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Abstract
Multi-view clustering is an important machine learning task for

multi-media data, encompassing various domains such as images,

videos, and texts. Moreover, with the growing abundance of graph

data, the significance of multi-view graph clustering (MVGC) has

become evident. Most existing methods focus on graph neural net-

works (GNNs) to extract information from both graph structure and

feature data to learn distinguishable node representations. However,

traditional GNNs are designed with the assumption of homophilous

graphs, making them unsuitable for widely prevalent heterophilous

graphs. Several techniques have been introduced to enhance GNNs

for heterophilous graphs. While these methods partially mitigate

the heterophilous graph issue, they often neglect the advantages of

traditional GNNs, such as their simplicity, interpretability, and effi-

ciency. In this paper, we propose a novel multi-view graph cluster-

ing method based on dual-optimized adaptive graph reconstruction,

named DOAGC. It mainly aims to reconstruct the graph structure

adapted to traditional GNNs to deal with heterophilous graph issues

while maintaining the advantages of traditional GNNs. Specifically,

we first develop an adaptive graph reconstruction mechanism that
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accounts for node correlation and original structural information.

To further optimize the reconstruction graph, we design a dual

optimization strategy and demonstrate the feasibility of our opti-

mization strategy through mutual information theory. Numerous

experiments demonstrate that DOAGC effectively mitigates the

heterophilous graph problem.
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1 Introduction
Clustering is a fundamental unsupervised learning task with broad

applications across various fields [14, 18, 56]. Multi-view cluster-

ing (MVC) has obtained considerable interest owing to its capacity

to harness information from multiple views [40, 50], thereby en-

hancing clustering performance [41, 42, 59, 63, 67]. Over the past

few years, many MVC methods have been proposed, which can be

generally classified into three primary categories [60]: co-training

https://doi.org/10.1145/3664647.3680677
https://doi.org/10.1145/3664647.3680677
https://doi.org/10.1145/3664647.3680677


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zichen Wen et al.

approaches [6, 12, 24, 70, 72], low-rank matrix factorization tech-

niques [48, 65, 66, 68], and subspace-based methods [7, 15, 19, 37, 45,

46, 51, 52, 61]. Nevertheless, they often fail to effectively utilize the

common multi-view graph-structured data. With the development

of graph neural networks (GNNs) [11, 13, 44], researchers have been

interested in utilizing GNNs to extract the abundant structural in-

formation embedded in graph data [47]. However, labeling graph

data becomes increasingly challenging as the amount of graph

data grows. Therefore, multi-view graph clustering (MVGC) has

emerged as a popular and valuable research area. Many GNN-based

approaches have been proposed and have effectively advanced

the development of MVGC. For example, Fan et al. [9] develop a

one2multi graph autoencoder clustering framework (O2MAC) to

capture the shared feature representation. Hassani and Ahmadi [16]

propose to learn node and graph level representations by contrast-

ing structural views of graphs. However, traditional GNNs are typi-

cally designed for homophilous graphs, where edges connect nodes

of the same class. As a result, existing GNN-based MVGC methods

are less effective when applied to heterophilous graphs, where edges

connect nodes of diverse classes. In reality, heterophilous graph

data is prevalent. For instance, in the context of protein chem-

istry, interactions often occur between different types of amino

acids [2, 73]. In financial transaction networks, fraudulent users

frequently engage in transactions with non-fraudulent users [39].

Additionally, dating networks often exhibit a higher number of

connections between individuals of opposite genders [39, 69].

To address this challenge, several techniques have been intro-

duced to improve GNNs for heterophilous graphs. These novel

GNN variants aim to overcome the limitations of traditional GNNs,

which rely on neighborhood aggregation mechanisms. They can be

roughly divided into two groups [69]: non-local neighbor extension

methods [1, 29, 36, 73] and GNNs architecture refinement meth-

ods [5, 29, 62]. Most of these methods enable newly designed GNNs

to partially address the issue of heterophilous graphs by aggregating

feature information from higher-order neighbors [17] or adapting

the internal GNN structure. However, these methods increase the

computational complexity of the model and even may degrade the

performance of homophilous graph data [39] after structural modi-

fication to accommodate heterophilous graph data. Meanwhile, Li

et al. [26] also point out that traditional GNNs have advantages in

terms of simplicity [55], explainability [55], and efficiency [64] that

GNN variants cannot match.

In addition, some studies have attempted to explore the reasons

for the poor performance of traditional GNNs in dealing with het-

erophilous graphs and propose novel solutions from the point of

the spectral domain [22]. For example, Bo et al. [2] design a mech-

anism that can integrate low-frequency signals, high-frequency

signals, and raw features. Liu et al. [31] propose a novel graph rep-

resentation learning method with edge heterophily discriminating

(GREET) that learns representations by discriminating and leverag-

ing homophilous edges and heterophilous edges. Luan et al. [32]

propose adaptive channel mixing to exploit local and node-wise

information from three channels: aggregation, diversification, and

identity. Wen et al. [53] propose an adaptive hybrid graph filter

related to homophily degree that adaptively captures low and high-

frequency information. These spectral domain filtering methods

aim to capture rich information in every frequency band of the

graph to acquire distinguishable node representations. Inevitably,

however, to capture information in various frequency bands, these

methods usually design multiple filters or design filters with multi-

ple channels. Undoubtedly, training multiple filters will increase

the training cost as it multiplies the parameters. Several studies

have pointed out that traditional GNNs based on the homophily

assumption are actually low-pass filters spectrally [25, 34]. In other

words, designing diverse filters to capture graph signals in multi-

ple frequency bands is actually equivalent to modifying GNNs in

the spatial domain, which would also suffer from the same draw-

backs as the previously mentioned GNN variants. Considering that

traditional GNNs mining graph structure information still has ad-

vantages in some aspects and there are drawbacks in transforming

GNNs in spatial and spectral domains, we propose to reconstruct

the original graph structure so that the reconstructed graphs can

be adapted to the traditional GNNs, as a way to solve the problem

of heterophilous graphs in MVGC.

Our motivation is to reconstruct the graph that can be applied

to message passing and neighborhood aggregation mechanisms of

GNNs. To achieve this goal, we propose a dual-optimized adaptive

graph reconstruction method. To be specific, we first construct the

node correlation matrix. Although directly utilizing the node corre-

lation matrix as a reconstruction graph can improve the homophily

degree as shown in Table 3 of Appendix B, the node correlation

matrix is only constructed based on the node feature information,

which completely discards the original structural information of the

graph, resulting in suboptimal performance. Taking into account

both the degree of homophily and original structural information,

we propose an adaptive mechanism for reconstructing the graph.

Specifically, we utilize pseudo-labeling information to quantify the

homophily degree of the original adjacency matrix. Based on this,

the weight of the original adjacency matrix is assigned in the recon-

struction graph to selectively preserve a certain amount of original

structural information when the graph type is unknown.

To further optimize the graph structure, we develop a dual opti-

mization strategy for the autoencoder. The first optimization comes

from the autoencoder’s reconstruction loss function, which can

compress and denoise the data while preserving valid information

about the input data. Furthermore, a random mask is applied to

the original node feature information leading to the creation of an

additively noisy feature matrix. Next, GNNs’ message passing and

neighborhood aggregation mechanisms are utilized to recover the

noisy feature, followed by the use of a noise recovery loss function

to minimize any differences between the recovered feature infor-

mation and the original feature information. However, trainable

parameters are not set for the GNN applied to recover feature in-

formation. Instead, only its aggregation mechanism is utilized. The

training objective has now shifted to the autoencoder, and the noise

recovery loss function directly propagates the gradient back to the

autoencoder, optimizing its training process.

In summary, our main contributions are as follows:

• To alleviate the poor performance of GCN on heterophilous

graphs, we design an adaptive graph reconstruction mecha-

nism, employing the pseudo-labeling information.

• We devise a dual optimization strategy for reconstruction

graphs, which makes reconstruction graphs more adaptable

to neighborhood aggregation mechanisms.
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• We demonstrate the feasibility of using the processing of

noisy node feature recovery to assist the GCN aggregation

process based on mutual information.

• Experimental results on real-world datasets and synthetic

datasets indicate that our approach achieves state-of-the-art

performance on most evaluation metrics.

2 Related Works
2.1 Multi-View Graph Clustering
Recently, researchers have been interested in utilizing GNNs to

extract structural information from graphs. Numerous multi-view

graph clusteringmethods have been proposed. Fan et al. [9] design a

one2multi graph autoencoder to capture shared feature representa-

tion. Cheng et al. [4] propose two-pathway graph encoders to map

graph embedding features and learn view-consistency information.

Xia et al. systematically explore the cluster structure using a graph

convolutional encoder trained to learn the self-expression coeffi-

cient matrix [57]. In addition to designing diverse graph encoders,

contrastive learning methods are employed to extract information

from graphs. Hassani and Ahmadi [16] introduce a self-supervised

model to learn the node representations by contrasting structural

views of graphs. Pan and Kang [35] employ contrastive learning

to uncover the shared geometry and semantics in order to learn a

consensus graph. Additionally, Lin and Kang utilize graph filtering

techniques to smooth the features and learn a consensus graph for

clustering [27]. Zhou and Du [71] enhance clustering by learning a

consensus graph filter from multiple data views. Despite the attrac-

tive performance of these methods, they are often sensitive to the

quality of graph structure. In other words, they generally do not

perform well with heterophilous graphs.

2.2 Heterophilous Graph Representation
Learning

Several efforts have been extended to address the issue of het-

erophilous graphs. Chien et al. [5] tackle heterophilous graph is-

sues by employing GNNs that propagate using specially learnable

weights. Chanpuriya and Musco [3] develop a feature extraction

technique capable of adapting to graph structures exhibiting both

homophily and heterophily. Li et al. propose an innovative graph

restructuring approach that extends spectral clustering through

alignment with node labels [26]. However, applying them to MVGC

poses challenges as they heavily depend on true node label infor-

mation. Additionally, there are unsupervised techniques aimed at

addressing the heterophilous graph issue that do not depend on

true labeling information, such as GREET [31], which discrimi-

nates between homophilous and heterophilous edges using an edge

discriminator, enabling separate processing of these edges. Xiao

et al. propose a decoupled self-supervised learning framework to

decouple various underlying semantics among different neighbor-

hoods [58].While these methods partially address the heterophilous

graph challenge, they are difficult to generalize toMVGC since these

methods are designed for node classification tasks. The lack of a

feasible and effective solution to mitigate the negative impact of

heterophilous information still persists for heterophilous graphs in

multi-view graph clustering.

3 Methodology
3.1 Preliminaries
In the task of multi-view graph clustering, the objective is to group a

set of 𝑛 nodes into 𝑘 clusters. To achieve this, we utilize the notation

G = (V, E) to denote a graph. Here, V represents the nodes set,

and the set of all nodes belonging to class 𝑖 is represented as V𝑖 ,

with 𝑁 = |V|, and E ⊆ V ×V represents the edge set with self-

loops. The feature matrix for the nodes is denoted as X ∈ R𝑁×𝑑
,

and the symmetric adjacency matrix of the graph G is represented

by A ∈ R𝑁×𝑁
, with elements 𝑎𝑖 𝑗 = 1 indicating the presence

of an edge between node 𝑖 and node 𝑗 , and 𝑎𝑖 𝑗 = 0 otherwise.

Additionally, we define the degree matrix of A as D𝑣
𝑖𝑖

=
∑

𝑗 𝑎
𝑣
𝑖 𝑗
,

enabling the normalization of each view’s A𝑣
to Ã𝑣 = (D𝑣)−1A𝑣

.

The normalized graph Laplacian matrix, denoted as L̃𝑣 , is then
calculated as I − Ã𝑣

, with I representing the identity matrix.

3.2 Adaptive Graph Construction
To ensure the adaptability of GCN’s neighborhood aggregation

mechanism, it is necessary for a majority of the neighboring nodes

in the reconstruction graph to be of the same class as the central

node. Nodes belonging to the same class tend to have similar node

feature vectors. Therefore, we prioritize the feature information of

the nodes and aim to construct the graph by mining the correlation

between their features. In this way, the resulting graph aligns with

our expectation of connecting nodes to neighboring nodes that

share the same label.

Firstly, we harness the remarkable capabilities of autoencoder

to extract node feature information and refine the original features

of the nodes within the graph:

Z𝑣 = 𝑓 𝑣 (𝜎 (X; W𝜃 )), (1)

X̄𝑣 = 𝑔𝑣 (𝜎 (Z𝑣
; W𝜑 )), (2)

where Z𝑣 ∈ R𝑁×𝑑𝑍𝑣
, 𝑣 ∈ 𝑉 . W𝜃 and W𝜑 represent the learnable

parameters of the encoder and decoder in the 𝑣-th view respectively,

and 𝜎 (·) is the activation function.

After this, we explore the correlation among nodes by comput-

ing the cosine similarity between nodes features and derive the

correlation matrix S𝑣 :

S𝑣 = 𝑆𝑖𝑚(Z𝑣,Z𝑣𝑇 ) = Z𝑣 · Z𝑣𝑇

∥Z𝑣 ∥ · ∥Z𝑣𝑇 ∥
, (3)

where 𝑆𝑖𝑚(·) represents the cosine similarity function in vector

space. Intuitively, if node 𝑖 and node 𝑗 belong to the same class, then

S𝑣
𝑖 𝑗
will have a larger value in the correlation matrix S𝑣 , indicating

that nodes 𝑖 and 𝑗 are similar and connected.

Directly using S𝑣 as a reconstruction graph improves the ho-

mophily degree of the graph to some extent. Nevertheless, only

utilizing the node feature information and totally disregarding the

original structural information of the graph may not be entirely

beneficial to our graph reconstruction. Therefore, we propose a

selective utilization of the original graph structure information to

reconstruct graphs while maintaining a high degree of homophily.

To accomplish this, we design an adaptive reconstruction graph

mechanism. Specifically, we attempt to quantify the degree of ho-

mophily in the original graph structure and subsequently assign

appropriate weights. However, in the unsupervised context, access
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Figure 1: The framework of our DOAGCmodel. The inputs to each view are the node feature matrix X and the original adjacency
matrix A. The output is the consensus embedding H fused by each view node embedding h, after which H is used as 𝑘-means
input for clustering.

to true labeling information is not available. For this reason, we

choose to approximate the homophily degree of the original graph

structure by using the pseudo-labeling information obtained from

the final consensus embedding H of Eq. (12):

𝑤𝑣 =

∑
𝑖, 𝑗 (A𝑣

𝑖, 𝑗
⊙ 𝑌𝑖𝑌

𝑇
𝑗
− I𝑖, 𝑗 )∑

𝑖, 𝑗 (A𝑣
𝑖, 𝑗

− I𝑖, 𝑗 )
, (4)

where 𝑤𝑣
denotes the original graph weight obtained after ho-

mophily degree computation from the last iteration, ⊙ represents

the Hadamard product, 𝑌 ∈ {0, 1}𝑛×𝑐 is the pseudo label obtained

from the clustering of consensus embedding H.

Finally, we obtain the reconstruction graph that incorporates the

assessment of the homophily level and original structural data:

Â𝑣 = S𝑣 +𝑤𝑣A𝑣 . (5)

As shown in Fig. 2, 𝑤𝑣
can converge from different initialization

values to the same value that is close to the true homophily degree

through the adaptive mechanism, which indicates that the adaptive

mechanism is stable and meets our expectations.

3.3 Dual Optimization Strategy for
Reconstruction Graph

There is a significant disparity between solely reconstructing graphs

based on extracting correlation information among nodes and our

objective, which is to construct graphs optimized for GCN neighbor-

hood aggregation mechanism. Therefore, we devise a dual optimiza-

tion strategy to improve the reconstruction graph in Section 3.2.

Specifically, we first design the reconstruction loss function of

the autoencoder utilizing the cross-entropy loss:

L𝑅𝑒𝑐 =

𝑉∑︁
𝑣=1

𝑙 (X̂𝑣,X𝑣) = −
𝑉∑︁
𝑣=1

∑︁
𝑖, 𝑗

(𝑥𝑣𝑖 𝑗 · log(𝑥𝑣𝑖 𝑗 )) . (6)

As the first optimization of the reconstruction graph, the recon-

struction loss of the autoencoder mainly ensures the validity of

the information extracted from the node feature matrix, i.e., Z is

able to reflect the essential attributes of the nodes, and the valid

information of the node features will not be lost in the process of

dimensionality reduction and denoising.

Furthermore, we design the second optimization process. Specif-

ically, we begin by adding a random mask as noise to the origi-

nal matrix X of node features. Then, we utilize GCN’s neighbor-

hood aggregation mechanism to recover the feature information

following the addition of noise, which can be represented from

X̃
𝐴𝐺𝐺

𝐴̂→ X̄ → X (Process 2) , where X̃ denotes the nodes features

with random mask (noisy features), X̄ means the nodes features re-

covered by the aggregation mechanism of GCN and 𝐴𝐺𝐺
𝐴̂
denotes

the aggregation operation of GCN using reconstruction graph. The

noise recovery loss is defined as follows:

L𝑁𝑟𝑒𝑐 =

𝑉∑︁
𝑣=1

𝑙 (X̄𝑣,X𝑣) = −
𝑉∑︁
𝑣=1

∑︁
𝑖, 𝑗

(𝑥𝑣𝑖 𝑗 · log(𝑥𝑣𝑖 𝑗 )), (7)

where X̄𝑣 = 𝐺𝐶𝑁 (Â𝑣, X̃𝑣).
In fact, the second optimization process attempts to optimize the

reconstruction graph in the form of supervised learning. Due to the

unknowability of labels in unsupervised tasks, we cannot directly
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Figure 2: The adaptive process of𝑤 on ACM.

utilize the true label information to supervise the reconstruction

of graph, making the aggregated features h approximate the true

label Y, i.e., X
𝐴𝐺𝐺

𝐴̂→ h → Y (Process 1).
Intuitively, we believe that a graph suitable for predicting node

features is also suitable for predicting node labels. Therefore, we

introduce Process 2 to enhance Process 1. As shown below, we

utilize mutual information theory to speculate on the validity and

rationality of Process 2. Specific symbol explanations are shown

in Table 1 of Appendix A.

Lemma 3.1. [10] Let X̃ȳi and X̃yi be mutually redundant for 𝑥𝑖 , i.e.,
the feature of node 𝑖 , where X̃ȳi and X̃yi denotes the nodes features
with random masks belonging to different and the same class as node
𝑖 respectively. The recovered feature 𝑥𝑖 is aggregated from X̃yi . If
𝑥𝑖 is sufficient for X̃ȳi (𝐼 (X̃ȳi ; X̃yi |𝑥𝑖 ) = 0), the mutual information
between 𝑥𝑖 and 𝑥𝑖 have the following relationship:

𝐼𝜃 (𝑥𝑖 ;𝑥𝑖 ) = 𝐼𝜃 (𝑥𝑖 ; X̃yi , X̃ȳi ) = 𝐼𝜃 (𝑥𝑖 ; X̃), (8)

where 𝜃 denotes the learnable parameters of the autoencoder. The
proof is given in Appendix A.

The left side of Eq. (8) is the object we need to optimize, i.e.,

L𝑁𝑟𝑒𝑐 in Eq. (7).

Similarly, replacing the symbol of Process 2 in Eq. (8) with the

corresponding symbol of Process 1, we have:

𝐼𝜃 (𝑦𝑖 ;ℎ𝑖 ) = 𝐼𝜃 (𝑦𝑖 ; X), (9)

Hypothesis 1: The distribution of node features X can be seen

as a joint distribution of fragmented information of node label y

(Ỹ) and random noise (𝑒).

Based on Hypothesis 1, we have:
𝐼𝜃 (𝑦𝑖 ;ℎ𝑖 ) = 𝐼𝜃 (𝑦𝑖 ; X)

= 𝐼𝜃 (𝑦𝑖 ; Ỹ, 𝑒)
= 𝐼𝜃 (𝑦𝑖 ; Ỹ) + 𝐼𝜃 (𝑦; 𝑒 |Ỹ)
= 𝐼𝜃 (𝑦𝑖 ; Ỹ).

(10)

Eq. (10) implies that the process of aggregating node features

in GCN, with the goal of maximizing the mutual information be-

tween𝑦𝑖 and ℎ𝑖 (𝐼𝜃 (𝑦𝑖 ;ℎ𝑖 )), can be viewed as a way of consolidating
fragmented label information.

Then, we obtain two formulas: 𝐼𝜃 (𝑥𝑖 ;𝑥𝑖 ) = 𝐼𝜃 (𝑥𝑖 ; X̃) and 𝐼𝜃 (𝑦𝑖 ;ℎ𝑖 )
= 𝐼𝜃 (𝑦𝑖 ; Ỹ) that correspond to Process 2 and Process 1, respec-
tively. We can also observe similarity between the two processes:

they are both the process of integrating fragmented information

that belongs to the same category. These two processes share same

graph structure, and the elements involved can all correspond one-

to-one. So, if we can train Process 2 well and optimize the recon-

struction graph i.e., minimizing L𝑁𝑟𝑒𝑐 , the Eq. (10), alternatively,

the aggregation process of GCN, can also benefit from it.

3.4 View Weighting and Fusion
In a multi-view task, different views contain not exactly the same

information, i.e., there is consistency and complementarity among

the views [21, 54]. To fully utilize the complementary information

among views, we attempt to get a consensus embedding containing

rich information by fusing the node embedding h𝑣 of each view [20].

However, to account for the varying information values of different

views, it is essential to assign suitable weights to each view based

on their quality evaluation. This weighting scheme ensures that

different views make distinct contributions to the final consensus

embedding. We first obtain the node embedding for each view:

h𝑣 = 𝐺𝐶𝑁 (Â𝑣,Z𝑣). (11)

Naturally, it occurs to us to utilize the obtained consensus embed-

ding H to in turn guide the embedding h𝑣 of each view to assign

weights to it. Specifically, if a view’s embedding h𝑣 is similar to

the consensus embedding, then the information it carries must be

important and we assign larger weight to it, and vice versa. We

obtain the consensus embedding H as follows:

H =

𝑉∑︁
𝑣=1

𝛼𝑣h𝑣, (12)

where 𝛼𝑣 denotes the weight of the node embedding for the 𝑣-th

view and is calculated as follows:

𝛼𝑣 = ( 𝑒𝑣𝑎𝑣

max (𝑒𝑣𝑎1, 𝑒𝑣𝑎2, · · · , 𝑒𝑣𝑎𝑉 )
)𝜌 . (13)

Here 𝑒𝑣𝑎𝑣 is obtained from the evaluation function that computes

the similarity between the consensus embedding H and each view

embedding h𝑣 , i.e., 𝑒𝑣𝑎𝑣 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(h𝑣,H). The hyperparameter

𝜌 is used to adjust the degree of smoothing or sharpening of the

view weights. For the final consensus embedding H, we apply the

𝑘-means algorithm to get the clustering results.

4 Experiments
4.1 Evaluation Setup and Metrics
4.1.1 Datasets. To evaluate the effectiveness of the proposed

method, we conducted experiments on nine graph datasets with
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Table 1: The detailed statistics information of the six graph datasets.

Datasets ACM DBLP Minesweeper Cornell Chameleon Wisconsin

Nodes 3,025 4,057 10000 183 2,277 251

Features 1,830 334 7 1,703 2,325 1,703

Clusters 3 4 2 5 5 5

Graphs G1,G2 G1,G2,G3 G1,G2 G1,G2 G1,G2 G1,G2

Homophily degree 0.82, 0.64 0.80, 0.67, 0.32 0.68, 0.68 0.30, 0.30 0.23, 0.23 0.19, 0.19

Table 2: The clustering results on six real-world datasets. The best results are shown in bold, and the second-best results
are underlined. All experimental results were averaged after performing the experiment five times and the hyperparameter
settings for all baseline models followed the recommendations in their respective original papers.

Method/Datasets

ACM DBLP Minsweeper

NMI% ARI% ACC% F1% NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016) 49.1 54.4 82.2 82.3 69.3 74.1 88.6 87.4 4.1 8.9 69.7 60.1

DAEGC (2019) 63.8 70.1 89.0 88.9 30.8 33.4 66.5 65.6 5.1 3.1 58.9 55.2

AGE (2020) 73.5 78.9 92.4 92.4 45.0 47.6 75.3 74.6 6.2 4.6 60.7 60.7

O2MAC (2020) 69.2 73.9 90.4 90.5 72.9 77.8 90.7 90.1 2.9 1.6 58.3 53.9

MvAGC (2020) 67.4 72.1 89.8 89.9 77.2 82.8 92.8 92.3 0.5 −1.3 58.8 46.5

AGCN (2021) 68.4 74.2 90.6 90.6 39.7 42.5 73.3 72.8 0.0 −2.1 60.6 46.7

MCGC (2021) 71.3 76.3 91.5 91.6 83.0 77.5 93.0 92.5 0.3 −1.7 66.3 47.1

DCRN (2022a) 71.6 77.6 91.9 91.9 49.0 53.6 79.7 79.3 1.2 4.5 64.4 54.6

DuaLGR (2023) 73.2 79.4 92.7 92.7 75.5 81.7 92.4 91.8 0.2 −0.3 60.0 47.8

DOAGC (ours) 78.2 83.5 94.2 94.3 79.5 84.3 93.4 92.9 0.4 −1.6 78.5 78.5

Method/Datasets Cornell Chameleon Wisconsin

VGAE (2016) 7.6 11.2 53.4 26.8 15.1 12.4 35.4 29.6 10.5 13.7 49.3 34.1

DAEGC (2019) 7.4 3.8 35.0 28.2 9.1 5.6 32.2 31.2 10.6 3.4 32.7 28.3

AGE (2020) 9.6 7.8 43.2 43.2 8.6 7.6 32.4 32.4 9.3 1.3 31.1 31.1

O2MAC (2020) 5.6 4.1 42.3 26.4 12.3 8.9 33.5 28.6 11.0 8.9 40.0 27.9

MvAGC (2020) 10.0 0.1 45.5 19.2 10.8 3.3 29.2 24.3 8.1 4.8 47.7 20.6

AGCN (2021) 5.0 2.5 56.3 19.9 6.7 6.1 32.5 20.4 6.4 6.8 49.8 24.9

MCGC (2021) 7.7 9.2 55.7 29.6 9.5 5.9 30.0 19.1 12.9 5.9 51.8 30.7

DCRN (2022a) 20.5 32.8 66.1 40.5 8.7 5.7 30.9 21.9 10.8 16.0 50.2 34.1

DuaLGR (2023) 28.5 22.4 57.0 41.0 19.5 16.0 41.1 37.7 34.1 28.8 56.4 47.1

DOAGC (ours) 43.1 46.4 73.2 45.1 22.1 18.5 44.2 40.4 55.5 57.4 79.7 54.5

different homophily degrees. ACM [9] is derived from the ACM

database
1
and is composed of two graphs: the co-paper network

and the co-subject network. DBLP [9], sourced from the DBLP

database
2
, consists of three graphs: co-author, co-conference, and

co-term. Minesweeper is a synthetic graph emulating the epony-

mous game [39].Wisconsin and Cornell [36] are webpage graphs
from WebKB

3
and Chameleon is a subset of the Wikipedia net-

work [43]. The detailed statistics of the datasets are presented in

Table 1 and Appendix B.

4.1.2 Evaluation Metrics. We utilize accuracy (ACC), normal-

ized mutual information (NMI), adjusted rand index (ARI), and

F1-score (F1) to evaluate the clustering performance of the pro-

posed model.

4.1.3 Comparison Methods. To validate the superiority of the

proposed method, we utilize popular benchmarks for compara-

tive experiments and analysis. VGAE [23] and AGE [8] represent

1
https://dl.acm.org/

2
https://dblp.uni-trier.de/

3
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

two distinct graph encoding techniques. DAEGC [49] is a goal-

directed deep attentional embedded graph clustering framework.

O2MAC [9] is an approach that acquires information from both

node features and graph structures. MvAGC [4] and MCGC [35]

represent two recent graph-based methods that utilize graph filter-

ing to acquire a consensus graph. AGCN [38] is an attention-driven

graph clustering network. DCRN [30] is a method that improves

the performance of graph clustering by reducing the information

correlation. DualGR [28] utilizes soft-labels and pseudo-labels to

provide guidance in the process of refining and fusing graphs for

clustering.

4.2 Performance Comparison
Table 2 presents the clustering performance of all compared meth-

ods on six real-world graph datasets. From the results, we can see

that DOAGC demonstrates competitive performance. Specifically,

when facing graph datasets with a high homophily degree, such

as ACM (HR 0.82 & 0.64), DBLP (HR 0.80 & 0.67 & 0.32), and

Minesweeper (HR 0.68 & 0.68), DOAGC on ACM outperforms the

SOTAs in ACC, NMI, ARI, and F1 by 1.5%, 4.7%, 4.1%, and 1.6%,

https://dl.acm.org/
https://dblp.uni-trier.de/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 3: The clustering results on six synthetic ACM graph datasets with different homophily degrees. The best results are
shown in bold. And the second-best results are underlined.

Method/Datasets

ACM00 (HR 0.00 & 0.00) ACM01 (HR 0.10 & 0.10) ACM02 (HR 0.20 & 0.20)

NMI% ARI% ACC% F1% NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016) 0.5 0.5 37.4 37.1 0.5 0.5 37.1 35.6 0.4 0.4 36.9 34.9

DAEGC (2019) 43.5 46.4 77.5 76.1 19.8 22.5 64.0 63.5 5.0 5.5 43.6 43.2

AGE (2020) 0.0 0.0 33.5 33.5 0.0 0.0 34.3 33.9 0.1 0.0 34.9 34.7

O2MAC (2020) 25.0 24.7 55.0 54.6 17.6 17.1 49.9 49.7 9.6 9.4 42.9 42.8

MvAGC (2020) 0.9 0.9 37.1 35.5 1.9 2.0 40.9 39.1 5.3 5.6 45.7 45.4

AGCN (2021) 0.8 0.8 38.7 38.5 0.7 0.7 36.4 36.2 4.1 4.4 44.7 44.5

MCGC (2021) 49.8 42.9 63.0 53.5 52.9 44.7 63.9 54.6 29.1 31.7 67.7 67.2

DuaLGR (2023) 55.1 60.7 84.8 84.5 55.9 61.7 85.3 85.0 59.2 66.0 87.3 87.1

DOAGC (ours) 63.0 70.4 89.2 89.2 63.4 70.7 89.3 89.3 63.3 70.7 89.3 89.3

Method/Datasets ACM03 (HR 0.30 & 0.30) ACM04 (HR 0.40 & 0.40) ACM05 (HR 0.50 & 0.50)

VGAE (2016) 0.7 0.7 38.0 37.6 9.7 8.1 48.4 49.0 26.2 27.0 65.9 66.4

DAEGC (2019) 3.8 4.1 45.4 45.2 19.3 22.6 64.8 64.9 41.4 48.4 79.7 79.6

AGE (2020) 0.2 0.1 35.1 35.0 13.5 15.5 50.9 48.4 24.1 21.5 59.2 57.1

O2MAC (2020) 6.7 6.5 40.7 40.5 5.5 5.4 40.3 40.2 6.6 6.7 42.7 42.6

MvAGC (2020) 15.4 16.5 57.7 57.7 36.9 39.5 74.0 74.2 64.6 71.1 89.4 89.4

AGCN (2021) 1.2 1.1 38.9 39.0 0.1 0.0 34.8 34.8 1.5 1.5 40.3 40.4

MCGC (2021) 51.8 57.2 83.0 82.9 83.9 88.8 96.2 96.2 91.0 94.4 98.1 98.1

DuaLGR (2023) 60.2 67.6 88.0 88.0 85.1 90.1 96.6 96.6 97.8 98.9 99.6 99.6

DOAGC (ours) 57.4 64.8 86.9 86.9 72.8 79.1 92.5 92.4 98.2 99.1 99.7 99.7
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Figure 3: Sensitive analysis of ACC and NMI on Wisconsin and Cornell with 𝑜𝑟𝑑𝑒𝑟 and𝑤 .

respectively. Meanwhile, it surpasses others on most metrics in

both DBLP and Minesweeper. Specifically, it increases ACC, ARI,

and F1 on DBLP by 1.0%, 2.6%, and 1.1%, respectively, and ACC,

F1 on Minesweeper by 8.8%, and 17.8%, respectively. Furthermore,

unlike the poor performance of other baselines on heterophilous

graph datasets, DOAGC achieves excellent performance on graphs

with low homophily degree. The ACC of our model reaches 79.7%

on Wisconsin, while the second-best DualGR [28] is only 56.4%,

which appears similar on Cornell and Chameleon.

Table 3 demonstrates the comparison results on six synthetic

ACM datasets, and the results show that DOAGC also performs well

on the same dataset with different homophily degrees. Comparing

DOAGC with other baselines on diverse homophily degrees, our

method effectively addresses the challenge faced by previous graph

clustering approaches on heterophilous graphs. This enables tradi-

tional GNNs, relying on homophily assumptions, to fully leverage

structural information mining on heterophilous graphs.

4.3 Ablation Study
4.3.1 Effect of Each Loss. To explore the importance and effec-

tiveness of each loss function for the proposed model, we removed

each loss function separately to observe the change in clustering

performance. The detailed data on the ablation experiments for the

loss function is presented in Table 4. As indicated in Table 4, both

the reconstruction loss L𝑅𝑒𝑐 and the noise recovery loss L𝑁𝑟𝑒𝑐

affect the model’s performance. The reconstruction loss L𝑅𝑒𝑐 plays

a dominant role in the model’s performance, and removing it would

lead to a significant decrease in performance. Due to the fact that

L𝑅𝑒𝑐 and L𝑁𝑟𝑒𝑐 optimize the autoencoder for training by return-

ing the training gradient to it, in other words, both losses have an

optimizing effect, but the L𝑅𝑒𝑐 has greater optimization intensity.

4.3.2 Effect of Each Component. To investigate how the recon-

struction graph Â𝑣
affects the model’s performance, we conducted

an in-depth ablation analysis of the reconstruction graphs. Specifi-

cally, we remove S𝑣 and A𝑣
in the reconstruction graph respectively.

As shown in Table 3, the model’s performance is impacted by the

removal of either S𝑣 or A𝑣
. Removing S𝑣 has a greater impact on the
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Table 4: The ablation study results of DOAGC on Wisconsin and Cornell. The original results are shown in bold.

Compenents / Datasets

Wisconsin Cornell

NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

DOAGC (w/o L𝑅𝑒𝑐 ) 45.5 47.2 65.3 50.2 31.6 29.7 61.7 45.1

DOAGC (w/o L𝑁𝑟𝑒𝑐 ) 50.4 53.2 77.7 53.3 39.1 45.2 71.6 43.4

DOAGC (w/o S𝑣 ) 10.4 10.6 49.4 35.1 10.0 14.9 52.1 31.3

DOAGC (w/o A𝑣
) 51.8 52.9 77.6 49.8 38.3 45.1 71.6 40.4

DOAGC (ours) 55.5 57.4 79.7 54.5 43.1 46.4 73.2 45.1

model’s performance compared to removing A𝑣
. S𝑣 is constructed

using node feature information based on the cosine similarity be-

tween each pair of nodes. Intuitively, due to the high probability

that the nodes with similar feature information belong to the same

class, the constructed S𝑣 has a greater edge weight among similar

nodes, i.e., a higher homophily degree. Removing S𝑣 will greatly
reduce the homophily degree of the reconstruction graph, leading

to the inability of the GCNmessage passing mechanism to function,

which in turn leads to a decrease in the model performance. A𝑣

is the original adjacency matrix, and although the removal of A𝑣

still allows the reconstruction graph to maintain a high homophily

degree, the complete abandonment of the original structural infor-

mation still has an impact on the model performance.

4.3.3 Convergence Analysis. We performed experiments on

eight real-world datasets with varying degrees of homophily. Fig. 4

shows the detailed results of the experiments about convergence

analysis, where the left subgraph refers to the ACM, DBLP, and

IMDB with a high homophily degree; the right subgraph refers to

the EAT, Texas, Chameleon, Wisconsin, and Cornell with a low ho-

mophily degree. As depicted in Fig. 4, the three real-world datasets

ACM, DBLP, and IMDB, start to converge before the 50th epoch.

During the initial stage of iteration, the loss values significantly

decrease. In contrast, for the heterophilous graph datasets such as

Texas and Chameleon, they reach the convergence state at epoch =

100, and the loss values gradually decrease thereafter. Overall, our

proposed model achieves faster convergence and a significantly

reduced loss value in both homophilous and heterophilous graphs,

validating the reliability of our proposed model and the efficacy of

our dual-optimization training approach.

4.3.4 Parameter Sensitivity Analysis. Figure 3 illustrates the
parameter sensitivity analysis for 𝑜𝑟𝑑𝑒𝑟 and𝑤 . 𝑜𝑟𝑑𝑒𝑟 denotes the

degree of GCN neighborhood aggregation, where a higher 𝑜𝑟𝑑𝑒𝑟
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Figure 4: Convergence analysis.

implies that the node can aggregate information from more dis-

tant nodes.𝑤 represents the initial weight of adjacency matrix A𝑣

in Eq. (5). A higher value of 𝑤 indicates that the reconstructed

graph Â𝑣
contains more of the original structural information at

the beginning of the iteration. As shown in subfigures (a) and (c)

of Fig. 3, we perform experiments on the Wisconsin and Cornell

datasets using different combinations of 𝑜𝑟𝑑𝑒𝑟 and𝑤 to examine

the variations in ACC. As observed, fixed 𝑜𝑟𝑑𝑒𝑟 renders initial 𝑤

insignificant. DOAGC shows consistent and stable performance

regardless of weights in the initial adjacency matrix A𝑣
. Regarding

𝑜𝑟𝑑𝑒𝑟 , DOAGC achieves excellent performance at 𝑜𝑟𝑑𝑒𝑟 = 3. Fur-

ther increasing 𝑜𝑟𝑑𝑒𝑟 does not improve the model’s performance

and may even result in a slight decline. This indicates that our

method does not require high-order aggregation with increased

complexity. Moreover, it suggests that the reconstructed graph

Â𝑣
predominantly consists of neighboring nodes with the same

classifications.

For subfigures (b) and (d) in Fig. 3 related to NMI, the NMI on

Wisconsin parallels the description of ACC on Wisconsin above.

Cornell’s NMI demonstrates slight sensitivity to its parameters,

yielding higher values at 𝑜𝑟𝑑𝑒𝑟 ∈ {3, 5, 7}, and lower values when

the 𝑜𝑟𝑑𝑒𝑟 is either too low or too high. When 𝑜𝑟𝑑𝑒𝑟 is low, nodes

struggle to aggregate extensive neighbor information. Conversely,

with a high 𝑜𝑟𝑑𝑒𝑟 , nodes tend to aggregate feature information from

distant nodes. However, in our reconstruction graph Â𝑣
, distant

high-order neighbor nodes are more likely to belong to different

classes, resulting in the aggregation of conflicting information. This,

in turn, contributes to a decrease in NMI.

5 Conclusion
In this paper, we address the challenge of heterophilous graphs in

MVGC and propose DOAGC, a dual-optimization adaptive graph

reconstruction multi-view clustering method. DOAGC focuses on

reconstructing graphs to facilitate the message passing and neigh-

bor aggregation mechanisms of conventional GNNs. We extract

node correlation from feature information and introduce an adap-

tive mechanism utilizing pseudo-labeling information derived from

consensus embedding. Additionally, we propose a dual optimization

strategy to enhance the compatibility of the reconstructed graph

with traditional GNNs. The efficacy of the optimization strategy

is validated through mutual information theory. Our proposed ap-

proach achieves outstanding results on eight real-world datasets

and six synthetic datasets with varying homophily degrees, provid-

ing evidence that DOAGC effectively addresses the heterophilous

graph problem encountered by MVGC, while simultaneously main-

taining exceptional clustering performance on homophilous graphs.
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A The Proof of Theorem 1 [10]
In this section, we introduce several formulas about mutual infor-

mation that are used in this work.

Table 1: Notions for Theorem 1.

Symbol Meaning

𝑥𝑖 The original feature of node i.

•𝑦𝑖 Data that belong to the same class of node 𝑖 .

•𝑦𝑖 Data that not belong to the same class of node 𝑖 .

𝑋̃ Nodes features with random mask.

𝑥𝑖 The features of node 𝑖 recovered from the 𝑋̃𝑦𝑖 .

ℎ𝑖 The features of node 𝑖 aggregated from the 𝑋𝑦𝑖 .

𝑦𝑖 The label of node 𝑖 .

𝐴𝐺𝐺 Aggregation operation of GCN.

(P1) Positivity:

𝐼 (𝑥 ;𝑦) ≥ 0, 𝐼 (𝑥 ;𝑦 |𝑧) ≥ 0

(P2) Chain rule:

𝐼 (𝑥𝑦; 𝑧) = 𝐼 (𝑦; 𝑧) + 𝐼 (𝑥 ; 𝑧 |𝑦)
(P3) Chain rule (Multivariate Mutual Information):

𝐼 (𝑥 ;𝑦; 𝑧) = 𝐼 (𝑦; 𝑧) − 𝐼 (𝑦; 𝑧 |𝑥)
Theorem A.1. Let X̃yi and X̃ȳi be random variables with joint

distribution 𝑝 (X̃yi , X̃ȳi , 𝑥𝑖 ). Let 𝑥𝑖 be the aggregation of X̃yi , then:

𝐼 (X̃yi , 𝑥𝑖 |𝑥𝑖 ) ≤ 𝐼 (X̃yi , X̃ȳi |𝑥𝑖 ) + 𝐼 (X̃yi , 𝑥𝑖 |X̃ȳi ).

Hypothesis (H1): 𝑥𝑖 be the aggregation of X̃yi :

𝐼 (𝑥𝑖 , 𝑥𝑖 |X̃yi , X̃ȳi ) = 0.

Proof.

𝐼 (X̃yi ;𝑥𝑖 |𝑥𝑖 )
(𝑃3)
= 𝐼 (X̃yi ;𝑥𝑖 |𝑥𝑖 , X̃ȳi ) + 𝐼 (X̃yi ; X̃ȳi ;𝑥𝑖 |𝑥𝑖 )

(𝑃3)
= 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) − 𝐼 (X̃yi ;𝑥𝑖 ;𝑥𝑖 |X̃ȳi )

+ 𝐼 (X̃yi ; X̃ȳi ;𝑥𝑖 |𝑥𝑖 )
(𝑃3)
= 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) − 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃ȳi ) + 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃ȳi , X̃yi )

+ 𝐼 (𝑥𝑖 ; X̃ȳi ;𝑥𝑖 |𝑥𝑖 )
(𝑃1)
≤ 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) + 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃yi , X̃ȳi ) + 𝐼 (X̃yi ; X̃ȳi ;𝑦 |𝑥𝑖 )

(𝐻1)
= 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) + 𝐼 (X̃yi ; X̃ȳi ;𝑥𝑖 |𝑥𝑖 )

(𝑃3)
= 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) + 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 ) − 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 , 𝑥𝑖 )

(𝑃1)
≤ 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) + 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 )

□

Theorem A.2. Let X̃yi and X̃ȳi be random variables with joint

distribution 𝑝 (X̃yi , X̃ȳi , 𝑥𝑖 ). Let 𝑥𝑖 be the aggregation of X̃yi , then:

𝐼 (𝑥𝑖 ;𝑥𝑖 ) ≥ 𝐼 (𝑥𝑖 ; X̃yi X̃ȳi )−𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 )−𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi )−𝐼 (X̃ȳi ;𝑦 |X̃yi ) .

Hypothesis (H1): 𝑥𝑖 be the aggregation of X̃yi :

𝐼 (𝑥𝑖 , 𝑥𝑖 |X̃yi , X̃ȳi ) = 0.

Proof.

𝐼 (𝑥𝑖 ;𝑥𝑖 )
(𝑃3)
= 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃yi , X̃ȳi ) + 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ;𝑥𝑖 )

(𝐻1)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ;𝑥𝑖 )

(𝑃3)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi |𝑥𝑖 )

(𝑃2)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (𝑥𝑖 ; X̃yi |𝑥𝑖 ) − 𝐼 (𝑥𝑖 ; X̃ȳi |𝑥𝑖 , X̃yi )

(𝑃3)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (𝑥𝑖 ; X̃ȳi |𝑥𝑖 ) − 𝐼 (𝑥𝑖 ; X̃ȳi |X̃yi )

+ 𝐼 (𝑥𝑖 ; X̃ȳi ;𝑥𝑖 |X̃yi )
(𝑃3)
= 𝐼 (𝑥𝑖 ; X̃ȳi , X̃yi ) − 𝐼 (𝑥𝑖 ; X̃ȳi |𝑥𝑖 ) − 𝐼 (𝑥𝑖 ; X̃ȳi |X̃yi )

+ 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃ȳi ) − 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃ȳi , X̃yi )
(𝐻1)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (𝑥𝑖 ; X̃ȳi |𝑥𝑖 ) − 𝐼 (𝑥𝑖 ; X̃ȳi |X̃yi )

+ 𝐼 (𝑥𝑖 ;𝑥𝑖 |X̃ȳi )
(𝑃1)
≥ 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (𝑥𝑖 ; X̃yi |𝑥𝑖 ) − 𝐼 (𝑥𝑖 ; X̃ȳi |𝑥𝑖 )

(𝑇ℎ.𝐴.1)
≥ 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) − 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 )

− 𝐼 (𝑥𝑖 ; X̃ȳi |X̃yi )
□

Theorem A.3. Let X̃yi and X̃ȳi be mutually redundant for 𝑥𝑖 . Let

𝑥𝑖 be the aggregation of X̃yi that is sufficient for X̃ȳi , and let X̄ī be
the aggregation of X̃ȳi then:

𝐼 (𝑥𝑖 ;𝑥𝑖 ) = 𝐼 (X̃yi , X̃ȳi ;𝑥𝑖 ) .
Hypotheses (H1): 𝑥𝑖 and X̄ī are mutually redundant for 𝑥𝑖 :

𝐼 (𝑥𝑖 ; X̃yi |X̃ȳi ) + 𝐼 (𝑥𝑖 ; X̃ȳi |X̃yi ) = 0.

Hypotheses (H2): 𝑥𝑖 is sufficient for X̃ȳi :

𝐼 (X̃ȳi ; X̃yi |𝑥𝑖 ) = 0.

Proof.

𝐼 (𝑥𝑖 ;𝑥𝑖 )
(𝑇ℎ.𝐴.2)

≥ 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (X̃yi ;𝑥𝑖 |X̃ȳi ) − 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 )
− 𝐼 (𝑥𝑖 , X̃ȳi |X̃yi )
(𝐻1)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi ) − 𝐼 (X̃yi ; X̃ȳi |𝑥𝑖 )

(𝐻2)
= 𝐼 (𝑥𝑖 ; X̃yi , X̃ȳi )

□

Since 𝐼 (𝑥𝑖 ;𝑥𝑖 ) ≤ 𝐼 (X̃yi , X̃ȳi ;𝑥𝑖 ) is a consequence of the data

processing inequality, we conclude that:

𝐼 (𝑥𝑖 ;𝑥𝑖 ) = 𝐼 (X̃yi , X̃ȳi ;𝑥𝑖 ) .
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Table 2: The clustering results on the other three three real-world datasets. The best results are shown in bold, and the second-
best results are underlined. All experimental results were averaged after performing the experiment five times.

Method/Datasets

EAT (HR 0.40 & 0.40) Texas (HR 0.09 & 0.09) IMDB (HR 0.48 & 0.62 & 0.40)

NMI% ARI% ACC% F1% NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016) 30.8 22.1 45.0 41.1 12.7 21.7 55.3 29.5 0.4 0.9 44.2 35.7

DAEGC (2019) 4.6 3.4 33.1 31.9 6.4 2.6 31.7 25.0 0.6 1.0 37.9 35.3

AGE (2020) 29.6 25.1 47.6 47.6 7.5 7.3 36.6 36.6 4.4 4.6 43.2 42.2

O2MAC (2020) 33.1 24.2 45.9 43.4 8.7 14.6 46.7 29.1 0.3 0.2 40.2 35.4

MvAGC (2020) 1.9 0.8 30.2 26.6 5.4 1.1 54.3 19.8 1.3 −1.8 48.5 28.2

AGCN (2021) 9.7 3.8 35.6 28.3 15.4 18.1 61.8 43.0 0.3 1.4 54.5 31.1

MCGC (2021) 30.5 23.0 47.9 45.4 12.7 12.9 51.9 32.5 5.2 10.3 58.3 38.8

DCRN (2022a) 10.7 15.1 55.2 27.6 10.7 15.1 55.2 27.6 0.2 0.1 53.4 25.5

DuaLGR (2023) 24.6 19.4 44.0 40.4 32.6 26.0 54.3 46.4 6.2 12.5 52.0 44.7

DOAGC (ours) 27.1 22.4 53.6 51.9 47.3 47.9 74.3 46.5 8.9 16.9 56.7 47.3

B Supplementary Experiments
As shown in Table 2, we also perform comparative experiments on

three other popular graph datasets. EAT represents Europe Air-

Traffic, a dataset documenting European air traffic [33]. Similar to

Wisconsin and Cornell presented in Table 1 of the main text, Texas
is a webpage graph from WebKB. IMDB [9] is a movie network

that originates from the IMDB dataset, including graphs of both co-

actors and co-directors. DOAGC achieved promising performance

on all three datasets. Particularly, for the heterophilous graph Texas,

we observed significant improvements in ACC by 12.5%, NMI by

14.7%, and ARI by 21.9%. For EAT and IMDB datasets, our proposed

method also further improves the optimal values of certain evalua-

tion metrics. In addition, we conducted supplementary convergence

analysis experiments on the six synthetic ACM graph datasets [28]

with varying degrees of homophily. As shown in Figure 1, the six

synthetic ACM datasets stem from the original ACM dataset and

share comparable training configurations, leading to almost over-

lapping convergence curves. Additionally, with a sizable decline in

the loss value, they rapidly reach the convergence state during the

initial training phase and gradually stabilize.

Table 3: The homophily ratio of reconstruction graphs.

Datasets Graphs A𝑣 S𝑣 Â𝑣

Texas

G1
0.0871 0.5389 ↑ 0.5436 ↑

G2
0.0871 0.5699 ↑ 0.5735 ↑

Wisconsin

G1
0.1921 0.6096 ↑ 0.5920 ↑

G2
0.1921 0.5965 ↑ 0.5895 ↑

Cornell

G1
0.2998 0.5323 ↑ 0.5762 ↑

G2
0.2998 0.5664 ↑ 0.5784 ↑

ACM00

G1
0.0000 0.4489 ↑ 0.4517 ↑

G2
0.0000 0.4450 ↑ 0.3712 ↑

ACM01

G1
0.1000 0.4500 ↑ 0.4531 ↑

G2
0.1000 0.4400 ↑ 0.3758 ↑

ACM02

G1
0.2000 0.4525 ↑ 0.4536 ↑

G2
0.2000 0.4379 ↑ 0.3888 ↑

In addition to conducting supplementary comparison and conver-

gence analysis experiments, we conducted evaluation experiments

on diverse metrics pertaining to the graphs. Specifically, we perform

experiments on datasets with a low homophily ratio of the original

adjacencymatrixA𝑣
, attempting to evaluate the homophily ratios of

the node correlation matrix S𝑣 and the reconstruction graph Â𝑣
. As

can be seen in Table 3, both the node correlation matrix S𝑣 and the

adaptive reconstruction graph Â𝑣
show a significant improvement

in the homophily ratio compared to the original adjacency matrix

A𝑣
. Furthermore, the incorporation of original structural informa-

tion in reconstruction graph Â𝑣
does not lead to a notable reduction

in the homophily ratio, thus indirectly affirming the efficiency and

practicality of our adaptive mechanism.
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Figure 1: Supplementary convergence analysis.
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