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ABSTRACT

There is increasing interest in methods for extracting interpretable rules from ML
models trained to solve a wide range of tasks over knowledge graphs (KGs), such
as KG completion, node classification, question answering and recommendation.
Many such approaches, however, lack formal guarantees establishing the precise
relationship between the model and the extracted rules, and this lack of assurance
becomes especially problematic when the extracted rules are applied in safety-
critical contexts or to ensure compliance with legal requirements. Recent research
has examined whether the rules derived from the influential NEURAL-LP model
exhibit soundness (or completeness), which means that the results obtained by
applying the model to any dataset always contain (or are contained in) the re-
sults obtained by applying the rules to the same dataset. In this paper, we extend
this analysis to the context of DRUM, an approach that has demonstrated superior
practical performance. After observing that the rules currently extracted from a
DRUM model can be unsound and/or incomplete, we propose a novel algorithm
where the output rules, expressed in an extension of Datalog, ensure both sound-
ness and completeness. This algorithm, however, can be inefficient in practice and
hence we propose additional constraints to DRUM models facilitating rule extrac-
tion, albeit at the expense of reduced expressive power.

1 INTRODUCTION

Numerous tasks over knowledge graphs (KGs) such as completion (Wang et al., 2021), node clas-
sification (Portisch & Paulheim, 2022), question answering (Lan et al., 2021) and recommenda-
tion (Guo et al., 2022; Xian et al., 2019) can be formulated as a transformation from an input to an
output dataset (e.g., KG completion transforms an incomplete KG to its extension with the missing
facts). ML models are widely employed to acquire these transformations from examples, as it is a
more cost-effective approach than manual design and does not require domain expertise.

ML-based solutions face a challenge in explaining predictions. Recent studies (Yang et al., 2017;
Evans & Grefenstette, 2018; Sadeghian et al., 2019; Qu et al., 2021; Ferreira et al., 2022; Zhang et al.,
2023; Wang et al., 2023) propose techniques to extract interpretable Datalog (Abiteboul et al., 1995)
rules from trained models. However, many of these approaches lack formal guarantees establishing
the relationship between the model and the extracted rules. Instead, they often rely on informal
claims that the rules “approximate” or “explain” the model’s behavior (Yang et al., 2017; Evans &
Grefenstette, 2018; Sadeghian et al., 2019; Qu et al., 2021). Such claims may be substantiated by
empirical evidence showcasing the similarity between the model’s predictions and the outcomes of
rule application (Ferreira et al., 2022). Nonetheless, the need for formal assurances regarding the
alignment between model and rules becomes particularly critical when these rules are applied in
safety-critical contexts or to ensure compliance with legal requirements for explainability.

Recent studies have explored the formal relationship between models and extracted rules in the
context of Feed-Forward Networks (Ayoobi et al., 2023; Wang et al., 2022), Convolutional Neural
Networks (Benamira et al., 2023), and Graph Neural Networks (Tena Cucala et al., 2022a;b). These
works examine whether the rules exhibit soundness (or completeness), which means that the results
obtained by applying the model to any given dataset always contain (or are contained in) the results
obtained by applying the rules to the same dataset. Faithful (i.e., both sound and complete) rule sets
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can be used to explain the model’s predictions. For example, assume that a modelMmed trained to
suggest potential diagnoses predicts fact diagnose(alice, flu) when applied to the dataset

Dmed = {indicativeOf(fever, flu), indicativeOf(fever, tuberculosis),
hasSymptom(alice, fever), contact(alice, bob), diagnose(bob, flu)} .

A medical professional can examine the extracted rules Rmed to understand model predictions. An
incomplete rule set may fail to support the predicted fact, leaving the prediction unexplained. An
unsound rule, like diagnose(x, y) ← hasSymptom(x, z) ∧ indicativeOf(z, y), may generate facts
not predicted by the model, such as diagnose(alice, tuberculosis). In contrast, a faithful rule set
lacks spurious rules and guarantees an explanatory rule for each predicted fact. For example, the
following rule rdiag explains alice’s flu diagnosis due to her fever and contact with a flu patient:

diagnose(x, y)← hasSymptom(x, z1) ∧ indicativeOf(z1, y) ∧ contact(x, z2) ∧ diagnose(z2, y) .

The analysis in Tena Cucala et al. (2022b) revealed that soundness for NEURAL-LP can be en-
sured by selecting appropriate hyperparameters, but completeness cannot be guaranteed. Thus, the
extracted rules may not be a faithful representation of the model.

In this paper, we study faithfulness guarantees in the context of DRUM (Sadeghian et al., 2019)—an
approach inspired by NEURAL-LP that has demonstrated superior empirical performance. DRUM
exhibits significant differences with respect to NEURAL-LP, which makes the relationship between
these approaches unclear. First, each DRUM model comprises multiple sub-models, initially applied
independently to the input data, followed by the aggregation of their outputs; each DRUM sub-model
resembles a NEURAL-LP model, but it contains much fewer parameters as it does not implement
“skip connections” between network layers. Second, DRUM sub-models and NEURAL-LP employ
different mechanisms for learning rules of varying lengths. Third, DRUM can generate a broader
class of rules, including inverse rules such as parent(x, y) ← child(y, x).1 Given these disparities,
the results from Tena Cucala et al. (2022b) for NEURAL-LP do not directly apply to DRUM.

In Section 2, we revisit the definitions of Datalog, DRUM, and the concepts of soundness, com-
pleteness, and faithfulness introduced in Tena Cucala et al. (2022b). In Section 3, we analyse the
faithfulness of rules extracted from a DRUM model. We observe that, much like in NEURAL-LP,
the behavior of DRUM can be characterised in terms of “counting” the distinct matches of a rule’s
body within the input data. We can thus establish results akin to those in Tena Cucala et al. (2022b)
regarding NEURAL-LP. In Section 4, we present a method for extracting a faithful set of rules from
a DRUM model expressed in an extension of Datalog with inequalities and disjunctions in the rule
body, enabling the necessary counting operations. This represents an advancement compared to
prior research because the faithful rule extraction method in Tena Cucala et al. (2022b) applies only
to significantly restricted NEURAL-LP models. However, we note that achieving a practical imple-
mentation of our method may be challenging due to the time complexity associated with the rule
extraction algorithm. In Section 5 we propose two solutions to this issue. Firstly, we introduce a
mechanism that, given a DRUM model and a dataset, extracts a rule set that is sound for the model
and derives all the model predictions on the given dataset. Secondly, we impose constraints on the
DRUM models facilitating the extraction of a faithful rule set, at the expense of reduced expressive
power. Specifically, we introduce two variants of the model, MMDRUM and SMDRUM, each striking
a distinct balance between expressivity of the model and the effectiveness of rule extraction.

In Section 6, we conduct a comprehensive evaluation on KG completion tasks. Amongst other
findings, our experiments show that SMDRUM and MMDRUM obtain competitive performance and
confirm the practical feasibility of the rule extraction algorithms proposed in Section 5.

2 BACKGROUND

Datalog. A signature consists of disjoint, countable sets of constants and predicates, where each
predicate is assigned a non-negative arity. A term is a variable or a constant. An atom is an expres-
sion of the form R(t1, · · · , tn), where R is an n-ary predicate and t1, · · · , tn are terms. A fact is a
variable-free atom, and a dataset is a finite set of facts. A Datalog rule is an expression of the form:

H ← B1 ∧ · · · ∧Bℓ , ℓ ≥ 0 , (1)
1There is an additional difference concerning the way in which the model’s parameters are generated; how-

ever, it is irrelevant to our analysis, which does not rely on the method used to compute the model’s parameters.
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where H and Bi for 1 ≤ i ≤ ℓ are atoms. Typically, H is called the head atom, and each Bi is
called a body atom. The value ℓ ∈ N is the length of the rule. We do not make the usual safety
requirement that each variable in H must appear in some Bi. In fact, the rule body can be empty
if ℓ = 0, in which case we write ⊤.2 A Datalog program is a finite set of rules.

For a mapping σ of variables to constants and a term or a conjunctionX with variables in the domain
of σ, Xσ is the result of replacing each x inX with σ(x). For a rule r of the form (1), the immediate
consequence operator Tr maps a dataset D to the smallest dataset Tr(D) containing Hσ for each
mapping σ of variables in r to constants inD that grounds the body of r inD i.e. that satisfiesBiσ ∈
D for all 1 ≤ i ≤ ℓ. For a Datalog programR, TR is defined as TR(D) =

⋃
r∈R Tr(D).

Vectors, Matrices and Tensors. For each n ∈ N, we use the notion of a n-dimensional ten-
sor (Yang et al., 2017; Sadeghian et al., 2019) over R (e.g., a matrix is a 2-tensor). For an n-tensor A,
A(i1, i2, · · · , in) is the element at position (i1, i2, · · · , in). If M and N are matrices of dimension
m × n and n × p, respectively, then the max-product of M and N, written M ⊗N, is a matrix of
dimension m× p whose element at position i and j is equal to maxnk=1 M(i, k) ·N(k, j).

The DRUM Model. DRUM (Sadeghian et al., 2019) assumes a signature with δ binary predi-
cates R1, R2, · · · , Rδ and is designed to learn rules of the form

Rh(x, y)← ψk1
∧ ψk2

∧ · · · ∧ ψkℓ
with ℓ ≥ 1 and h, ki ∈ {1, · · · , δ} , (2)

where ψki
is of the form Rki

(zi−1, zi) or Rki
(zi, zi−1), with z0 = x and zℓ = y. We will show in

Section 3, however, that rules of this form are not sufficiently expressive to faithfully characterise
DRUM models. For instance, our example rule rdiag in Section 1 is not of this form.

A DRUM model M of rank N ≥ 1 and depth L ≥ 1 is a tuple (a1, · · · ,aδ, β), where each ah

for 1 ≤ h ≤ δ is a 3-tensor over [0, 1]N×L×(2δ+1) of (learnable) parameters and β ∈ R is a
threshold for prediction. The rank determines the number of considered “sub-models”, as men-
tioned in Section 1. Models with higher rank are more expressive and can simulate a richer set of
rules (Sadeghian et al., 2019). The depth L determines the maximum length of a rule that can be
learned. A DRUM modelM induces a transformation TM over datasets as we specify next. Given
a dataset D, let c1, c2, · · · , cϵ be the constants in D arranged in a fixed but arbitrary order. For
each 1 ≤ k ≤ 2δ + 1, an ϵ × ϵ binary matrix Mk is computed by setting to 1 all values Mk(i, j)
satisfying one of the following conditions: (1) Rk(ci, cj) ∈ D and 1 ≤ k ≤ δ, (2) Rk−δ(cj , ci) ∈ D
and δ + 1 ≤ k ≤ 2δ, or (3) i = j and k = 2δ + 1; all remaining values are set to 0.

Matrices Mk for k ≤ δ are adjacency matrices representing facts in D. DRUM can be concep-
tualised as extending the input dataset with new facts over δ + 1 fresh predicates in the remaining
matrices: a factR2δ+1(c, c) for each constant c inD and a factRδ+k(cj , ci) for eachRk(ci, cj) ∈ D
representing its inverse. The adjacency matrices Mδ+1, · · · ,M2δ+1 capture the new facts. Next,
DRUM represents each constant cs with an one-hot vector vs ∈ {0, 1}ϵ in which vs(s) = 1 and 0
elsewhere. Then, for 1 ≤ h ≤ δ, DRUM computes a vector vh

s as Equation (3).

(vh
s )

⊺ = (vs)
⊺ ·

N∑
i=1

L∏
j=1

(
2δ+1∑
k=1

ah(i, j, k) ·Mk

)
. (3)

Vector vh
s indicates, for each 1 ≤ t ≤ ϵ, whether the fact Rh(cs, ct) is in TM(D), in the following

way: Rh(cs, ct) ∈ TM(D) if and only if vh
s (t) is strictly greater than the prediction threshold β.

Rule Extraction in DRUM. Rules are extracted from a trained DRUM model M of depth L by
first computing a confidence score αr ∈ R for each rule r of the form (2) with length at most L.
We next show how to compute such score. In the simple case where r has length exactly L, the
score is αr =

∑N
i=1 α

i
r where each αi

r is simply the product of the model parameters correspond-
ing to each body atom of r for the i-th sub-model. In particular, for Rh the head predicate of r,
parameter ah(i, j, kj) (respectively, ah(i, j, kj + δ)) is associated to a body atom Rkj

(zj−1, zj) (re-
spectively, Rkj

(zj , zj−1) at position 1 ≤ j ≤ L and sub-model 1 ≤ i ≤ N . Finally, if the length
of r is smaller than L, we first consider all the ways in which r can be extended to an equivalent

2Rules are applied to datasets with finitely many constants, and thus only finitely many facts can be derived.
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rule of the form (2) and length exactly L by padding the sequence of predicates in the body with the
identity predicate R2δ+1. For example, if L = 2, a rule R2(x, y)← R1(x, y) can be extended as

R2(x, y)← R1(x, z1) ∧R2δ+1(z1, y) and R2(x, y)← R2δ+1(x, z1) ∧R1(z1, y) .

We can compute a value for each of these rules as before and set αr as the maximum of these values.

For a rule r of the form (2), the set SLr contains all sequences (k′1, · · · , k′L) that can be obtained
from (k1, · · · , kℓ) by replacing kj by kj + δ if ψkj

is of the form Rkj
(zj , zj−1), and then padding

it (if needed) with the value 2δ + 1. Then, the confidence score αr for r is

αr = max
(k′

1,··· ,k′
L)∈SL

r

N∑
i=1

L∏
j=1

ah(i, j, k′j) . (4)

For each γ ∈ R,RDRUM
M,γ is the set of all rules in the form (2) with ℓ ≤ L and score higher than γ.

Relations between Models & Programs. ProgramR is sound for modelM if TR(D) ⊆ TM(D)
for any datasetD. Conversely, R is complete forM if TM(D) ⊆ TR(D) for any datasetD. Finally,
we say thatR is faithful forM if it is both sound and complete forM (Tena Cucala et al., 2022b).

3 ANALYSING FAITHFULNESS OF RULE EXTRACTION IN DRUM

We begin by describing the behavior of a DRUM modelM of rank N and depth L. We show that
whenM is applied to a dataset D, the decision made byM as to whether to return a fact Rh(cs, ct)
can be characterised by considering each rule of the form (2) with ℓ ≤ L and head predicate Rh,
and then counting the distinct matches of the rule body in D where x is mapped to cs and y to ct.
Lemma 1. For a dataset D with constants c1, · · · , cϵ, vector vh

s computed by M for 1 ≤ s ≤ ϵ
and 1 ≤ h ≤ δ is equal to

∑
r∈RPATH

h,L
φM(r)·qr,D,s, whereRPATH

h,L is the set of all rules of the form (2)
with 1 ≤ ℓ ≤ L (resp. ℓ = 0) and head atom Rh(x, y) (resp. Rh(x, x)), φM(r) is a non-negative
function of r that depends only on the parameters ofM, and qr,D,s is a vector of dimension ϵ such
that, its t-th element is 1 (resp. 0) if the body of r is ⊤ and t = s (resp. t ̸= s), and otherwise it is
the number of different mappings that ground the body of r in D and map x to cs and y to ct.

Consider a DRUM model with N = 1, L = 2, β = 1.5, a2(1, 1, 1) = 1, a2(1, 2, 2) = 1, and all
other tensor elements equal to 0. Suppose contact and diagnose are the first and second predicates
in the signature, respectively, and alice and flu are in positions s and t of the constant order, re-
spectively. Equation (3) ensures that the t-th element of v2

s represents the count of distinct constants
c where both contact(alice, c) and diagnose(c, flu) are in the dataset. The value of β ensures that
diagnose(alice, flu) is derived if and only if alice has been in contact with at least two flu patients,
indicating at least two valid paths from alice to flu.

In (3), the right-hand side computes a product of the one-hot vector vs and L adjacency matrices
for an extended dataset D′ with inverse and self-reflective facts. Each vector element corresponds
to a constant ct and represents the count of paths within D′ of length L from cs to ct. These
paths traverse edges labeled with predicates corresponding to the adjacency matrices, following the
specified sequence. Each path corresponds uniquely to a subset of D grounding of the body of
a rule (2) and is associated with a weight derived from products and summations of elements of
the tensor ah. The aggregation of such weights yields the expression in Lemma 1 showing that
DRUM shares similarities with NEURAL-LP, where predictions depend also on the counts of rule
matches. The approaches used by NEURAL-LP and DRUM to compute rule weights, however, differ
significantly and it is unclear whether NEURAL-LP models can be simulated by DRUM models.

The aforementioned similarities allow us to derive results analogous to those obtained for NEURAL-
LP concerning the connection between the model and the rules extracted from it.
Theorem 1. Program RDRUM

M,γ is sound forM = (a1, · · · ,aδ, β) whenever γ ≥ β. Furthermore,
there is a DRUM modelM′ = (a′1, · · · ,a′δ, β′) such thatRDRUM

M′,γ is unsound forM′ for any γ < β′.

Hence, by selecting a suitable value for γ, it is possible to ensure the soundness of the extracted
rules. Nevertheless, achieving completeness cannot be guaranteed.
Theorem 2. There exists a DRUM model such that no Datalog program is faithful for it.
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4 FAITHFUL RULE EXTRACTION FOR DRUM

Theorem 2 shows that DRUM models cannot be fully expressed using Datalog. This is unsurprising
considering that DRUM models are characterised in terms of the counts of unique matches of rule
bodies in datasets deriving relevant predictions. In contrast, Datalog rules derive a fact whenever
there exists a match of the rule body in the data, regardless of the count of distinct relevant matches.
Datalog can, however, be extended with counting (Dantsin et al., 2001) by introducing inequality
atoms in rule bodies interpreted under the Unique Name Assumption (UNA), which stipulates that
any two distinct constants must refer to separate entities. For instance, consider the following rules:

R2(x, y) ← R1(x, z
1
1) ∧R1(z

1
1 , y) ∧R1(x, z

2
1) ∧R1(z

2
1 , y) . (5)

R2(x, y) ← R1(x, z
1
1) ∧R1(z

1
1 , y) ∧R1(x, z

2
1) ∧R1(z

2
1 , y) ∧ z11 ̸≈ z21 . (6)

On dataset D1 = {R1(c1, c2), R1(c2, c3)}, rule (5) derives fact R2(c1, c3) through a match assign-
ing x 7→ c1, y 7→ c3, z11 7→ c2 and z21 7→ c2. In contrast, rule (6) does not apply toD1 since variables
z11 and z21 cannot be mapped to the same constant. On dataset D2 = D1 ∪ {R1(c1, c4), R1(c4, c3)},
however, both rules derive R2(c1, c3). In particular, rule (6) admits the match x 7→ c1, y 7→ c3,
z11 7→ c2 and z21 7→ c4 given that the inequality c2 ̸≈ c4 holds by the UNA.

In this section, we demonstrate that such extended Datalog programs can faithfully represent DRUM
models. Additionally, we introduce disjunction in the rule bodies: this is a convenient extension that
can (exponentially) reduce the number of rules required without increasing the expressive power of
the language. Indeed, each rule with disjunction in the body is equivalent to multiple disjunction-
free rules. For example, the rule R3(x, y)← (R1(x, z1) ∨ R2(x, z1)) ∧ (R1(z1, y) ∨ R2(z1, y)) is
equivalent to the four rules of the formR3(x, y)← Rk1(x, z1)∧Rk2(z1, y), with {k1, k2} ⊆ {1, 2}.
The basic building block in rule bodies is a multipath conjunction specified by a cardinality C ∈ N
and a core Ψ with the same structure as the rule body in Equation (2). Intuitively, a multipath
conjunction consists of C copies of its core where variables other than x, y have been renamed; each
such copy represents a “path”. Meanwhile, inequalities are incorporated to guarantee that no two
paths can be matched to the dataset in an identical manner. Thus, a multipath conjunction is satisfied
if it admits at least C distinct matches of its core agreeing on the assignments of variables x and y.
Definition 1. Let Ψ be a conjunction of length ℓ ≥ 1 in the form of the rule body in (2). A multipath
conjunction ϕ with core Ψ and cardinality C ∈ N is of the form

ϕ =

C∧
j=1

Ψj ∧
∧

1≤j<j′≤C

(
ℓ−1∨
i=1

zji ̸≈ z
j′

i

)
, (7)

where Ψj replaces in Ψ each zi by zji for 1 ≤ i ≤ ℓ− 1. Its length is ℓ. A multipath rule of length L
has head Rh(x, y) (resp. Rh(x, x)) and its body is a conjunction of P ≥ 1 (resp. P ≥ 0 and where
x = y) multipath conjunctions of length ≤ L and pairwise disjoint variables other than x and y.

The definition of the immediate consequence operator is standard and given by the well-known
semantics of Datalog with inequalities and disjunction (Dantsin et al., 2001) under the UNA.

Counting in multipath rules is limited by the cardinalities of their multipath conjunctions. In con-
trast, DRUM models face no such restrictions as the relevant counts are data-dependent and can
become arbitrarily large. To address this challenge, we turn to Lemma 1 where M assigns a
“weight” φM(r) to each rule of the form (2). There is no need to count the matches of a rule r
with weight zero, as the resulting value will be multiplied by zero. Similarly, when there is at most
one body atom, a single match is possible. For positive weights and rules with multiple body atoms,
there is a minimum number of matches ensuring that the corresponding value in vector vh

s exceeds
the model’s prediction threshold β, regardless of the other rules. The threshold will be met if the
number of matches ω(r) for r reaches ⌊ β

φM(r)⌋+ 1. Thus, we can ignore rules featuring multipath
conjunctions ϕp with cardinalities exceeding ω(Rh(x, y) ← Ψp), where Ψp is the core of ϕp; any
such rule would be equivalent to the rule obtained by substituting Cp with ω(Rh(x, y)← Ψp). This
leads to a finite set of relevant multipath rules, and the only remaining challenge lies in constructing
the specific subset characterising the model.

Algorithm 1 outlines the procedure for extracting a faithful program from a DRUM model. It begins
by initializing the output program as an empty set (line 1). Additionally, it creates a list Ω encom-
passing all conjunctions serving as the body of rules in the form of (2) with length ℓ ≤ L, followed
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Algorithm 1: Multipath Rule Extraction.
Input: A DRUM modelM = (a1, · · · ,aδ, β), and a rule extraction threshold γ.
Output: A multipath program

1 R := ∅;
2 Ω := list of all conjunctions in the form of the body of (2) with 0 ≤ ℓ ≤ L, ending with ⊤;
3 foreach h ∈ {1, · · · , δ} do
4 foreach [k1, · · · , kL] with ki ∈ {1, · · · , 2δ + 1} do
5 [k′1, · · · , k′ℓ] := remove all 2δ + 1;
6 foreach j ∈ {1, · · · , ℓ} do
7 if k′j ≤ δ then ψj := Rk′

j
(zj−1, zj); else ψj := Rk′

j−δ(zj , zj−1);

8 if ℓ ≥ 1 then r := Rh(x, y)←
∧ℓ

j=1 ψj ; else r := Rh(x, x)← ⊤;
9 if φr is undefined then φr := 0;

10 φr := φr +
∑N

i=1

∏L
j=1 a

h(i, j, kj);
11 foreach i ∈ {1, · · · , |Ω| − 1} do
12 ri := Rh(x, y)← Ω(i);
13 if Ω(i) has one atom then ωi := 1; else ωi := ⌊ β

φri
⌋+ 1;

14 foreach [C1, · · · , C|Ω|−1] with Ci ∈ {0, · · · , ωi} do
15 if Ci = 0 then ρi := ⊤ ; else ρi := multip. conj. of core Ω(i) and cardinality Ci;
16 if

∑|Ω|−1
i=1 Ci · φri > γ thenR := R∪ {Rh(x, y)←

∧|Ω|−1
i=1 ρi};

17 if
∑|Ω|−1

i=1 Ci · φri + φr|Ω| > γ thenR := R∪ {Rh(x, x)←
∧|Ω|−1

i=1 ρi{y 7→ x}};
18 returnR;

by ⊤ (line 2). All elements of Ω except the last are possible cores of multipath conjunctions. The
subsequent steps of the algorithm involve iterating over all predicates Rh in the signature (line 3).
Within each iteration, it adds necessary multipath rules with head atom Rh(x, y) and Rh(x, x) to
the output program. Specifically, it first computes the function φM from Lemma 1 for each rule r
asRh(x, y)← Ψ with Ψ in Ω andRh(x, x)← ⊤, with the results stored in φr (lines 4–10). Follow-
ing this, for each rule r, the algorithm computes an upper bound ω on the cardinality of multipath
conjunctions with core Ψ (lines 11–13). Subsequently, it enumerates all rules with head predi-
cate Rh where the cardinality of each multipath conjunction does not exceed the computed bound
for its core. This enumeration is performed by considering all combinations of cardinalities (line 14)
for each core (i.e., each element of Ω except ⊤) and constructing the corresponding rules for each
combination (line 15). The algorithm calculates a score for each rule by summing the products of
each multipath conjunction’s cardinality with the weight assigned by φM to its core. The score is
compared to a threshold γ ∈ R and the rule is added if the threshold is exceeded (lines 16–17).

The following theorem establishes the correctness and complexity of our rule extraction algorithm.
Theorem 3. Program RMP

M,γ extracted by Algorithm 1 on input M = (a1, · · · ,aδ, β) is faithful

toM for γ = β. Furthermore, Algorithm 1 terminates in O
(
L · (2δ)L+1

(
N + ω(2 δ)L+1

))
steps,

where ω is the maximum value of ω(r) for r a rule of the form (2) with ℓ ≤ L.

In the example from Section 3, the extracted program would consist of the following rule of the
form (7) with core contact(x, z) ∧ diagnose(z, y) and cardinality 2:

diagnose(x, y)← contact(x, z1) ∧ diagnose(z1, y) ∧ contact(x, z2) ∧ diagnose(z2, y) ∧ z1 ̸≈ z2 .

5 PRACTICAL RULE EXTRACTION

The complexity of Algorithm 1 underscores the difficulty of extracting faithful programs from
DRUM models. We next propose two approaches for addressing this challenge.

5.1 RULE EXTRACTION FOR A FIXED DATASET

Our first solution involves extracting a (usually small) subsetRD
M of sound rules forM that explain

all the model’s predictions on a given datasetD. Focusing on a concrete dataset suffices in scenarios
where data is not subject to frequent updates, and makes rule extraction practically feasible.
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Algorithm 2: Multipath Rule Extraction for a Fixed Dataset.
Input: A DRUM modelM = (a1, · · · ,aδ, β), and a dataset D.
Output: A multipath program.

1 R := ∅;
2 Pnext := {[cs] | Rh(cs, ct) ∈ TM(D)}, Pall := Pnext;
3 foreach j ∈ [1, · · · , L] do
4 Pcurrent := Pnext;
5 Pnext := ∅ ;
6 while Pcurrent is not empty do
7 pop [· · · , cs′ ] from Pcurrent ;
8 foreach Rk(cs′ , ct′) ∈ D do Pnext := Pnext ∪ {[· · · , cs′ , k, ct′ ]};
9 foreach Rk(ct′ , cs′) ∈ D do Pnext := Pnext ∪ {[· · · , cs′ , k + δ, ct′ ]};

10 Pall := Pall ∪ Pnext;
11 foreach Rh(cs, ct) ∈ TM(D) do
12 ρ := ⊤;
13 count : ∅ 7→ 0;
14 foreach [cs, k1, · · · , kℓ, ct] ∈ Pall do
15 foreach j ∈ {1, · · · , ℓ} if kj ≤ δ then ψj := Rkj (zj−1, zj); else Rk′

j−δ(zj , zj−1);

16 count(
∧ℓ

j=1 ψj) := count(
∧ℓ

j=1 ψj) + 1;
17 foreach ψ : count(ψ) > 0 do
18 append to ρ a multipath conj. of core ψ and cardinality min (count(ψ), ω(Rh(x, y)← ψ));
19 if s ̸= t then R := R∪ {Rh(x, y)← ρ}; else R := R∪ {Rh(x, x)← ρ{y 7→ x}};
20 returnR;

Algorithm 2 implements this idea. Given a modelM and a dataset D, the first part of the algorithm
appliesM to D and computes all “paths” Pall of length at most L in D that start from a constant cs
featuring in a fact of the form Rh(cs, ct) ∈ TM(D). The set Pall is initialised with paths of length 0
(i.e., all relevant constants). Subsequently, for each 1 ≤ j ≤ L, it iteratively determines the set of all
paths of length j (lines 4–10). This is achieved by considering all paths with a length of j−1 (line 7)
and examining all possible extensions they can undergo (lines 8–9). The second part of the algorithm
adds a rule r toRD

M for each fact Rh(cs, ct) in TM(D) so that the application of r to D derives this
fact. Rule r is initialised with an empty body (line 12). Then, the algorithm counts all paths in Pall
that start in cs, end in ct (line 14), and traverse the same sequence of predicates (line 15–16), and
adds a corresponding multipath conjunction to the body of r (lines 17–19).

Theorem 4. Program RD
M extracted by Algorithm 2 for a DRUM model M = (a1, · · · ,aδ, β)

and a dataset D satisfies TRD
M
(D) = TM(D). Furthermore, Algorithm 2 terminates with time

complexity O((2δ)L · (N · L+ 2δ · ϵL+2)).

The complexity of Algorithm 2 depends on the structure of D and TM(D). If their adjacency ma-
trices are dense, the algorithm will exhibit exponential behaviour. In practice, however, the matrices
are usually sparse (see Table 4). As shown in Section 6, programRD

M can be efficiently computed.

5.2 FAITHFUL RULE EXTRACTION BY LIMITING MODEL EXPRESSIVITY

Our second approach involves simplifying DRUM models so that extracting faithful programs from
them becomes practically feasible, at the expense of decreasing the expressive power of the model.

A key source of complexity in Algorithm 1 is the need to enumerate all relevant multipath rules.
In particular, the enumeration of all possible combinations of cardinalities causes an exponential
blowup. This can be avoided by sacrificing the model’s capacity to count distinct rule matches in the
data. Instead, it goes back to Datalog, retaining only the capability to check whether the body atoms
of a rule can be matched or not. This simplification can be achieved by pushing the vector (vs)

⊺

inside the product and sum operators in Equation (3)—which yields an equivalent expression—
and then replacing the sum over k with a max aggregation, and matrix products with matrix max-
products. The resulting expression cannot be written in a compact form as in Equation (3), but we
can write it concisely by using an inductive definition. We call the resulting model SMDRUM.
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Definition 2. An SMDRUM model is defined as a DRUM model, but Equation (3) is replaced
by (vh

s )
⊺ =

∑N
i=1 u

L
i , where u0

i = (vs)
⊺, and uj

i = max1≤k≤2δ+1 a
h(i, j, k) · uj−1

i ⊗ Mk

for 1 ≤ j ≤ L.

This restriction limits expressivity: each SMDRUM model is equivalent to a set of multipath rules
where each rule has up toN multipath conjunctions without inequalities (i.e., of cardinality 1). Such
rules, however, are still more expressive than those of form (2); for instance, they include rule rdiag
from Section 1.They can be extracted with a simplified version of Algorithm 1 in exponential time.

Proposition 1. For an SMDRUM modelM there exists a programRSM
M of inequality-free multipath

rules computable in exponential time inM’s size such that TM(D) = TRSM
M
(D) for any dataset D.

Unfortunately, extracting a faithful program from an SMDRUM model remains challenging due to
the large number of distinct combinations of N multipath conjunctions. To address this issue, we
limit model expressivity further by replacing the sum over 1 ≤ i ≤ N by another max aggregation.

Definition 3. An MMDRUM model is defined as an SMDRUM model, but where the sum over 1 ≤
i ≤ N is replaced by a max function.

The advantage of MMDRUM is that we can extract a faithful program by simply enumerating all
rules of the form (2), then computing the score for each rule using a variant of expression (4),

αM,r = max
(k′

1,··· ,k
′
L
)∈SL

r

max
1≤i≤N

L∏
j=1

ah(i, j, k′j) , (8)

and then outputting those rules with score higher than a threshold γ ∈ R. This can be achieved
efficiently by taking advantage of structure-sharing between rules (see Appendix B). The downside
is the further loss in expressivity, as we no longer can express commonly used rules with multiple
atoms involving variables x and y in the body e.g., citizenOf(x, y)← bornIn(x, y) ∧ livesIn(x, y).

Theorem 5. For an MMDRUM model M of depth L, the program containing each rule r of the
form (2) with ℓ ≤ L or R(x, x)← ⊤ such that αM,r > β is faithful forM.

6 EVALUATION

We evaluated MMDRUM, SMDRUM, DRUM, and NEURAL-LP (as a baseline) on the inductive KG
completion task. Besides, we also applied and evaluated our rule extraction methods introduced in
Section 5. All experiments were conducted on a Linux workstation with a Xeon E5-2670 CPU.

We followed the methodology of Yang et al. (2017) to evaluate DRUM models on KG completion
tasks. We considered an inductive setting, where constants seen at test time may not have encoun-
tered during training. This is in contrast with the transductive setting, where all relevant constants
occur already in the train set (Bordes et al., 2013; Sun et al., 2019).

We used the 13 benchmark datasets (Appendix C) for inductive KG completion by Teru et al.
(2020) based on FB15k-237 (Toutanova & Chen, 2015), NELL-995 (Xiong et al., 2017),
WN18RR Dettmers et al. (2018), and Family (Kok & Domingos, 2007), preserving the splits for
train, validation and test. We selected L = 2 for all models and rank N = 3 for all DRUM-based
models. Each model was trained up to 10 epochs. Threshold β ∈ (0, 1) for each model is a hyper-
parameter. We tried several values and picked the one maximising F1-score on validation sets.

We evaluated each model using precision, recall, accuracy, area under the precision-recall
curve (AUPRC), and F1 score as metrics. The results are presented in Table 1. Notably, DRUM
outperformed both MMDRUM and SMDRUM in terms of overall performance, demonstrating the
ability to exploit higher expressive power in practice. For most FB15k-237 and NELL-995 datasets,
the four models exhibited comparable performances, while for WN18RR datasets we see significant
disparities. In particular, NEURAL-LP showed lower recall than all DRUM-based models, suggest-
ing that the use of multiple “sub-models” (N > 1) can be critical in practice, even for MMDRUM.

We also implemented the rule extraction algorithms in Section 5 and applied them to the inductive
KG completion benchmarks. In all cases, both Algorithm 2 and the algorithm for MMDRUM (Ap-
pendix B) succeeded to compute the corresponding rule sets in less than 3 minutes, which suggest
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Table 1: Results (%) of DRUM (D), SMDRUM (S) MMDRUM (M) and NEURAL-LP (N).

Precision Recall Accuracy AUPRC F1 Score

M S D N M S D N M S D N M S D N M S D N
FB

15
k-

23
7 V1 47.2 47.2 48.2 81.9 44.9 44.9 43.9 28.8 47.3 47.3 48.3 61.2 49.6 48.4 51.6 50.0 46.0 46.0 45.9 42.6

V2 53.8 53.9 58.9 89.3 56.3 56.3 54.6 33.3 54.0 54.1 58.3 64.6 60.5 60.2 63.3 60.8 55.0 55.1 56.7 48.5
V3 55.7 55.6 61.0 80.6 50.1 50.4 48.9 41.8 55.1 55.1 58.8 65.9 58.7 58.0 60.6 59.4 52.7 52.9 54.3 55.1
V4 59.5 59.5 72.6 92.7 55.0 54.1 49.2 40.9 58.7 58.6 65.3 68.9 62.8 62.3 65.1 64.7 57.1 56.6 58.7 56.8

N
E

L
L

-9
95 V1 100 97.2 97.4 100 19.0 70.0 76.0 13.0 59.5 84.0 87.0 56.5 66.9 77.5 84.4 65.9 31.9 81.4 85.4 23.0

V2 64.0 64.1 64.5 66.3 75.4 75.0 75.2 71.6 66.5 66.5 66.9 67.6 69.7 71.6 74.6 70.8 69.2 69.1 69.5 68.9
V3 62.2 62.1 62.6 62.5 79.4 79.0 78.5 77.1 65.6 65.4 65.8 65.4 77.2 75.6 82.0 76.0 69.7 69.5 69.6 69.1
V4 66.4 66.4 66.4 81.4 77.6 77.6 77.6 59.9 69.2 69.2 69.2 73.1 74.3 76.3 81.0 71.5 71.6 71.6 71.6 69.0

W
N

18
R

R V1 68.2 79.1 93.6 86.7 68.6 64.4 62.2 20.7 68.4 73.7 79.0 58.8 68.1 72.6 75.0 65.5 68.4 71.0 74.8 33.5
V2 57.3 76.0 100 77.8 67.1 62.4 60.8 15.9 58.5 71.3 80.4 55.7 60.4 67.7 73.4 59.1 61.8 68.5 75.6 26.4
V3 37.0 50.0 99.4 90.0 29.9 29.8 27.8 8.93 39.5 50.0 63.8 54.0 30.8 34.5 40.4 34.7 33.1 37.3 43.4 16.2
V4 68.1 78.0 94.2 87.6 59.3 59.2 59.5 9.38 65.8 71.3 77.9 54.0 62.1 66.7 70.1 61.2 63.4 67.3 72.9 16.9

Family 93.3 92.7 97.0 94.9 92.9 87.7 82.9 92.8 93.1 90.4 90.2 93.9 94.4 94.1 94.3 94.4 93.1 90.1 89.4 93.8

Table 2: Rule Extraction Com-
pleteness (%) with γ = β.

β 0.0001 0.001 0.01 0.1

FB
15

k-
23

7 V1 3.05 3.07 0.00 0.00
V2 6.16 5.84 0.00 0.00
V3 5.06 3.65 6.25 6.25
V4 5.02 5.23 3.92 5.88

N
E

L
L

-9
95 V1 4.12 6.19 6.13 5.17

V2 5.93 6.19 6.25 0.00
V3 5.82 6.14 6.14 3.12
V4 5.65 4.05 5.74 1.70

W
N

18
R

R V1 5.88 5.28 5.74 3.76
V2 5.81 5.74 4.62 5.88
V3 6.13 5.88 4.91 4.86
V4 5.81 5.62 4.51 4.78

Table 3: Rules extracted from Family dataset.

Top 10 rules extracted by MMDRUM In Top 10 rules of SMDRUM

brother(x, y)← brother(x, z) ∧ brother(z, y) ✓
uncle(x, y)← brother(x, z) ∧ uncle(z, y) ✓
sister(x, y)← daughter(x, z) ∧mother(z, y)
daughter(x, y)← sister(x, z) ∧ daughter(z, y) ✓
aunt(x, y)← sister(x, z) ∧ aunt(z, y) ✓
nephew(x, y)← nephew(x, z) ∧ brother(z, y)
nephew(x, y)← son(x, z) ∧ brother(z, y)
sister(x, y)← sister(x, z) ∧ sister(z, y) ✓
son(x, y)← brother(x, z) ∧ daughter(z, y)
niece(x, y)← daughter(x, z) ∧ brother(z, y)

Top 5 rules w. different head atoms by SMDRUM that not captured by MMDRUM

sister(x, y)← sister(x, z1) ∧ sister(z1, y) ∧ sister(x, z2) ∧ brother(y, z2)
niece(x, y)← sister(x, z1) ∧ niece(z1, y) ∧ sister(x, z2) ∧ uncle(y, z2)
brother(x, y)← brother(x, z1) ∧ brother(z1, y) ∧ brother(x, z2) ∧ sister(z2, y)
son(x, y)← brother(x, z1) ∧ father(y, z1) ∧ brother(x, z2) ∧ son(z2, y)
nephew(x, y)← brother(x, z1) ∧ nephew(z1, y) ∧ brother(x, z2) ∧ aunt(y, z2)

the practical feasibility of our approach. Additionally, we verified empirically the theoretical guar-
antees for these algorithms provided in Theorem 4 and Theorem 5.

We implemented the incomplete Datalog rule extraction algorithm for DRUM described in Section 2.
We computed the proportion of model predictions covered by the extracted rules for different predic-
tion thresholds. The results in Table 2 show that the rules derive less than 7% of the facts predicted
by the models, which suggests that they are insufficient to explain the predictions of the models.

Finally, we examined the extracted rules on the Family dataset for MMDRUM and SMDRUM (the
algorithm for SMDRUM is run best effort for a fixed length of time). Table 3 depicts the rules ex-
tracted from MMDRUM with the highest score. Some of these were also extracted for SMDRUM and
the rankings obtained for both models are similar. We also show the highest ranked rules extracted
by SMDRUM not of the form (2). Many of these are in practice irrelevant and suggest overfitting;
this makes sense since the performance of MMDRUM in this dataset is close to that of SMDRUM.

7 LIMITATIONS AND FUTURE WORK

Rules generated by our approach may be challenging to interpret, as they contain many body atoms.
Furthermore, obtaining a faithful program with inequalities for a DRUM model using Algorithm 1
can be challenging in practice. Our first priority will be to devise optimisations for Algorithm 1
that can significantly prune the search space of rules. We also aim at enhancing interpretability by
devising algorithms that prioritise shorter rules. Finally, we will extend our analyses to models such
as ∂ILP (Evans & Grefenstette, 2018), and explore generalisations of DRUM to capture rules with
higher-arity predicates.

9



Published as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

The proofs of all the lemmas, theorems, and propositions in this paper are provided in Appendix A.
The datasets and source codes used in our experiments are available from the GitHub repository
with documentation at https://github.com/xiaxia-wang/FaithfulRE.
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A PROOFS

Lemma 1. For a dataset D with constants c1, · · · , cϵ, vector vh
s computed by M for 1 ≤ s ≤ ϵ

and 1 ≤ h ≤ δ is equal to
∑

r∈RPATH
h,L

φM(r)·qr,D,s, whereRPATH
h,L is the set of all rules of the form (2)

with 1 ≤ ℓ ≤ L (resp. ℓ = 0) and head atom Rh(x, y) (resp. Rh(x, x)), φM(r) is a non-negative
function of r that depends only on the parameters ofM, and qr,D,s is a vector of dimension ϵ such
that, its t-th element is 1 (resp. 0) if the body of r is ⊤ and t = s (resp. t ̸= s), and otherwise it is
the number of different mappings that ground the body of r in D and map x to cs and y to ct.

Proof. Let D be an arbitrary dataset with constants c1, · · · , cϵ. The distributive and associative
properties of the product and the sum allow us to rewrite Equation (3) as

(vh
s )

⊺ =
∑

(k1,··· ,kL)∈{1,··· ,2δ+1}L

((
N∑
i=1

L∏
j=1

ah(i, j, kj)

)
(vs)

⊺ ·Mk1 ·Mk2 · · · · ·MkL

)
. (9)

It is straightforward to see that each sequence (k1, · · · , kL) of elements in {1, · · · , 2δ + 1} cor-
responds to a rule of the form (2), namely, the unique rule with head atom Rh(x, y) (Rh(x, x) if
all elements are 2δ + 1) and such that (k1, · · · , kL) ∈ SL

r . Furthermore, all sequences in SL
r are

over {1, · · · , 2δ + 1}L and of length L. Hence, we can rewrite Equation (9) as

(vh
s )

⊺ =
∑

r∈RPATH
h,L

 ∑
(k1,··· ,kL)∈SL

r

((
N∑
i=1

L∏
j=1

ah(i, j, kj)

)
(vs)

⊺ ·Mk1 ·Mk2 · · · · ·MkL

) . (10)

Let D′ be the extension of D with all inverse and identity facts over the extended signature, as
described in Section 2. A simple inductive argument shows that the vector (vs)

⊺ ·Mk1 ·Mk2 · · · · ·
MkL

describes the number of paths of length L inD′ from cs to each constant. In particular, the t-th
element of the vector is the number of paths of length L from cs to ct in D′. Furthermore, for each
rule r in RPATH

h,L with ℓ ≥ 1 and for each (k1, · · · , kL) ∈ SLr , there is a one-to-one correspondence
between each substitution that grounds the body of r mapping x to cs and y to ct, and each path
of length L from cs to ct in D′ through k1, k2, · · · , kL; therefore, for each (k1, · · · , kL) ∈ SLr ,
the vector (vs)

⊺ ·Mk1 ·Mk2 · · · · ·MkL
is always qr,D,s. Finally, for r = Rh(x, x) ← ⊤,

there is a unique sequence in SLr , namely, that where all elements are 2δ + 1. For this sequence, the
vector (vs)

⊺ ·Mk1
·Mk2

· · · · ·MkL
has s-th component equal to 1 and all other components equal to

0, so it is also equal to qr,D,s. Hence, in Equation (10) we can factor out (vs)
⊺ ·Mk1

·Mk2
·· · ··MkL

,
as it is equal for each (k1, · · · , kL) ∈ SLr for a given r, and replace it by its value qr,D,s. Then the
right side of the equation becomes

∑
r∈RPATH

h,L
φM(r) · qr,D,s, as we wanted to prove, with

φM(r) =
∑

(k1,··· ,kL)∈SL
r

N∑
i=1

L∏
j=1

ah(i, j, kj) . (11)

Theorem 1. Program RDRUM
M,γ is sound forM = (a1, · · · ,aδ, β) whenever γ ≥ β. Furthermore,

there is a DRUM modelM′ = (a′1, · · · ,a′δ, β′) such thatRDRUM
M′,γ is unsound forM′ for any γ < β′.

Proof. For the first claim, we consider an arbitrary fact Rh(cs, ct) ∈ TRDRUM
M,γ

(D), and we show
that Rh(cs, ct) ∈ TM(D). Since Rh(cs, ct) ∈ TRDRUM

M,γ
(D), RDRUM

M,γ contains a rule of the form (2)
where 0 ≤ ℓ ≤ L, and there is a substitution σ such that xσ = cs, yσ = ct, and the grounding of the
rule’s body by this substitution is in D. Now, by hypothesis, γ ≥ β. Moreover, the value αr from
Equation (4) is strictly greater than γ because r ∈ RDRUM

M,γ . Furthermore, φM(r) ≥ αr, as seen from
comparing Equation (11) and Equation (4). Finally, we have vh

s (t) ≥ φM(r) from Lemma 1 and the
fact that qr,D,s(t) ≥ 1 due to the existence of σ. Combining all these inequalities yields vh

s (t) > β,
indicating Rh(cs, ct) ∈ TM(D), as we intended to show.

We prove the second claim with an example. Let D = {R1(c1, c1), R2(c2, c2)} be a dataset,
and M = (a1, · · · ,aδ, β) be a DRUM model in which N = L = 1, and β = 0.5. All non-
zero elements of a1, · · · ,aδ are a2(1, 1, 1) = a2(1, 1, 2) = 0.5. According to Equation (3), the

12
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model does not predict the fact R2(c1, c1) since vh
s (1) ̸> β. However, for any γ < β, the pro-

gram RDRUM
M,γ contains the rule R2(x, y) ← R1(x, y), and TRDRUM

M,γ
(D) contains the fact R2(c1, c1).

Therefore,RDRUM
M,γ is not sound forM.

Theorem 2. There exists a DRUM model such that no Datalog program is faithful for it.

Proof. LetM = (a1, · · · ,aδ, β) be the DRUM model in which N = 1, L = 2, and β = 0.8. All
non-zero elements of a1, · · · ,aδ are a2(1, 1, 1) = 0.5 and a2(1, 2, 1) = 1. We show that there
exists no Datalog program that is faithful forM using proof by contradiction.

Assume that R is a faithful Datalog program for M, i.e., for any dataset D, TM(D) = TR(D).
Consider two datasets D1 = {R1(c1, c1), R2(c3, c3)} and D2 = D1 ∪ {R1(c1, c2), R1(c2, c2)},
where constant c2 does not appear in R. According to Equation (3), the model M predicts no
fact if it is applied to D1 (i.e., TM(D1) = ∅) while it predicts the fact R2(c1, c2) if it is ap-
plied to D2 (i.e., TM(D2) = {R2(c1, c2)}). On the other hand, since R is complete for M, we
have R2(c1, c2) ∈ TR(D2). Let σ be a mapping from constants to constants with σ(c2) = c1
and σ(ci) = ci for any i ̸= 2. Observe that σ(D2) = D1. Since σ(R2(c1, c2)) = R2(c1, c1),
we have R2(c1, c2) ∈ σ(TR(D2)). It a well-known property of Datalog that for each Datalog pro-
gram R′ and each substitution µ that maps each constant in R′ to itself, it holds that µ(TR′(D)) ⊆
TR′(µ(D)). Since constant c2 does not occur in R and σ is an identity mapping for other con-
stants, we have σ(TR(D2)) ⊆ TR(σ(D2)) = TR(D1), indicating R2(c1, c2) ∈ TR(D1). Notice
that TR(D1) ̸⊆ TM(D1), so R is not sound for M, which contradicts our assumption that R is
faithful forM. Thus, no faithful Datalog program exists forM.

Theorem 3. Program RMP
M,γ extracted by Algorithm 1 on input M = (a1, · · · ,aδ, β) is faithful

toM for γ = β. Furthermore, Algorithm 1 terminates in O
(
L · (2δ)L+1

(
N + ω(2 δ)L+1

))
steps,

where ω is the maximum value of ω(r) for r a rule of the form (2) with ℓ ≤ L.

Proof. Let RMP
M,β be the output of the algorithm forM with γ = β. Let L and N be the depth and

rank ofM, respectively.

(Auxiliary Claim) We first prove an auxiliary claim: for each rule r ∈ RPATH
h,L with head

atom Rh(x, y), the value φr is defined after line 9 by Algorithm 1 during the iteration of in-
dex h (line 3). Besides, φr = φM(r). Let ψk1 ∧ · · · ∧ ψkℓ

be the body atoms of r,
where 1 ≤ ki ≤ δ for each ki, and each ψki is of the form Rki(zi−1, zi) or Rki(zi, zi−1). Note
that φr is only created and modified within the loop of h (line 3). Moreover, lines 4–10 ensure
that φr =

∑
(k′

1,··· ,k′
L)∈S

∑N
i=1

∏L
j=1 a

h(i, j, k′j), where S is the set of all sequences (k′1, · · · , k′L)
with 1 ≤ k′i ≤ 2δ+1. Therefore, when performing the iteration in lines 6–7 with index [k′1, · · · , k′L],
rule r is produced in line 8, and so φr is defined. To complete the proof, by Equation (11) we need
to show that S = SLr . This, however, follows straightforwardly from the definitions of S and SLr .

(Soundness) We prove the soundness of RMP
M,β forM by considering an arbitrary dataset D and

showing that TRMP
M,β

(D) ⊆ TM(D). Let Rh(cs, ct) be an arbitrary fact in TRMP
M,β

(D). Then, there
exists a multipath rule r in RMP

M,β such that either (case 1) the body of r is ⊤, or (case 2) the body
of r is of the form ϕ1 ∧ · · · ∧ ϕP for P ≥ 1, with each ϕp being a multipath conjunction with a
distinct core (note that Algorithm 1 never outputs rules containing two multipath conjunctions with
the same core (line 15–16)), and there exists a substitution σ from the variables in r to constants
of D that grounds x to cs and y to ct such that, for each ϕp of the form (7), if its core is Ψp =
ψp
k1
∧ · · · ∧ ψp

kℓp
and its cardinality is Cp, then ψp

ki
σ ∈ D for each 1 ≤ i ≤ ℓp, and for each

two 1 ≤ j < j′ ≤ Cp, there exists 1 ≤ i ≤ ℓp such that zji σ ̸= zj
′

i σ.

Case 1. If the body of r is ⊤, then r = r|Ω|. The auxiliary claim shows that φr|Ω| = φM(r).
By Lemma 1, vh

s (t) ≥ φM(r) since φM(r′) and qr′,D,s are non-negative for each r′ ∈ RPATH
h,L .

Thus, vh
s (t) ≥ φr|Ω| . Meanwhile, φr|Ω| is precisely the value compared with γ in line 18, in the

iteration starting from line 14 with index [C1, · · · , C|Ω|] = [0, · · · , 0]. Since r ∈ RMP
M,β , φr|Ω| > β.

Therefore, Rh(cs, ct) ∈ TRMP
M,β

(D).

13
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Case 2. For each 1 ≤ p ≤ P , if φp is of the form (7), we can use σ to produce Cp substitu-
tions σ1, · · · , σCp

defined as σj(z
j
i ) = ziσ for each 0 ≤ i ≤ ℓ and 1 ≤ j ≤ Cp. If Cp > 1,

then all substitutions are necessarily pairwise different (i.e., they differ in the assignment of at least
one variable) because line 13 ensures that Cp can only be greater than 1 if Ψp contains at least
two body atoms, and so ℓ > 1. Thus, for each pair of j and j′ satisfying 1 ≤ j < j′ ≤ Cp,
there exists 1 ≤ i ≤ ℓ − 1 such that zji σ ̸= zj

′

i σ. Therefore, qrp,D,s(t) ≥ Cp, for rp as the
rule Rh(x, y) ← Ψp. By Lemma 1, vh

s (t) =
∑

r∈RPATH
h,L

φM(r) · qr,D,s(t). By construction, each

rule rp is inRPATH
h,L . Both φM(r) and qr,D,s are non-negative, so vh

s (t) ≥
∑

p φM(rp) ·Cp if t ̸= s

or vh
s (t) ≥

∑
p φM(rp) ·Cp+φM(Rh(x, x)← ⊤) otherwise. By the auxiliary claim, this is equal

to
∑

p φrp ·Cp or
∑

p φrp ·Cp+φr|Ω| , respectively, which is precisely the value compared with γ in
line 17 (if cs ̸= ct), or line 18 (if cs = ct), in the iteration of the loop starting from line 14 with in-
dex [C ′

1, · · · , C ′
|Ω|−1], where C ′

i = Cp if Ω(i) = Ψp and otherwise C ′
i = 0. This list is well-defined

since no two p and p′ with 1 ≤ p < p′ ≤ P correspond to the same elements of Ω, as we already ob-
served that each multipath conjunction in the body of r has a different core. Hence, r ∈ RMP

M,β , and
we have

∑
p φrp · Cp + φr|Ω| > β. Thus, we have vh

s (t) > β, indicating Rh(cs, ct) ∈ TRMP
M,β

(D).

(Completeness) To prove completeness, we again consider an arbitrary dataset D and show
that TM(D) ⊆ TRMP

M,β
(D). Let Rh(cs, ct) be an arbitrary fact in TM(D). We show that there

is a multipath rule in TRMP
M,β

which derives the same fact from D. By Lemma 1, vh
s (t) =∑

r∈RPATH
h,L

φM(r) · qr,D,s(t). Let R be the set of all rules r ∈ RPATH
h,L such that qr,D,s(t) > 0.

Let r be an arbitrary such rule. By definition, if the body of r is empty, then qr,D,s(t) = 1. Oth-
erwise, qr,D,s(t) is the number of different substitutions that ground the body of r in D mapping x
to cs and y to ct. Furthermore, in the latter case, the body of r is an element of Ω and therefore
line 13 ensures that some value ωr is computed for it. We now consider two possible cases and show
that completeness holds in both. In particular, in each case we construct a rule r′ with headRh(x, y)
and then show that, on the one hand, the body of r′ can be grounded in D by a substitution that
maps x to cs and y to ct. On the other hand, we show r′ ∈ RMP

M,β , and so Rh(cs, ct) ∈ TRMP
M,β

(D).

Case 1. There exists r ∈ R such that qr,D,s(t) > ωr. This will not happen if the body of r
is empty (since ωr is not defined for it) or has a single atom, since in that case qr,D,s ≤ 1, but
line 13 ensures ωr = 1. Thus, the body of r has at least two atoms. Consider a multipath rule r′
where the head is Rh(x, y) if cs ̸= ct and otherwise it is Rh(x, x), and its body is a multipath
conjunction of cardinality ωr and its core is the body of r, with x = y if the head does not mention y.
Since qr,D,s(t) > ωr, there exist at least ωr substitutions grounding the body of r in D mapping x
to cs and y to ct. Since in a multipath conjunction of the form (7), each element Ψj shares no
variables with the others other than x and y, we can take the union of those ωr substitutions to obtain
a new substitution σ, and it is clear that this substitution grounds the body of r′ inD mapping x to cs
and y to ct. Now, note that there exists a unique element of Ω equal to the core of r′ (i.e., the body
of r). Consider the list [C1, · · · , C|Ω|−1] where Ci = ωr for the unique i such that Ω(i) is the
body of r, and Ci = 0 otherwise. Consider the iteration in line 14 during the execution of the
algorithm within the loop of h, with this list as an index. The value compared with γ in line 17
is φr|Ω| + ωr · φr ≥ ωr · φr (by the auxiliary claim and the fact that φM is non-negative). Since r
has at least two body atoms, by line 13 we have ωr · φr > β, and so r ∈ RMP

M,β .

Case 2. There exists no r ∈ R such that qr,D,s(t) > ωr. Consider the multipath rule r′ where the
head is Rh(x, y) if cs ̸= ct and otherwise it is Rh(x, x), and its body has a multipath conjunction
for each element r ∈ R with non-empty body, with core equal to the body of r (with x = y if
y is not mentioned in the head) and cardinality qr,D,s(t). This is well defined by our assumption
that qr,D,s(t) > 0. Therefore, for each r with non-empty body, there exist at least qr,D,s(t) different
substitutions grounding the body of r in D mapping x to cs and y to ct. Since in a multipath
conjunction of the form (7), each element Ψj shares no variables with the others other than x and y,
and different multipath conjunctions in the body of r′ also share no variables other than x and y,
we can take the union of all those substitutions to obtain a new substitution σ, and this substitution
clearly grounds the body of r′ in D mapping x to cs and y to ct. Let [C1, C2, · · · , C|Ω| − 1] be the
list which has Ci = 0 if Rh(x, y) ← Ω(i) is not in R and Ci = qr,D,s(t) if Ω(i) is equal to the
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body of r. This list is well-defined since each rule inR has a different body and hence there exists a
unique element in Ω equal to its body. This list will be considered in the loop of line 14 during the
execution of the algorithm, within the loop of h, because qr,D,s(t) ≤ ωr. The value compared with γ
in line 17–18 for this iteration will be

∑
r∈R qr,D,s(t) · φr. By the auxiliary claim, this expression

is equal to
∑

r∈R φM(r) · qr,D,s(t). By Lemma 1 and the fact that for any r ∈ RPATH
h,L /∈ R,

we have qr,D,s(t) = 0 (with our definition of R), we obtain that vh
s (t) =

∑
r∈R qr,D,s(t) · φr.

Hence, since vh
s (t) > β and our assumption that Rh(cs, ct) ∈ TM(D), we have that line 17–18

ensures r′ ∈ RMP
M,β , as we intended to show.

(Time Complexity) In line 2, each conjunction has size at most L, so the cost of this step isO(|Ω|·
L). We next analyze the time complexity of the main loop of the algorithm, which runs δ times. The
loop in line 4–10 considers (2δ + 1)L different lists. For each list, line 5 requires O(L) steps, and
so does each iteration in line 6–7. The operation in line 9–10 requires N · L steps, so the total cost
of this part is O((2δ + 1)L · (L+ L+ 1 +N · L))) = O((2δ)L ·N · L).
The loop in line 11–13 is performed |Ω| times, each of which requires a constant number of opera-
tions. The overall time cost is O(|Ω|).
For the loop in line 14–18, let ω = max1≤i≤|Ω| ωi. The number of possible combinations of
cardinalities [C1, · · · , C|Ω|] with 0 ≤ Ci ≤ ωi is bounded by (ω + 1)|Ω|, which is a bound on the
number of loop iterations. In each iteration, line 15–16 writes a rule with at most |Ω| multipath
conjunctions, where each conjunction has at most L · ω atoms and

(
ω
2

)
· L ≤ ω2 · L inequalities.

Line 17–18 requires a number of operations linear in Ω. Finally, the filtration in line 17–18 can be
finished in constant time. The overall time cost of this loop is

O
(
(ω + 1)|Ω| ·

(
|Ω| ·

(
L · ω +

(
ω

2

)
· L
)
+ |Ω|

))
,

which can be simplified to
O
(
ω|Ω|+2 · |Ω| · L

)
.

Therefore, the overall time complexity of Algorithm 1 is

O
(
|Ω| · L+ δ

(
(2δ)L ·N · L+ |Ω|+ ω|Ω|+2 · |Ω| · L

))
, (12)

Considering that the number of conjunctions in Ω for each length 0 ≤ ℓ ≤ L is (2δ)ℓ, we have

|Ω| =
L∑

ℓ=0

(2δ)ℓ =

L∑
ℓ=1

(2δ)ℓ + 1 =
2δ ·

(
(2δ)L − 1

)
2δ − 1

+ 1 = O
(
(2δ)L

)
.

Hence, Expression (12) becomes

O
(
δ(2δ)L ·N · L+ L · (2 δ)L+1 · ω(2 δ)L+2

)
= O

(
L · (2δ)L+1

(
N + ω(2 δ)L+1

))
.

Theorem 4. Program RD
M extracted by Algorithm 2 for a DRUM model M = (a1, · · · ,aδ, β)

and a dataset D satisfies TRD
M
(D) = TM(D). Furthermore, Algorithm 2 terminates with time

complexity O((2δ)L · (N · L+ 2δ · ϵL+2)).

Proof. To show TRD
M
(D) ⊆ TM(D), we simply point out that the rules in RD

M are in RMP
M,β by

construction, and so TRD
M
(D) ⊆ TRMP

M,β
(D). Meanwhile, by Theorem 3, RMP

M,β is sound forM,
so TRMP

M,β
(D) ⊆ TM(D).

To show TM(D) ⊆ TRD
M
(D), we consider an arbitrary fact Rh(cs, ct) ∈ TM(D) and then show

that the rule produced during the iteration of the algorithm for this fact suffices to derive this fact
in D. Let r be the rule added to RD

M when Rh(cs, ct) is used as index in the iteration of loop 11.
For each multipath conjunction in its body with core ψ, the existence of count(ψ) different paths
from cs to ct in D and the fact that count(ψ) is greater or equal to the cardinality of this multipath
conjunction ensure that the body of r matches the dataset mapping x to cs and y to ct. Hence the
rule fires on D, and so Rh(cs, ct) ∈ TRD

M
(D).
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Algorithm 3: SMDRUM Rule Extraction.
1 R := ∅;
2 Ω := list of all conjunctions in the body of the form (2), with 0 ≤ ℓ ≤ L, and with no overlapping

variables other than x and y;
3 foreach h ∈ {1, · · · , δ} do
4 foreach i ∈ {1, · · · , N} do
5 foreach [k1, · · · , kL] : 1 ≤ ki ≤ 2δ+1 do
6 [k′1, · · · , k′ℓ] := remove all 2δ +1;
7 foreach j ∈ {1, · · · , ℓ} do
8 if k′j ≤ δ then ψj := Rk′

j
(zj−1, zj); else ψj := Rk′

j−δ(zj , zj−1);

9 if ℓ ≥ 1 then r := Rh(x, y)←
∧ℓ

j=1 ψj ; else r := Rh(x, x)← ⊤;
10 if φr,i is undefined then φr,i := 0;
11 φr,i := max(φr,i,

∏L
j=1 a

h(i, j, kj));
12 foreach [ρe1 , · · · , ρen ] : 1 ≤ e1 < · · · < en ≤ N, ρei ∈ Ω do
13 if

∑n
i=1 φrei ,ei

> γ then
14 if ⊤ /∈ {ρe1 , · · · , ρen} thenR := R∪ {Rh(x, y)←

∧n
i=1 ρei};

15 elseR := R∪ {Rh(x, x)←
∧n

i=1 ρei{y 7→ x}};
16 returnR;

(Time Complexity) In the worst case, the number of possible paths in Pall reaches O(ϵL · (2δ)L),
and the size of TM(D) reaches O(ϵ2 · 2δ). Consider the iteration in lines 11–19 of Algorithm 2,
each loop of a specific path [cs, k1, · · · , ct] costs at most O(L) steps. Besides, to compute all the
values ω(r) for each possible rule r of the form (2) requires at mostO(N ·L·(2δ)L) steps. Therefore,
the worst case time complexity of Algorithm 2 is

O(ϵL · (2δ)L · ϵ2 · 2δ +N · L · (2δ)L) = O((2δ)L · (N · L+ 2δ · ϵL+2)) .

Proposition 1. For an SMDRUM modelM there exists a programRSM
M of inequality-free multipath

rules computable in exponential time inM’s size such that TM(D) = TRSM
M
(D) for any dataset D.

To prove Proposition 1, we first present the algorithm extracting the relevant programRSM
M fromM

and then prove the faithfulness of the program and its complexity. The Proposition is then a trivial
corollary from that result.

Algorithm 3 extracts a faithful program from an SMDRUM model. For each possible rule r of the
form (2) with head atom Rh(x, y) (line 3), the algorithm first computes a score φr,i similar to the
score φr from Algorithm 1, but computed separately for each sub-model (line 5–11) and using
max instead of sum to aggregate different products of elements of ah. Then, it checks all possible
combinations of n rules (which are not necessarily different) with headRh(x, y), and combines their
bodies into a single rule (line 14–15).

The following result states that this algorithm extracts faithful programs from SMDRUM models.
Theorem 6. The Datalog program RSM

M extracted by Algorithm 3 for a SMDRUM model M =
(a1, · · · ,aδ, β) is faithful to M for γ = β. Furthermore, Algorithm 3 terminates in O(N ·
(2δ)L·N+1) steps.

Proof. (Soundness) We consider an arbitrary fact Rh(cs, ct) ∈ TRSM
M,β

(D) and show that

Rh(cs, ct) ∈ TM(D). Since Rh(cs, ct) ∈ TRSM
M,β

(D), there exists a rule r ∈ RSM
M,β and either

(1) it is Rh(x, x) ← ⊤ or (2) it is of the form Rh(x, y) ←
∧n

i=1 bi, or analogously with x = y,
with each bi a different element of Ω, and a substitution σ grounding the body of this rule in D
mapping x to cs and y to ct. Furthermore, the fact that r ∈ RSM

M,β implies that
∑n

i=1 φri,i > β, for
ri = Rh(x, y)← bi. Simultaneously, we can rewrite the equation from Definition 2 as

(vh
s )

⊺ =

N∑
i=1

 max
(k1,··· ,kL)∈{1,··· ,2δ+1}L

(vs)
⊺·Mk1

⊗···⊗MkL
=1

 L∏
j=1

ah(i, j, kj)


 , (13)
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defining the result of max as 0 of no sequence (k1, · · · , kL) satisfies the relevant conditions. For
any (k1, · · · , kL) ∈ {1, · · · , 2δ+1}L, the definition of the matrices Mkj

implies that Mk1
⊗ · · · ⊗

MkL
(s, t) = 1 if either k1 = · · · = kL = 2δ + 1, or there exists a substitution σ which grounds

the body of r′—the unique rule such that (k1, · · · , kL) ∈ SLr′—in D mapping x to cs and y to ct, or
otherwise Mk1

⊗ · · · ⊗MkL
(s, t) = 0. Hence,

(vh
s )

⊺(t) ≥
n∑

i=1

 L∏
j=1

ah(ei, j, k
i
j)

 ,

where (ki1, · · · , kiL) is the element in SLri , (with ri = Rh(x, y) ← bi if bi ̸= ⊤, and ri =
Rh(x, x) ← ⊤ otherwise) that was used by the algorithm to produce the final value of φrei ,ei

.
But then, φrei ,ei

=
∏L

j=1 a
h(ei, j, k

i
j), and since the value compared with β by the algorithm is∑n

i=1 φrei ,ei
, we have (vh

s )
⊺(t) > β, which implies Rh(cs, ct) ∈ TM(D).

(Completeness) To show completeness, consider an arbitraryRh(cs, ct) ∈ TM(D). Let e1 < · · · <
en be the indices 1 ≤ i ≤ N for which the sequence below is defined.

(ki1, · · · , kiL) = argmax
(k1,··· ,kL)∈{1,··· ,2δ+1}L

Mk1
⊗···⊗MkL

(s,t)=1

 L∏
j=1

ah(i, j, kj)

 , (14)

Let bei be the (unique) conjunction such that (kei1 , · · · , k
ei
L ) ∈ SLrei] , with rei = Rh(x, y) ← bei

if bei ̸= ⊤, and otherwise rei = ⊤. Consider the rule r = Rh(x, y) ←
∧n

i=1 bei if none
of the rei have a body equal to ⊤, and otherwise r = Rh(x, x) ←

∧n
i=1 bei{y 7→ x}. By

construction,
∏L

j=1 a
h(ei, j, kj) = φrei ,ei

, so Equation (13) and the choice of (kei1 , · · · , k
ei
L ) to-

gether ensure that (vh
s )

⊺(t) =
∑N

i=1 φrei ,ei
, and since (vh

s )
⊺(t) > β, then r ∈ RSM

M,β . To see
that Rh(cs, ct) ∈ Tr(D), note simply that since one of the requirements in the equation above
is Mk1

⊗ · · · ⊗MkL
(s, t) = 1; thus, for any bei ̸= ⊤, there exists a substitution grounding bei in D

mapping x to cs and y to ct. Since, by definition of Ω, different bei share no variables other than x
and y, we can take the union of these substitutions and obtain a substitution that grounds the body
of r and maps x to cs and y to ct.

(Time complexity) In Algorithm 3, there are a total of δ head atoms (line 2). In each rank i ∈
{1, · · · , N} (line 4), the number of predicate lists of length L (line 5) is:

|{[k1, · · · , kL] : 1 ≤ ki ≤ 2δ + 1}| = (2δ + 1)L . (15)

In each iteration of [k1, · · · , kL], the computation of φri,i costs at most O(L) steps. Then in the
combination of bodies bi, the overall number of iteration steps is O((2δ + 1)L·N ). The insertion of
rules inR has a time cost of O(N). Therefore, the overall computational cost is:

δ ·
(
N · (2δ + 1)L · O(L) + (2δ + 1)L·N · O(N)

)
= O((2δ)L·N+1) . (16)

Theorem 5. For an MMDRUM model M of depth L, the program containing each rule r of the
form (2) with ℓ ≤ L or R(x, x)← ⊤ such that αM,r > β is faithful forM.

Proof. Let RMM
M,β be the program stated in the theorem. To show soundness we consider a

fact Rh(cs, ct) ∈ TRMM
M,β

(D) and show that it is in TM(D). We know that there exists a Data-
log rule in RMM

M,β in the form of (2) or Rh(x, x) ← ⊤ and, if the body of this rule is not empty, a
substitution σ that maps x to cs, y to ct, and grounds the body of the rule in D. Let

(k′1, · · · , k′L) = argmax
[k′′

1 ,··· ,k′′
L]∈SL

r

max
1≤i≤N

 L∏
j=1

ah(i, j, k′′j )

 .

17



Published as a conference paper at ICLR 2024

Algorithm 4: MMDRUM Rule Extraction.
1 R := ∅;
2 foreach h ∈ {1, · · · , δ} and i ∈ {1, · · · , N} do
3 P := ∅; P ′ := {(1, [])} ;
4 foreach j ∈ {1, · · · , L} do
5 P := P ′; P ′ := ∅;
6 foreach (s, [p]) ∈ P and k ∈ {1, · · · , δ} do
7 if s · ah(i, j, k) > γ then P ′ = P ′ ∪ {(s · ah(i, j, k), [p, k])};
8 foreach (s, [k1, .., kL]) ∈ P ′ with s > γ do
9 [k′1, · · · , k′ℓ] := remove all 2δ +1;

10 foreach j ∈ {1, · · · , ℓ} do
11 if k′j ≤ δ then ψj := Rk′

j
(zj−1, zj); else ψj := Rk′

j−δ(zj , zj−1);

12 if ℓ ≥ 1 then r := Rh(x, y)←
∧ℓ

j=1 ψj ; else r := Rh(x, x)← ⊤;
13 R := R∪ {r};
14 returnR;

Since this rule is in RMM
M,β , we have

∏L
j=1 a

h(i, j, k′j) > β. Next, analogously to the case for
MMDRUM, we can rewrite the equation that defines (vh

s )
⊺ in MMDRUM as

(vh
s )

⊺(t) = max
1≤i≤N

 max
(k1,··· ,kL)∈{1,··· ,2δ+1}L

Mk1
⊗···⊗MkL

(s,t)=1

 L∏
j=1

ah(i, j, kj)


 . (17)

Now, note that if the body of r is not⊤, the existence of σ implies that Mk′
1
⊗· · ·⊗Mk′

L
(s, t) = 1.

If the body is ⊤, then cs = ct and k′i = 2δ + 1, so Mk′
1
⊗ · · · ⊗Mk′

L
(s, t) = 1 holds by definition

of the MMDRUM model. This means that our sequence (k′1, · · · , k′L) is considered in the max

computations, and so we obtain (vh
s )

⊺(t) ≥
∏L

j=1 a
h(i, j, k′j). Thus, (vh

s )
⊺(t) > β and hence

Rh(cs, ct) ∈ TM(D).
To show completeness, we consider a fact Rh(cs, ct) ∈ TM(D). Let

i, (k1, · · · , kL) = argmax
1≤i≤N

[k′′
1 ,··· ,k′′

L]∈SL
r

Mk1
⊗···⊗MkL

(s,t)=1

 L∏
j=1

ah(i, j, k′′j )

 .

Clearly, at least one such i and sequence must exist forRh(cs, ct) to be in TM(D). By Equation (17),
we have that (vh

s )
⊺(t) =

∏L
j=1 a

h(i, j, kj). Next, consider the (unique) rule r with (k1, · · · , kL) ∈
SLr . By our choice of i and (k1, · · · , kL), we have αM,r =

∏L
j=1 a

h(i, j, kj). Since Rh(cs, ct) ∈
TM(D), we have (vh

s )
⊺(t) > β and so αM,r > β. Thus, r ∈ RMM

M,β , as we wanted to show. It
remains to see that we can ground the body of r in D mapping x to cs and y to ct, but this follows
from the definition of (k1, · · · , kL), which has the condition Mk1 ⊗ · · · ⊗MkL

(s, t) = 1.

B EFFICIENT RULE EXTRACTION FOR MMDRUM

We present an optimised procedure to compute the faithful programRMM
M,β for an MMDRUM model

M. The procedure is laid out in Algorithm 4. It relies on two techniques to optimise rule ex-
traction. On the one hand, instead of first enumerating all rules and then calculating their scores,
we interweave the construction of the rules with the computation of the scores. This allows us to
take advantage of structure sharing. On the other hand, since the elements of ah are all between 0
and 1, computing the value of rules by multiplying different elements will result in a monotonically
decreasing manner. Therefore, at each step, we can compare the value computed so far with the
threshold, thus pruning the search space.

The following proposition ensures that the output of the algorithm corresponds to the target program.
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Proposition 2. The Datalog program R extracted by Algorithm 4 for an MMDRUM model M =
(a1, · · · ,aδ, β) is equal toRMM

M,β . Furthermore, Algorithm 4 terminates in O(N · δL+1) steps.

Notice that, although the time complexity given in Proposition 2 contains an exponential term δL+1,
the real-world δ and L would be relatively small. Besides, the pruning in each step by threshold γ
further improves the computational efficiency. The algorithm usually terminates in a short time in
practice, which is also confirmed by the empirical results in Section 6.

Proof. We show the double inclusion. First, let RMM
M,β be the program from Theorem 5. If r ∈

RMM
M,β with head predicate Rh, then there exists (k′1, · · · , k′L) ∈ SLr and i ∈ {1, · · · , N} such

that αM,r > β. Note that any prefix of factors in the expression will also be greater than β since
elements of ah(i, j, k) are in [0, 1]. But then, the execution of the algorithm ensures that for the
iteration with h and i, the path (s, k′1, · · · , k′L, t) and all its subpaths are considered, and since lines
12-16 generate the rule r from (k′1, · · · , k′L), we have that r is in the output of the algorithm.

Conversely, suppose that r is in the output of the algorithm, with head predicate Rh. Then
we have that there exist i and (k1, · · · , kL) ∈ SLr such that in the iteration of line 2 with
index i, the path (s, k1, · · · , kL, t) is considered and

∏L
j=1 a

h(i, j, kj) > β. But then,

max(k′
1,··· ,k′

L)∈SL
r
max1≤i≤N

∏L
j=1 a

h(i, j, k′j) > β, and so the rule r is inRMM
M,β .

To prove the complexity, note that the outer loop iterates δ ·N times. For each of these iterations, the
number of rules that can be built is (2δ + 1)L. The remaining operations can be performed in linear
time. Hence the complexity is O(δ ·N · (2δ + 1)L), which can be simplified as O(N · δL+1).

C EXPERIMENT DETAILS

This section provides additional details regarding the experimental set-up, including the used bench-
marks and the configurations used for training and testing.

C.1 DATASETS

We used the benchmark datasets for inductive KG completion from Teru et al. (2020). Each dataset
consists of train, validation and test sets, where the test set contains the same predicates but distinct
constants w.r.t. the train and validation sets. To use them for the KG completion task, we further split
each train set and test set into an “incomplete” dataset and a set of positive examples with a 3 : 1
ratio on a random basis. To evaluate the models prediction on negative examples, we randomly
sampled the same number of negative facts as positive examples in the test set, and combined both
positive and negative facts in the test process.

Table 4 presents the statistics of each dataset used in our experiments. Apart from the number of
facts and predicates, we also computed the in-degree and out-degree of nodes in each dataset by
viewing it as a graph, where nodes are constants and edges are predicates. Compared with FB15k-
237 and WN18RR, NELL-995 datasets generally have smaller median in-degree and out-degree,
indicating that they have relatively simpler graph structure and fewer paths within a given length
constraint (e.g., L = 3).

Family (Kok & Domingos, 2007) is a dataset of blood relationship between individuals. It contains
predicates such as sister, brother, mother, father, etc. We reused the split of train, validation and test
sets in Sadeghian et al. (2019).

C.2 SETTINGS

Model Implementation. The original implementation3 of DRUM by Sadeghian et al. (2019) relied
on Python 2.74 and Tensorflow 1.135, which were relatively outdated and did not support most up-
to-date operators (e.g., the max-product of matrices). Therefore, we re-implemented the models

3https://github.com/alisadeghian/DRUM
4https://www.python.org/download/releases/2.7/
5https://pypi.org/project/tensorflow/1.13.1/
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Table 4: Statistics of datasets.

#Train Facts #Validation Facts #Test Facts #Predicates In-Degree Out-Degree

median max median max

FB15k-237

V1 4,245 489 2,198 180 2 388 3 69
V2 9,739 1,166 4,623 200 2 588 3 102
V3 17,986 2,194 8,271 215 3 1,061 4 139
V4 27,203 3,352 13,138 219 3 1,289 5 176

NELL-995

V1 4,687 414 933 14 1 293 1 188
V2 8,219 922 5,062 88 1 251 2 608
V3 16,393 1,851 8,857 142 1 524 2 875
V4 7,546 876 7,804 76 1 254 2 545

WN18RR

V1 5,410 630 1,806 9 2 43 2 17
V2 15,262 1,838 4,452 10 2 93 2 21
V3 25,901 3,097 6,932 11 2 142 2 87
V4 7,940 934 13,763 9 2 56 2 24

Family 23,483 2,038 20,450 12 5 50 5 50

with Python 3.86 and PyTorch 2.0.17. For NEURAL-LP, we reused the source codes and settings
provided in Tena Cucala et al. (2022b).

Model Training. We followed Sadeghian et al. (2019) for all the default settings in training, such
as the log-likelihood loss function, Adam optimizer and the use of 10 maximum training epochs.
An early stop strategy was adopted for each model based on the prediction loss of the validation set.
All experiments were conducted on a Linux workstation with a Xeon E5-2670 CPU. Our data and
source codes are available at https://anonymous.4open.science/r/FaithfulRE

Rule Extraction. We conducted rule extraction for each model and benchmark. In addition to
using threshold γ = β in rule extraction, we further assessed their efficiency by comparing the time
cost of rule extraction with different γ.

For MMDRUM, we used the rule extraction threshold γ = 0.1 and 0.01, respectively. For SMDRUM,
to avoid redundant body atoms brought by predicates with low scores such as Figure 1 (a), to make
rule extraction feasible, and to balance the contribution of each sub-model, we required the score
contributed by each sub-model to exceed a lower-bound (i.e., γ′ in Figure 1 (b)). We evaluated γ′ =
0.1 and 0.01 for SMDRUM in the experiments. Further, we combined duplicate chains of predicates
learned by different sub-models in each SMDRUM rule by adding up their confidence scores and
retaining the body atoms only once (as shown in Figure 1 (b)).

x y
z3

z1 R2

R4

R1

R3

0.9

0.1

0.9

0.0

x y
z1

R2R1

(a) a rule body with redundancy.          (b) filtering and simplifying the rule body of SMDRUM.

z20.8 1.0
R2R1 x y

z3

z1 R2

R6

R1

R5

0.9

0.9

0.9

0.9

z20.8 1.0
R2R1 z3

R6R5

R1 x, z1 ∧ R2 z1, y ∧ R5 x, z3 ∧ R6 z3, y

γ′ = 0.5

Figure 1: A motivating example of SMDRUM rule extraction. Different colors represent ranks. The
yellow dotted path in (a) is redundant as it contributes nothing to the overall confidence score of the
rule, thus should be removed. (b) shows the filtering and simplifying process of combining body
atoms by the same chain of predicates (the green and blue paths) learned from different ranks.

For rule extraction in DRUM, as discussed in Section 4, the relatively high complexity of Algorithm 1
makes it impractical to extract all multipath rules for a DRUM model. Instead, we used the approach
from Section 5.1, extracting rules that explain the predictions on the test dataset.

6https://www.python.org/downloads/release/python-3817/
7https://pytorch.org/get-started/pytorch-2.0/
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D ADDITIONAL EVALUATION RESULTS

We provide more evaluation results below, including the training and rule extraction time of each
model on the datasets, along with analyses of the extracted rules.

D.1 TRAINING TIME

Table 5 presents the training time of MMDRUM, SMDRUM and DRUM on the FB15k-237, NELL-
995, and WN18RR datasets. The three models used similar time for training, which generally
increased in accordance with the number of constants and predicates in the dataset. All the models
finished in a few hours for each dataset. Besides, the training time increased with the model depth L,
as the number of learnable parameters (i.e., the elements of a1, · · · ,aδ) proportionally increased
with L.

Table 5: Training Time (minutes) of each model with N = 3.

MMDRUM SMDRUM DRUM

L = 2 L = 3 L = 2 L = 3 L = 2 L = 3

FB15k-237

V1 18.7 28.1 17.9 26.0 16.7 25.4
V2 69.8 119.5 64.6 99.3 62.0 93.4
V3 189.5 322.4 204.9 332.9 213.2 347.9
V4 389.1 598.7 425.1 653.6 434.9 668.5

NELL-995

V1 1.8 3.0 2.1 3.3 1.8 2.8
V2 24.9 40.3 28.1 46.1 27.2 43.6
V3 153.2 250.5 177.9 273.4 176.8 277.4
V4 21.5 35.0 24.7 40.1 23.6 37.1

WN18RR

V1 1.5 2.4 1.7 2.7 1.7 3.0
V2 11.5 14.9 14.1 21.3 13.3 21.1
V3 40.2 61.9 40.1 76.3 46.2 68.4
V4 7.3 12.4 9.3 14.3 6.9 9.5

D.2 RULE EXTRACTION TIME

Table 6 shows the rule extraction time of each model for each dataset. Generally, all of them fin-
ished extraction in a few minutes for all the datasets, thereby demonstrating their practical viability.
Besides, a lower threshold γ (or γ′) leads to an increase of rule extraction time, which is closely
related to the increasing number of rules being extracted under γ (or γ′).

Not surprisingly, MMDRUM finished extracting the faithful Datalog program within the shortest
time, which is in accordance to its acceptable time complexity O(N · δL+1). SMDRUM was run for
a similar amount of time in best-effort mode. We in fact attempted to implement our faithful Datalog
rule extraction for SMDRUM, Algorithm 3. However, with N = 3 and L = 3 the extraction process
had not finished in 3 hours for dataset FB15k-237 V1, which suggested that extracting a faithful
program for SMDRUM may not be feasible in practice.

For DRUM, the time cost of rule extraction (using the dataset-dependent Algorithm 2) was very
influenced by the actual structure of the dataset. Observe that even though the numbers of predicted
facts in different datasets were close, the NELL-995-V1 dataset required much longer time than the
others (about 170 seconds for γ = 0.01 and 120 seconds for γ = 0.1). This was because the dataset
contained some central constants with a fairly high in-degree or out-degree, thus leading to a large
amount of paths with length ≤ L (at most 1, 544, 589 with L = 3 in NELL-995-V1).

D.3 COMPARISON OF RULE EXTRACTION UNDER DIFFERENT RANKS

We extended our analysis to assess the impact of rank N and depth L of the model to the derived
rules. To facilitate the investigation, we contrasted the extracted rules from MMDRUM across varying
configurations of N and L.
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Table 6: Rule Extraction Time (seconds) of DRUM, SMDRUM, and MMDRUM.

MMDRUM SMDRUM DRUM

γ = 0.1 γ = 0.01 γ′ = 0.1 γ′ = 0.01 γ = 0.1 γ = 0.01

FB15k-237

V1 5.048 5.867 7.212 8.629 0.022 0.024
V2 6.824 8.084 6.827 8.593 0.101 0.132
V3 8.477 9.836 8.021 10.205 0.673 1.002
V4 8.902 9.844 8.626 10.356 3.924 4.923

NELL-995

V1 0.005 0.011 0.005 0.069 118.971 169.851
V2 0.637 0.832 0.621 1.049 0.164 1.212
V3 2.532 2.748 2.724 3.737 11.748 16.803
V4 0.435 0.586 0.412 0.749 12.851 20.683

WN18RR

V1 0.002 0.004 0.002 0.043 0.029 0.035
V2 0.002 0.005 0.002 0.048 0.046 0.049
V3 0.002 0.004 0.003 0.017 0.029 0.140
V4 0.002 0.003 0.002 0.008 0.200 0.233

Table 7 presents the highest ten rules along with their associated confidence scores for N = 1, 2
and L = 2, 3, respectively. For both L = 2 and L = 3, the algorithm extracted rules with length
explicitly less than L, such as husband(x, y)← wife(y, x), which was in alignment with the analy-
ses in Section 2. Regarding the rank N , the results suggested that a MMDRUM model with a greater
rank can derive the same rules with higher confidence scores, due to the model acquiring the same
rule independently in different sub-models.

Table 7: Rules extracted from Family (Kok & Domingos, 2007) dataset by MMDRUM.

L = 2 L = 3

Top 10 rules Score Top 10 rules Score

N
=

2

brother(x, y)← brother(x, z) ∧ brother(z, y) 0.999 sister(x, y)← sister(x, z) ∧ sister(z, y) 0.995
sister(x, y)← sister(x, z) ∧ sister(z, y) 0.999 brother(x, y)← brother(x, z) ∧ brother(z, y) 0.994
niece(x, y)← sister(x, z) ∧ niece(z, y) 0.998 uncle(x, y)← brother(x, z1) ∧mother(z1, z2) ∧mother(z2, y) 0.985
uncle(x, y)← brother(x, z) ∧ uncle(z, y) 0.998 daughter(x, y)← sister(x, z) ∧ daughter(z, y) 0.984
son(x, y)← brother(x, z) ∧ son(z, y) 0.994 sister(x, y)← sister(x, z1) ∧ sister(z1, z2) ∧ sister(z2, y) 0.983
daughter(x, y)← sister(x, z) ∧ daughter(z, y) 0.991 nephew(x, y)← nephew(x, z) ∧ brother(z, y) 0.978
aunt(x, y)← sister(x, z) ∧ aunt(z, y) 0.991 husband(x, y)← wife(y, x) 0.972
sister(x, y)← daughter(x, z) ∧mother(z, y) 0.991 aunt(x, y)← sister(x, z1) ∧ sister(z1, z2) ∧ nephew(y, z2) 0.932
nephew(x, y)← brother(x, z) ∧ niece(z, y) 0.990 nephew(x, y)← son(x, z) ∧ brother(z, y) 0.922
aunt(x, y)← sister(x, z) ∧mother(z, y) 0.980 niece(x, y)← sister(x, z1) ∧ sister(z1, z2) ∧ uncle(y, z2) 0.901

N
=

1

sister(x, y)← sister(x, z) ∧ sister(z, y) 0.998 sister(x, y)← sister(x, z) ∧ sister(z, y) 0.994
brother(x, y)← brother(x, z) ∧ brother(z, y) 0.990 brother(x, y)← brother(x, z) ∧ brother(z, y) 0.988
niece(x, y)← sister(x, z) ∧ niece(z, y) 0.989 nephew(x, y)← brother(x, z) ∧ nephew(z, y) 0.968
son(x, y)← brother(x, z) ∧ son(z, y) 0.987 wife(x, y)← husband(y, x) 0.963
nephew(x, y)← brother(x, z) ∧ nephew(z, y) 0.976 daughter(x, y)← sister(x, z) ∧ daughter(z, y) 0.943
aunt(x, y)← sister(x, z) ∧ aunt(z, y) 0.974 husband(x, y)← wife(y, x) 0.922
daughter(x, y)← sister(x, z) ∧ daughter(z, y) 0.970 aunt(x, y)← sister(x, z1) ∧ sister(z1, z2) ∧ niece(y, z2) 0.865
uncle(x, y)← brother(x, z) ∧ son(y, z) 0.917 niece(x, y)← sister(x, z1) ∧ sister(z1, z2) ∧ uncle(y, z2) 0.847
father(x, y)← husband(x, z) ∧ daughter(y, z) 0.822 son(x, y)← brother(x, z) ∧ father(y, z) 0.747
wife(x, y)← husband(y, x) 0.795 uncle(x, y)← brother(x, z1) ∧ brother(z1, z2) ∧ nephew(y, z2) 0.706

D.4 ADDITIONAL EXAMPLES OF EXTRACTED RULES

We also evaluated the rule extraction performance of each model on other benchmark datasets
from Teru et al. (2020). Table 8 shows example rules extracted by Algorithm 4 from the FB15k-
2378, NELL-995 and WN18RR datasets with N = 3 and L = 2. Most rules are correct and
understandable. Many of them have lengths strictly smaller than L, which is in accordance with the
model design of MMDRUM.

Additionally, we evaluate the rules extracted by Algorithm 3 on the FB15k-237, NELL-995 and
WN18RR datasets with N = 3 and L = 2. Similarly to the results in Section 6 on the Family

8For conciseness, we represent the predicates in FB15k-237 with their last parts separated by slash. For
example, we write “location” for “/people/person/places lived./people/place lived/location”
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Table 8: Rules Extracted by MMDRUM from Teru et al. (2020).

Datasets Example Rules

FB15k-237

awardNominee(x, y)← awardWinner(x, y)
location(x, y)← placeOfBirth(x, y)
filmProducedBy(x, y)← awardWinner(x, y)
tvProgram(x, y)← programCreator(y, x)
langaugeSpokenIn(x, y)← officialLanguage(z, x) ∧ serviceLocation(y, z)

NELL-995

subpartOf(x, y)← agentBelongsToOrganization(x, y)
worksFor(x, y)← organizationHiredPerson(y, x)
teamPlaysAgainstTeam(x, y)← teamPlaysAgainstTeam(y, x)
headQuarteredIn(x, y)← organizationHeadQuarteredInCity(x, y)
personBornInCity(x, y)← personBornInLocation(x, y)

WN18RR

derivationallyRelatedForm(x, y)← derivationallyRelatedForm(y, x)
verbGroup(x, y)← verbGroup(y, x)
hasPart(x, y)← hasPart(x, z) ∧ hasPart(z, y)
alsoSee(x, y)← alsoSee(y, x)
subsetDomainTopicOf(x, y)← derivationallyRelatedForm(x, y)

dataset Kok & Domingos (2007), while some rules in the form of (2) can be both extracted by
SMDRUM and MMDRUM, Algorithm 3 can also extract rules that are not in the form (2), as shown
in Table 9. Many rules tend to have lengths smaller than L and focus on the same sequence of
predicates among multiple sub-models of SMDRUM.

Table 9: Rules Extracted by SMDRUM from Teru et al. (2020).

Datasets Example Rules

FB15k-237
film(x, y)← filmSetsDesigned(x, y) ∧ editedBy(y, x)
film(x, y)← writtenBy(y, x) ∧ editedBy(y, x)
nominatedFor(x, y)← film(x, y) ∧ editedBy(y, x)

NELL-995
worksFor(x, y)← personLeadsOrganization(x, y) ∧ organizationHiredPerson(y, x)
worksFor(x, y)← topMemberOfOrganization(x, y) ∧ organizationHiredPerson(y, x)
subpartOf(x, y)← cityCapitalOfCountry(x, y) ∧ proxyFor(x, y)

WN18RR
subsetDomainTopicOf(x, y)← derivationallyRelatedForm(x, y) ∧ similarTo(y, x)
alsoSee(x, y)← alsoSee(y, x) ∧ verbGroup(x, y)
similarTo(x, y)← similarTo(y, x) ∧ verbGroup(x, y)
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