEDE) (
s). We used machines with 2x NVIDIA-V100 GPUs, each with a memory of 32GB, and
4x cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz with a RAM of 100 GB.

C.2 CHOICE OF HYPERPARAMETERS

We choose hyperparameters to minimize computation and maximize GPU utilization. The only
hyperparameters that we need to set are s, q for outer gradient step, and o, ¢ for projection sub-
problem. For o, £, we used the same criteria as () to optimally use GPU utilization.
For s, q, we prefer larger ¢ because as it is explained in (), larger ¢ allows for larger
learning rate and better condition number. However, in our algorithm we need to approximate the
top g eigensystem of Nystrom sub-samples matrix. We used Scipy () library
to approximate these eigensystem. The stability and precision of these approximations depends on
how large is the ratio of g. Empirically we need this ratio to be larger than 10. On the other hand

increasing s will increase setup cost, computation cost and memory cost. We take steps below to
choose ¢ and s,

1. We first choose s as big as our GPU memory allow
2. We choose q ~ 15

3. We set batch size and learning rate automatically using the new top eigenvalue as it is
explained in () and ().

D CLASSICAL APPROACH TO LEARNING KERNEL NETWORKS WITH GD

If you plug in the form of (4) into (1), we get

n P p p
miniamize L(a) = ZL(ZK(mi,zj)aj,yi)+)\< K(~7zj),ZK(-,zj)> 47)
i=1 =1 Jj=1 H

j=1

=> LUYE(X, Z)o,y:) + Ao K(Z, Z)e, (48)
i=1
where Ir(f) is the 7" row of identity I,,. For the square loss this is
minimize [|K (X, Z)a —y|* + o K(Z, Z)a. (49)

Gradient descent on this problem for the square loss yields the update equation,
o't =al —nK(Z, X)(K(X,Z)a! —y) —n\K(Z,Z)a. (50)

17

