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Abstract

Multi-view clustering is an important machine learning task for
multi-media data, encompassing various domains such as images,
videos, and texts. Moreover, with the growing abundance of graph
data, the significance of multi-view graph clustering (MVGC) has
become evident. Most existing methods focus on graph neural net-
works (GNNs) to extract information from both graph structure and
feature data to learn distinguishable node representations. However,
traditional GNNs are designed with the assumption of homophilous
graphs, making them unsuitable for widely prevalent heterophilous
graphs. Several techniques have been introduced to enhance GNNs
for heterophilous graphs. While these methods partially mitigate
the heterophilous graph issue, they often neglect the advantages of
traditional GNNS, such as their simplicity, interpretability, and effi-
ciency. In this paper, we propose a novel multi-view graph cluster-
ing method based on dual-optimized adaptive graph reconstruction,
named DOAGC. It mainly aims to reconstruct the graph structure
adapted to traditional GNNs to deal with heterophilous graph issues
while maintaining the advantages of traditional GNNs. Specifically,
we first develop an adaptive graph reconstruction mechanism that
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accounts for node correlation and original structural information.
To further optimize the reconstruction graph, we design a dual
optimization strategy and demonstrate the feasibility of our opti-
mization strategy through mutual information theory. Numerous
experiments demonstrate that DOAGC effectively mitigates the
heterophilous graph problem.
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1 Introduction

Clustering is a fundamental unsupervised learning task with broad
applications across various fields [14, 18, 56]. Multi-view cluster-
ing (MVC) has obtained considerable interest owing to its capacity
to harness information from multiple views [40, 50], thereby en-
hancing clustering performance [41, 42, 59, 63, 67]. Over the past
few years, many MVC methods have been proposed, which can be
generally classified into three primary categories [60]: co-training
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approaches [6, 12, 24, 70, 72], low-rank matrix factorization tech-
niques [48, 65, 66, 68], and subspace-based methods [7, 15, 19, 37, 45,
46, 51, 52, 61]. Nevertheless, they often fail to effectively utilize the
common multi-view graph-structured data. With the development
of graph neural networks (GNNs) [11, 13, 44], researchers have been
interested in utilizing GNNs to extract the abundant structural in-
formation embedded in graph data [47]. However, labeling graph
data becomes increasingly challenging as the amount of graph
data grows. Therefore, multi-view graph clustering (MVGC) has
emerged as a popular and valuable research area. Many GNN-based
approaches have been proposed and have effectively advanced
the development of MVGC. For example, Fan et al. [9] develop a
one2multi graph autoencoder clustering framework (O2MAC) to
capture the shared feature representation. Hassani and Ahmadi [16]
propose to learn node and graph level representations by contrast-
ing structural views of graphs. However, traditional GNNs are typi-
cally designed for homophilous graphs, where edges connect nodes
of the same class. As a result, existing GNN-based MVGC methods
are less effective when applied to heterophilous graphs, where edges
connect nodes of diverse classes. In reality, heterophilous graph
data is prevalent. For instance, in the context of protein chem-
istry, interactions often occur between different types of amino
acids [2, 73]. In financial transaction networks, fraudulent users
frequently engage in transactions with non-fraudulent users [39].
Additionally, dating networks often exhibit a higher number of
connections between individuals of opposite genders [39, 69].

To address this challenge, several techniques have been intro-
duced to improve GNNs for heterophilous graphs. These novel
GNN variants aim to overcome the limitations of traditional GNNs,
which rely on neighborhood aggregation mechanisms. They can be
roughly divided into two groups [69]: non-local neighbor extension
methods [1, 29, 36, 73] and GNNs architecture refinement meth-
ods [5, 29, 62]. Most of these methods enable newly designed GNNs
to partially address the issue of heterophilous graphs by aggregating
feature information from higher-order neighbors [17] or adapting
the internal GNN structure. However, these methods increase the
computational complexity of the model and even may degrade the
performance of homophilous graph data [39] after structural modi-
fication to accommodate heterophilous graph data. Meanwhile, Li
et al. [26] also point out that traditional GNNs have advantages in
terms of simplicity [55], explainability [55], and efficiency [64] that
GNN variants cannot match.

In addition, some studies have attempted to explore the reasons
for the poor performance of traditional GNNs in dealing with het-
erophilous graphs and propose novel solutions from the point of
the spectral domain [22]. For example, Bo et al. [2] design a mech-
anism that can integrate low-frequency signals, high-frequency
signals, and raw features. Liu et al. [31] propose a novel graph rep-
resentation learning method with edge heterophily discriminating
(GREET) that learns representations by discriminating and leverag-
ing homophilous edges and heterophilous edges. Luan et al. [32]
propose adaptive channel mixing to exploit local and node-wise
information from three channels: aggregation, diversification, and
identity. Wen et al. [53] propose an adaptive hybrid graph filter
related to homophily degree that adaptively captures low and high-
frequency information. These spectral domain filtering methods
aim to capture rich information in every frequency band of the

Zichen Wen et al.

graph to acquire distinguishable node representations. Inevitably,
however, to capture information in various frequency bands, these
methods usually design multiple filters or design filters with multi-
ple channels. Undoubtedly, training multiple filters will increase
the training cost as it multiplies the parameters. Several studies
have pointed out that traditional GNNs based on the homophily
assumption are actually low-pass filters spectrally [25, 34]. In other
words, designing diverse filters to capture graph signals in multi-
ple frequency bands is actually equivalent to modifying GNNs in
the spatial domain, which would also suffer from the same draw-
backs as the previously mentioned GNN variants. Considering that
traditional GNNs mining graph structure information still has ad-
vantages in some aspects and there are drawbacks in transforming
GNN:ss in spatial and spectral domains, we propose to reconstruct
the original graph structure so that the reconstructed graphs can
be adapted to the traditional GNNSs, as a way to solve the problem
of heterophilous graphs in MVGC.

Our motivation is to reconstruct the graph that can be applied
to message passing and neighborhood aggregation mechanisms of
GNNs . To achieve this goal, we propose a dual-optimized adaptive
graph reconstruction method. To be specific, we first construct the
node correlation matrix. Although directly utilizing the node corre-
lation matrix as a reconstruction graph can improve the homophily
degree as shown in Table 3 of Appendix B, the node correlation
matrix is only constructed based on the node feature information,
which completely discards the original structural information of the
graph, resulting in suboptimal performance. Taking into account
both the degree of homophily and original structural information,
we propose an adaptive mechanism for reconstructing the graph.
Specifically, we utilize pseudo-labeling information to quantify the
homophily degree of the original adjacency matrix. Based on this,
the weight of the original adjacency matrix is assigned in the recon-
struction graph to selectively preserve a certain amount of original
structural information when the graph type is unknown.

To further optimize the graph structure, we develop a dual opti-
mization strategy for the autoencoder. The first optimization comes
from the autoencoder’s reconstruction loss function, which can
compress and denoise the data while preserving valid information
about the input data. Furthermore, a random mask is applied to
the original node feature information leading to the creation of an
additively noisy feature matrix. Next, GNNs’ message passing and
neighborhood aggregation mechanisms are utilized to recover the
noisy feature, followed by the use of a noise recovery loss function
to minimize any differences between the recovered feature infor-
mation and the original feature information. However, trainable
parameters are not set for the GNN applied to recover feature in-
formation. Instead, only its aggregation mechanism is utilized. The
training objective has now shifted to the autoencoder, and the noise
recovery loss function directly propagates the gradient back to the
autoencoder, optimizing its training process.

In summary, our main contributions are as follows:

o To alleviate the poor performance of GCN on heterophilous
graphs, we design an adaptive graph reconstruction mecha-
nism, employing the pseudo-labeling information.

e We devise a dual optimization strategy for reconstruction
graphs, which makes reconstruction graphs more adaptable
to neighborhood aggregation mechanisms.
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e We demonstrate the feasibility of using the processing of
noisy node feature recovery to assist the GCN aggregation
process based on mutual information.

e Experimental results on real-world datasets and synthetic
datasets indicate that our approach achieves state-of-the-art
performance on most evaluation metrics.

2 Related Works
2.1 Multi-View Graph Clustering

Recently, researchers have been interested in utilizing GNNs to
extract structural information from graphs. Numerous multi-view
graph clustering methods have been proposed. Fan et al. [9] design a
one2multi graph autoencoder to capture shared feature representa-
tion. Cheng et al. [4] propose two-pathway graph encoders to map
graph embedding features and learn view-consistency information.
Xia et al. systematically explore the cluster structure using a graph
convolutional encoder trained to learn the self-expression coeffi-
cient matrix [57]. In addition to designing diverse graph encoders,
contrastive learning methods are employed to extract information
from graphs. Hassani and Ahmadi [16] introduce a self-supervised
model to learn the node representations by contrasting structural
views of graphs. Pan and Kang [35] employ contrastive learning
to uncover the shared geometry and semantics in order to learn a
consensus graph. Additionally, Lin and Kang utilize graph filtering
techniques to smooth the features and learn a consensus graph for
clustering [27]. Zhou and Du [71] enhance clustering by learning a
consensus graph filter from multiple data views. Despite the attrac-
tive performance of these methods, they are often sensitive to the
quality of graph structure. In other words, they generally do not
perform well with heterophilous graphs.

2.2 Heterophilous Graph Representation
Learning

Several efforts have been extended to address the issue of het-
erophilous graphs. Chien et al. [5] tackle heterophilous graph is-
sues by employing GNNs that propagate using specially learnable
weights. Chanpuriya and Musco [3] develop a feature extraction
technique capable of adapting to graph structures exhibiting both
homophily and heterophily. Li et al. propose an innovative graph
restructuring approach that extends spectral clustering through
alignment with node labels [26]. However, applying them to MVGC
poses challenges as they heavily depend on true node label infor-
mation. Additionally, there are unsupervised techniques aimed at
addressing the heterophilous graph issue that do not depend on
true labeling information, such as GREET [31], which discrimi-
nates between homophilous and heterophilous edges using an edge
discriminator, enabling separate processing of these edges. Xiao
et al. propose a decoupled self-supervised learning framework to
decouple various underlying semantics among different neighbor-
hoods [58]. While these methods partially address the heterophilous
graph challenge, they are difficult to generalize to MVGC since these
methods are designed for node classification tasks. The lack of a
feasible and effective solution to mitigate the negative impact of
heterophilous information still persists for heterophilous graphs in
multi-view graph clustering.
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3 Methodology
3.1 Preliminaries

In the task of multi-view graph clustering, the objective is to group a
set of n nodes into k clusters. To achieve this, we utilize the notation
G = (V, &) to denote a graph. Here, V represents the nodes set,
and the set of all nodes belonging to class i is represented as V;,
with N = |V|,and & € V X V represents the edge set with self-
loops. The feature matrix for the nodes is denoted as X € RV*4,
and the symmetric adjacency matrix of the graph G is represented
by A € RN*N  with elements a; j = 1 indicating the presence
of an edge between node i and node j, and a;; = 0 otherwise.
Additionally, we define the degree matrix of A as Dfi = j a;’j,

enabling the normalization of each view’s A? to A? = (DY)~ 1A”.
The normalized graph Laplacian matrix, denoted as LY, is then
calculated as I — A®, with I representing the identity matrix.

3.2 Adaptive Graph Construction

To ensure the adaptability of GCN’s neighborhood aggregation
mechanism, it is necessary for a majority of the neighboring nodes
in the reconstruction graph to be of the same class as the central
node. Nodes belonging to the same class tend to have similar node
feature vectors. Therefore, we prioritize the feature information of
the nodes and aim to construct the graph by mining the correlation
between their features. In this way, the resulting graph aligns with
our expectation of connecting nodes to neighboring nodes that
share the same label.

Firstly, we harness the remarkable capabilities of autoencoder
to extract node feature information and refine the original features
of the nodes within the graph:

Z° = f°(a(X; Wp)), 1)

X?=g"(a(Z2°Wy)), @)
where Z? € RN%dz2 4y e V. Wy and W, represent the learnable
parameters of the encoder and decoder in the v-th view respectively,
and o(-) is the activation function.

After this, we explore the correlation among nodes by comput-
ing the cosine similarity between nodes features and derive the
correlation matrix S%:

70 . ZUT
Ize |l - NzeT |
where Sim(-) represents the cosine similarity function in vector
space. Intuitively, if node i and node j belong to the same class, then
S;’j will have a larger value in the correlation matrix S§°, indicating

¢ = Sim(z?,2°T) = 3)

that nodes i and j are similar and connected.

Directly using S as a reconstruction graph improves the ho-
mophily degree of the graph to some extent. Nevertheless, only
utilizing the node feature information and totally disregarding the
original structural information of the graph may not be entirely
beneficial to our graph reconstruction. Therefore, we propose a
selective utilization of the original graph structure information to
reconstruct graphs while maintaining a high degree of homophily.
To accomplish this, we design an adaptive reconstruction graph
mechanism. Specifically, we attempt to quantify the degree of ho-
mophily in the original graph structure and subsequently assign
appropriate weights. However, in the unsupervised context, access
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Figure 1: The framework of our DOAGC model. The inputs to each view are the node feature matrix X and the original adjacency
matrix A. The output is the consensus embedding H fused by each view node embedding h, after which H is used as k-means

input for clustering.

to true labeling information is not available. For this reason, we
choose to approximate the homophily degree of the original graph
structure by using the pseudo-labeling information obtained from
the final consensus embedding H of Eq. (12):

o Zij(A7; 0 %Y -1i))
Zi,j(A?,j_Ii,j) ’

©

w

where w? denotes the original graph weight obtained after ho-
mophily degree computation from the last iteration, © represents
the Hadamard product, ¥ € {0, 1}"*¢ is the pseudo label obtained
from the clustering of consensus embedding H.

Finally, we obtain the reconstruction graph that incorporates the
assessment of the homophily level and original structural data:

A? = 8% + wPA?. (5)

As shown in Fig. 2, w? can converge from different initialization
values to the same value that is close to the true homophily degree
through the adaptive mechanism, which indicates that the adaptive
mechanism is stable and meets our expectations.

3.3 Dual Optimization Strategy for
Reconstruction Graph

There is a significant disparity between solely reconstructing graphs
based on extracting correlation information among nodes and our
objective, which is to construct graphs optimized for GCN neighbor-
hood aggregation mechanism. Therefore, we devise a dual optimiza-
tion strategy to improve the reconstruction graph in Section 3.2.

Specifically, we first design the reconstruction loss function of
the autoencoder utilizing the cross-entropy loss:

\4 \4
Liee = ) 1XOX) == 3 3 (5 -log(x{)).  (6)
v=1 v=1 i,j

As the first optimization of the reconstruction graph, the recon-
struction loss of the autoencoder mainly ensures the validity of
the information extracted from the node feature matrix, i.e., Z is
able to reflect the essential attributes of the nodes, and the valid
information of the node features will not be lost in the process of
dimensionality reduction and denoising.

Furthermore, we design the second optimization process. Specif-
ically, we begin by adding a random mask as noise to the origi-
nal matrix X of node features. Then, we utilize GCN’s neighbor-
hood aggregation mechanism to recover the feature information

following the addition of noise, which can be represented from

~ AGG; _ ~
X 5YX-5X (Process 2) , where X denotes the nodes features

with random mask (noisy features), X means the nodes features re-
covered by the aggregation mechanism of GCN and AGG ;4 denotes
the aggregation operation of GCN using reconstruction graph. The
noise recovery loss is defined as follows:

\4 |4
Lnrec = Y MXOX) == 3 (7 log(xf),  (7)
v=1 v=1 i,j

where X? = GCN(A?, X?).

In fact, the second optimization process attempts to optimize the
reconstruction graph in the form of supervised learning. Due to the
unknowability of labels in unsupervised tasks, we cannot directly
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Figure 2: The adaptive process of w on ACM.

utilize the true label information to supervise the reconstruction
of graph, making the aggregated features h approximate the true

AGG;
label Y,i.e, X — " h — Y (Process 1).

Intuitively, we believe that a graph suitable for predicting node
features is also suitable for predicting node labels. Therefore, we
introduce Process 2 to enhance Process 1. As shown below, we
utilize mutual information theory to speculate on the validity and
rationality of Process 2. Specific symbol explanations are shown
in Table 1 of Appendix A.

LEMMA 3.1. [10] Let X}"i and XYi be mutually redundant for x;, ie.,
the feature of node i , where )~(5,i and XYi denotes the nodes features
with random masks belonging to different and the same class as node
i respectively. The recovered feature X; is aggregated from )N(yi. If
X; is sufficient for )N(}-,i (I()N(}-,i;f(yilii) = 0), the mutual information
between x; and %; have the following relationship:

Ip(xis %) = I (xis Xy, Xy,) = Ip (x5 X), (®)

where 0 denotes the learnable parameters of the autoencoder. The

proof'is given in Appendix A.

The left side of Eq. (8) is the object we need to optimize, i.e.,
LNrec inEq. (7).

Similarly, replacing the symbol of Process 2 in Eq. (8) with the
corresponding symbol of Process 1, we have:

I (yis hi) = Ip(yi: X), ©)
Hypothesis 1: The distribution of node features X can be seen
as a joint distribution of fragmented information of node label y

(Y) and random noise (e).
Based on Hypothesis 1, we have:

Ip(yis hi) = Ip(yi: X)
=TIp(yisY.e)
=Ip(yisY) +Ig(ys el V)
=Ip(yisY).

Eq. (10) implies that the process of aggregating node features
in GCN, with the goal of maximizing the mutual information be-
tween y; and h; (Iy(y;; hi)), can be viewed as a way of consolidating
fragmented label information.

Then, we obtain two formulas: Iy (x;; X;) = Ip(xi; X) and Iy (y;; hi)
= Ip(y;; Y) that correspond to Process 2 and Process 1, respec-
tively. We can also observe similarity between the two processes:
they are both the process of integrating fragmented information

(10)

that belongs to the same category. These two processes share same
graph structure, and the elements involved can all correspond one-
to-one. So, if we can train Process 2 well and optimize the recon-
struction graph i.e., minimizing £Lnec, the Eq. (10), alternatively,
the aggregation process of GCN, can also benefit from it.

3.4 View Weighting and Fusion

In a multi-view task, different views contain not exactly the same
information, i.e., there is consistency and complementarity among
the views [21, 54]. To fully utilize the complementary information
among views, we attempt to get a consensus embedding containing
rich information by fusing the node embedding h® of each view [20].
However, to account for the varying information values of different
views, it is essential to assign suitable weights to each view based
on their quality evaluation. This weighting scheme ensures that
different views make distinct contributions to the final consensus
embedding. We first obtain the node embedding for each view:

h® = GCN(A?, Z°). (11)

Naturally, it occurs to us to utilize the obtained consensus embed-
ding H to in turn guide the embedding h® of each view to assign
weights to it. Specifically, if a view’s embedding h? is similar to
the consensus embedding, then the information it carries must be
important and we assign larger weight to it, and vice versa. We
obtain the consensus embedding H as follows:

v
H= Z a’h?,
v=1

where o denotes the weight of the node embedding for the v-th
view and is calculated as follows:
eva®
aU = p.
max (eval, eva?, - - -, eva’)

(12)

(13)

Here eva® is obtained from the evaluation function that computes
the similarity between the consensus embedding H and each view
embedding h?, ie., eva’ = evaluation(h?, H). The hyperparameter
p is used to adjust the degree of smoothing or sharpening of the
view weights. For the final consensus embedding H, we apply the
k-means algorithm to get the clustering results.

4 Experiments

4.1 Evaluation Setup and Metrics

4.1.1 Datasets. To evaluate the effectiveness of the proposed
method, we conducted experiments on nine graph datasets with
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Table 1: The detailed statistics information of the six graph datasets.

Datasets ACM DBLP Minesweeper | Cornell | Chameleon | Wisconsin
Nodes 3,025 4,057 10000 183 2,277 251
Features 1,830 334 7 1,703 2,325 1,703
Clusters 3 4 2 5 5 5
Graphs G1.G2 G1.G2, G3 G1. G2 G1.G2 G1. G2 G1. G2
Homophily degree | 0.82,0.64 | 0.80,0.67,0.32 0.68,0.68 0.30,0.30 0.23,0.23 0.19,0.19

Zichen Wen et al.

Table 2: The clustering results on six real-world datasets. The best results are shown in bold, and the second-best results
are underlined. All experimental results were averaged after performing the experiment five times and the hyperparameter

settings for all baseline models followed the recommendations in their respective original papers.

Method/Datasets | ACM DBLP Minsweeper
‘ NMI% ARI%2 ACC% F1% | NMI% ARI% ACC% F1% | NMI% ARI% ACC% Fl1%
VGAE (2016) 49.1 54.4 82.2 82.3 69.3 74.1 88.6 87.4 4.1 8.9 69.7 60.1
DAEGC (2019) 63.8 70.1 89.0 88.9 30.8 33.4 66.5 65.6 5.1 3.1 58.9 55.2
AGE (2020) 73.5 78.9 92.4 92.4 45.0 47.6 75.3 74.6 6.2 4.6 60.7 60.7
02MAC (2020) 69.2 73.9 90.4 90.5 72.9 77.8 90.7 90.1 2.9 1.6 58.3 53.9
MvAGC (2020) 67.4 72.1 89.8 89.9 77.2 82.8 92.8 92.3 0.5 -1.3 58.8 46.5
AGCN (2021) 68.4 74.2 90.6 90.6 39.7 42.5 73.3 72.8 0.0 -2.1 60.6 46.7
MCGC (2021) 71.3 76.3 91.5 91.6 83.0 77.5 93.0 92.5 0.3 -1.7 66.3 47.1
DCRN (2022a) 71.6 77.6 91.9 91.9 49.0 53.6 79.7 79.3 1.2 4.5 64.4 54.6
DuaLGR (2023) 73.2 79.4 92.7 92.7 75.5 81.7 92.4 91.8 0.2 -0.3 60.0 47.8
DOAGC (ours) 78.2 83.5 94.2 94.3 79.5 84.3 93.4 92.9 0.4 -1.6 78.5 78.5

Method/Datasets ‘ Cornell Chameleon Wisconsin
VGAE (2016) 7.6 11.2 53.4 26.8 15.1 12.4 35.4 29.6 10.5 13.7 49.3 34.1
DAEGC (2019) 7.4 3.8 35.0 28.2 9.1 5.6 32.2 31.2 10.6 3.4 32.7 28.3
AGE (2020) 9.6 7.8 43.2 43.2 8.6 7.6 32.4 32.4 9.3 1.3 31.1 31.1
02MAC (2020) 5.6 4.1 42.3 26.4 12.3 8.9 33.5 28.6 11.0 8.9 40.0 27.9
MvAGC (2020) 10.0 0.1 45.5 19.2 10.8 3.3 29.2 24.3 8.1 4.8 47.7 20.6
AGCN (2021) 5.0 2.5 56.3 19.9 6.7 6.1 32.5 20.4 6.4 6.8 49.8 24.9
MCGC (2021) 7.7 9.2 55.7 29.6 9.5 5.9 30.0 19.1 12.9 5.9 51.8 30.7
DCRN (2022a) 20.5 32.8 66.1 40.5 8.7 5.7 30.9 21.9 10.8 16.0 50.2 34.1
DualGR (2023) | 28.5 224  57.0 41.0 | 195 160  41.1 37.7 | 341  28.8 564  47.1
DOAGC (ours) 43.1 46.4 73.2 45.1 221 18.5 44.2 40.4 55.5 57.4 79.7 54.5

different homophily degrees. ACM [9] is derived from the ACM
database! and is composed of two graphs: the co-paper network
and the co-subject network. DBLP [9], sourced from the DBLP
database?, consists of three graphs: co-author, co-conference, and
co-term. Minesweeper is a synthetic graph emulating the epony-
mous game [39]. Wisconsin and Cornell [36] are webpage graphs
from WebKB? and Chameleon is a subset of the Wikipedia net-
work [43]. The detailed statistics of the datasets are presented in
Table 1 and Appendix B.

4.1.2 Evaluation Metrics. We utilize accuracy (ACC), normal-
ized mutual information (NMI), adjusted rand index (ARI), and
F1-score (F1) to evaluate the clustering performance of the pro-
posed model.

4.1.3 Comparison Methods. To validate the superiority of the
proposed method, we utilize popular benchmarks for compara-
tive experiments and analysis. VGAE [23] and AGE [8] represent

!https://dl.acm.org/
Zhttps://dblp.uni-trier.de/
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo- 11/www/wwkb

two distinct graph encoding techniques. DAEGC [49] is a goal-
directed deep attentional embedded graph clustering framework.
O2MAC [9] is an approach that acquires information from both
node features and graph structures. MvAGC [4] and MCGC [35]
represent two recent graph-based methods that utilize graph filter-
ing to acquire a consensus graph. AGCN [38] is an attention-driven
graph clustering network. DCRN [30] is a method that improves
the performance of graph clustering by reducing the information
correlation. DualGR [28] utilizes soft-labels and pseudo-labels to
provide guidance in the process of refining and fusing graphs for
clustering.

4.2 Performance Comparison

Table 2 presents the clustering performance of all compared meth-
ods on six real-world graph datasets. From the results, we can see
that DOAGC demonstrates competitive performance. Specifically,
when facing graph datasets with a high homophily degree, such
as ACM (HR 0.82 & 0.64), DBLP (HR 0.80 & 0.67 & 0.32), and
Minesweeper (HR 0.68 & 0.68), DOAGC on ACM outperforms the
SOTAs in ACC, NMI, ARI, and F1 by 1.5%, 4.7%, 4.1%, and 1.6%,
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Table 3: The clustering results on six synthetic ACM graph datasets with different homophily degrees. The best results are

shown in bold. And the second-best results are underlined.

Method/Datasets | ACMOO (HR 0.00 & 0.00) ACMO1 (HR 0.10 & 0.10) ACMO2 (HR 0.20 & 0.20)
| NMI% ARI% ACC% F1% | NMI% ARI% ACC% F1% | NMI% ARI% ACC%  F1%
VGAE (2016) 0.5 0.5 37.4 371 | 05 0.5 371 356 | 0.4 0.4 369 349
DAEGC (2019) | 43.5 464 775 76.1 | 19.8 225 640 635 | 5.0 5.5 43.6 432
AGE (2020) 0.0 0.0 335 335 | 0.0 0.0 343 339 | 0.1 0.0 349 347
O2MAC (2020) | 25.0 247 550 546 | 17.6 171 499 49.7 | 96 94 429 428
MVAGC (2020) 0.9 09 371 355 | 1.9 2.0 409 391 | 53 56 457  45.4
AGCN (2021) 0.8 0.8 387 385 | 07 0.7 364 362 | 4.1 44 447 445
MCGC (2021) 49.8 429  63.0 535 | 529 447  63.9 546 | 29.1 317 677 67.2
DualGR (2023) | 55.1  60.7 848 845 | 559 617 853 850 | 59.2  66.0 873 87.1
DOAGC (ours) | 63.0 70.4 89.2 89.2 | 63.4 707 89.3 893 | 633 707 893 89.3

Method/Datasets |~ ACMO03 (HR 0.30 & 0.30) ACMO4 (HR 0.40 & 0.40) ACMO5 (HR 0.50 & 0.50)
VGAE (2016) 0.7 0.7 380 376 | 97 8.1 48.4 490 | 262 27.0 659  66.4
DAEGC (2019) 3.8 4.1 45.4 452 | 193 226 648 649 | 41.4 484 797  79.6
AGE (2020) 0.2 0.1 351 350 | 135 155  50.9 484 | 241 215  59.2  57.1
02MAC (2020) 6.7 6.5 407 405 | 5.5 54 403 402 | 6.6 6.7 427 426
MVAGC (2020) 154 165 577 57.7 | 369 395 740 742 | 646 71.1  89.4 89.4
AGCN (2021) 1.2 1.1 38.9  39.0 | 0.1 0.0 348 348 | 15 1.5 40.3 404
MCGC (2021) 51.8 57.2 83.0 829 | 839 888 962 96.2 | 91.0 944 981  98.1
DualGR (2023) | 60.2 67.6 83.0 88.0 | 851 90.1 96.6 96.6 | 97.8 989  99.6  99.6
DOAGC (ours) | 57.4 648 869 869 | 72.8 79.1 925 924 | 98.2 99.1  99.7 99.7

N 5
3

(a) ACC on Wisconsin.

(b) NMI on Wisconsin.

(c) ACC on Cornell. (d) NMI on Cornell.

Figure 3: Sensitive analysis of ACC and NMI on Wisconsin and Cornell with order and w.

respectively. Meanwhile, it surpasses others on most metrics in
both DBLP and Minesweeper. Specifically, it increases ACC, ARI,
and F1 on DBLP by 1.0%, 2.6%, and 1.1%, respectively, and ACC,
F1 on Minesweeper by 8.8%, and 17.8%, respectively. Furthermore,
unlike the poor performance of other baselines on heterophilous
graph datasets, DOAGC achieves excellent performance on graphs
with low homophily degree. The ACC of our model reaches 79.7%
on Wisconsin, while the second-best DualGR [28] is only 56.4%,
which appears similar on Cornell and Chameleon.

Table 3 demonstrates the comparison results on six synthetic
ACM datasets, and the results show that DOAGC also performs well
on the same dataset with different homophily degrees. Comparing
DOAGC with other baselines on diverse homophily degrees, our
method effectively addresses the challenge faced by previous graph
clustering approaches on heterophilous graphs. This enables tradi-
tional GNNS, relying on homophily assumptions, to fully leverage
structural information mining on heterophilous graphs.

4.3 Ablation Study

4.3.1 Effect of Each Loss. To explore the importance and effec-
tiveness of each loss function for the proposed model, we removed
each loss function separately to observe the change in clustering
performance. The detailed data on the ablation experiments for the
loss function is presented in Table 4. As indicated in Table 4, both
the reconstruction loss Lge. and the noise recovery loss Lnrec
affect the model’s performance. The reconstruction loss Lgec plays
a dominant role in the model’s performance, and removing it would
lead to a significant decrease in performance. Due to the fact that
LRec and Lnyec optimize the autoencoder for training by return-
ing the training gradient to it, in other words, both losses have an
optimizing effect, but the Lg,. has greater optimization intensity.

4.3.2 Effect of Each Component. To investigate how the recon-
struction graph A? affects the model’s performance, we conducted
an in-depth ablation analysis of the reconstruction graphs. Specifi-
cally, we remove S” and A? in the reconstruction graph respectively.
As shown in Table 3, the model’s performance is impacted by the
removal of either S” or A®. Removing S® has a greater impact on the
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Table 4: The ablation study results of DOAGC on Wisconsin and Cornell. The original results are shown in bold.

Compenents / Dataset Wisconsin Cornell
ompenents f Uatasels | aMiz  ARI%  ACC% F1% | NMI% ARI% ACC% Fi%
DOAGC (w/0 LRec) 455 472 653 502 | 31.6 297 617 451
DOAGC (w/o Lnyec) | 504 532 777 533 | 391 452 716 434
DOAGC (w/o S?) 104 106 494 351 | 100 149 521  31.3
DOAGC (w/o A?) 51.8 529 77.6 49.8 | 383 451  71.6 404
DOAGC (ours) | 555 574 797 545| 431 464 732 451

model’s performance compared to removing A®. §? is constructed
using node feature information based on the cosine similarity be-
tween each pair of nodes. Intuitively, due to the high probability
that the nodes with similar feature information belong to the same
class, the constructed S” has a greater edge weight among similar
nodes, i.e., a higher homophily degree. Removing S° will greatly
reduce the homophily degree of the reconstruction graph, leading
to the inability of the GCN message passing mechanism to function,
which in turn leads to a decrease in the model performance. A?
is the original adjacency matrix, and although the removal of A?
still allows the reconstruction graph to maintain a high homophily
degree, the complete abandonment of the original structural infor-
mation still has an impact on the model performance.

4.3.3 Convergence Analysis. We performed experiments on
eight real-world datasets with varying degrees of homophily. Fig. 4
shows the detailed results of the experiments about convergence
analysis, where the left subgraph refers to the ACM, DBLP, and
IMDB with a high homophily degree; the right subgraph refers to
the EAT, Texas, Chameleon, Wisconsin, and Cornell with a low ho-
mophily degree. As depicted in Fig. 4, the three real-world datasets
ACM, DBLP, and IMDB, start to converge before the 50th epoch.
During the initial stage of iteration, the loss values significantly
decrease. In contrast, for the heterophilous graph datasets such as
Texas and Chameleon, they reach the convergence state at epoch =
100, and the loss values gradually decrease thereafter. Overall, our
proposed model achieves faster convergence and a significantly
reduced loss value in both homophilous and heterophilous graphs,
validating the reliability of our proposed model and the efficacy of
our dual-optimization training approach.

4.3.4 Parameter Sensitivity Analysis. Figure 3 illustrates the
parameter sensitivity analysis for order and w. order denotes the
degree of GCN neighborhood aggregation, where a higher order

EAT
Texas
—— Chameleon
—— Wisconsin

- Comnell

150 200

Figure 4: Convergence analysis.

implies that the node can aggregate information from more dis-
tant nodes. w represents the initial weight of adjacency matrix A”
in Eq. (5). A higher value of w indicates that the reconstructed
graph A? contains more of the original structural information at
the beginning of the iteration. As shown in subfigures (a) and (c)
of Fig. 3, we perform experiments on the Wisconsin and Cornell
datasets using different combinations of order and w to examine
the variations in ACC. As observed, fixed order renders initial w
insignificant. DOAGC shows consistent and stable performance
regardless of weights in the initial adjacency matrix A°. Regarding
order, DOAGC achieves excellent performance at order = 3. Fur-
ther increasing order does not improve the model’s performance
and may even result in a slight decline. This indicates that our
method does not require high-order aggregation with increased
complexity. Moreover, it suggests that the reconstructed graph
A? predominantly consists of neighboring nodes with the same
classifications.

For subfigures (b) and (d) in Fig. 3 related to NMI, the NMI on
Wisconsin parallels the description of ACC on Wisconsin above.
Cornell’s NMI demonstrates slight sensitivity to its parameters,
yielding higher values at order € {3, 5,7}, and lower values when
the order is either too low or too high. When order is low, nodes
struggle to aggregate extensive neighbor information. Conversely,
with a high order, nodes tend to aggregate feature information from
distant nodes. However, in our reconstruction graph A?, distant
high-order neighbor nodes are more likely to belong to different
classes, resulting in the aggregation of conflicting information. This,
in turn, contributes to a decrease in NMI.

5 Conclusion

In this paper, we address the challenge of heterophilous graphs in
MVGC and propose DOAGC, a dual-optimization adaptive graph
reconstruction multi-view clustering method. DOAGC focuses on
reconstructing graphs to facilitate the message passing and neigh-
bor aggregation mechanisms of conventional GNNs. We extract
node correlation from feature information and introduce an adap-
tive mechanism utilizing pseudo-labeling information derived from
consensus embedding. Additionally, we propose a dual optimization
strategy to enhance the compatibility of the reconstructed graph
with traditional GNNs. The efficacy of the optimization strategy
is validated through mutual information theory. Our proposed ap-
proach achieves outstanding results on eight real-world datasets
and six synthetic datasets with varying homophily degrees, provid-
ing evidence that DOAGC effectively addresses the heterophilous
graph problem encountered by MVGC, while simultaneously main-
taining exceptional clustering performance on homophilous graphs.
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Appendix

A The Proof of Theorem 1 [10]

In this section, we introduce several formulas about mutual infor-
mation that are used in this work.

Table 1: Notions for Theorem 1.

Symbol Meaning
Xi The original feature of node i.
°y Data that belong to the same class of node i.
°y Data that not belong to the same class of node i.
X Nodes features with random mask.
Xi The features of node i recovered from the X,
h; The features of node i aggregated from the Xy,.
Yi The label of node i.

AGG | Aggregation operation of GCN.

(P1) Positivity:
I(x;y) > 0,I(x;ylz) > 0
(P2) Chain rule:
I(xy;2) = I(y; 2) + 1(x; 2|y)
(P3) Chain rule (Multivariate Mutual Information):
I(x;y32) = 1(y; 2) = I(y; z|x)

Theorem A.1. Let Xy, and Xy, be random variables with joint
distribution p(f(yi, Xyi, x;i). Let x; be the aggregation of Xyi, then:
I(Xy,, xil %) < I(Xy,, Xy %) + I(Xy,, xi|Xy,)-

Hypothesis (H1): x; be the aggregation of )N(yi:
I(xi, %i|Xy,, X3,) = 0.

Proor.

5 _ (P3) o . 5% _
I(Xy;s xi|%) =" I Xy, xi|%3, Xy;) + 1(Xyy; Xy %3 |%:)

(P3) & . - <

= I( Xy, xi|Xyg,) — I(Xy;s %15 %l Xy;)
+I(Xy,; Xy, xi|%1)
(P3) & 5 g T
=" I(Xy;; xi|Xy,) = I(xi; %i [ Xy,) + (x5 %1 Xy, Xy;)
+1(x'; Xy, xi1%7)

(P1) . . . L.
< I(Xyi§xi|xyi) + I(xi;J?i|Xyi,Xyi) + I(Xyi;Xyi;yb?i)

H1 ~ ~ ~ ~
U 1Ry, x11K,) + 1(Ryys Ky xil5%1)

(P3) . & 5 S o TN
=" I Xy xi| Xy;) + I Xy Xy, %) — I(Xy;; Xy %5, x3)
(P1) . N N .
< Iy x| Xy,) + I(Xy;; Xy, %)
m}

Theorem A.2. Let Xy, and Xy, be random variables with joint
distribution p()N(yi, )N(}-,i, x;). Let x; be the aggregation of XYi’ then:

I(Xi;fi) > I(xi;xyixyi)—l(f(yﬁkyi |X‘i)_1()~(yi;xi|x?i)_l(}25’i; y|)~(yl)
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Hypothesis (H1): 5; be the aggregation of Xy,
I(xi, %Xy, X5,) = 0.
Proor.

3 o o
I(xi; %) = I(x; %[ Xy, Xyy) + (x5 Xy, Xy i)

(P3) .. . L.
=" I(x; Xy, Xyy) = T Xy 1%3) = I Xy, Xy,)

+1(xi; Xy %Xy,
(P3) - . L
=" I(x; Xy, Xyy) = T Xy 1%3) = I Xy, Xy,)
+1(x; 51| Xyg,) — I(xi; % Xg,, Xy,)

(H1) . . -
=" I(xi; Xy, Xy;) — T35 Xy 1%:) — (x5 Xy, 1Xy;)
+1(xi; %i|Xy,)

(P1) -~ . . .
> I(xi; Xy, Xy,) — I(xi Xy 1%1) — (x5 X %)

(Th.A.1) .. . . L.
> I(xi; Xy, Xyy) — I(Xyys 11 Xg,) — 1Ky Xy, %)

- I(xi; Xyl |)~(yi)
o
Theorem A.3. Let Xy, and Xy, be mutually redundant for x;. Let

X; be the aggregation of XYi that is sufficient for Xyi, and let Xi be
the aggregation of f(yi then:

I(xis %) = I(Xy,, Xyg,:%).
Hypotheses (H1): ; and Xi are mutually redundant for x;:

I(xi; Xy, |X3,) + I(xi: Xy, |Xy;) = 0.

Hypotheses (H2): x; is sufficient for Xyi:
I(Xy,; Xy, %) = 0.
Proor.
(Th.A.2) .. . 3 .
I(xi %) 2 I(xi Xy Xyy) — Iy %31 Xy,) — I(Xy;; Xy, %)
= I(x;, Xy, Xy;)

Hi1 ~ ~ ~ ~
@ I(xi; Xy, Xy;) = I(Xy;5 Xy [%:)

(H2) >
=" I(xi: Xy, Xy3)
m]
Since I(xj;%;) < I()~(yi,)~(yi;xi) is a consequence of the data
processing inequality, we conclude that:

I(xi; %) = I(Xy,, Xy, %)
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Table 2: The clustering results on the other three three real-world datasets. The best results are shown in bold, and the second-
best results are underlined. All experimental results were averaged after performing the experiment five times.

Method/Datasets ‘

EAT (HR 0.40 & 0.40)

Texas (HR 0.09 & 0.09)

IMDB (HR 0.48 & 0.62 & 0.40)

| NMI%  ARI% ACC% F1% | NMI% ARI% ACC% F1% | NMI% ARI%  ACC%  F1%

VGAE (2016) 30.8 221 450 411 | 127 217 553 295 | 0.4 0.9 442 357
DAEGC (2019) 4.6 34 331 319 | 64 2.6 317 250 | 06 1.0 379 353
AGE (2020) 29.6 251 47.6  47.6 | 7.5 73 366 366 | 4.4 4.6 432 422
O2MAC (2020) | 33.1 242 459 434 | 87 146 467 291 | 03 02 402 354
MvAGC (2020) 1.9 0.8 302 266 | 5.4 1.1 543 198 | 13  -18 485 282
AGCN (2021) 9.7 3.8 356 283 | 154 181  61.8 43.0 | 03 14 545 311
MCGC (2021) 305 230 479 454 | 127 129 519 325 | 52 103 583 388
DCRN (2022a) 107 151 552 27.6 | 107 151 552  27.6 | 0.2 0.1 53.4 255
DualGR (2023) | 24.6  19.4 440 404 | 326 260 543 464 | 62 125 520 447
DOAGC (ours) | 27.1 224  53.6 519 | 47.3 479 743 465 | 89 169 567 47.3

B Supplementary Experiments

As shown in Table 2, we also perform comparative experiments on
three other popular graph datasets. EAT represents Europe Air-
Traffic, a dataset documenting European air traffic [33]. Similar to
Wisconsin and Cornell presented in Table 1 of the main text, Texas
is a webpage graph from WebKB. IMDB [9] is a movie network
that originates from the IMDB dataset, including graphs of both co-
actors and co-directors. DOAGC achieved promising performance
on all three datasets. Particularly, for the heterophilous graph Texas,
we observed significant improvements in ACC by 12.5%, NMI by
14.7%, and ARI by 21.9%. For EAT and IMDB datasets, our proposed
method also further improves the optimal values of certain evalua-
tion metrics. In addition, we conducted supplementary convergence
analysis experiments on the six synthetic ACM graph datasets [28]
with varying degrees of homophily. As shown in Figure 1, the six
synthetic ACM datasets stem from the original ACM dataset and
share comparable training configurations, leading to almost over-
lapping convergence curves. Additionally, with a sizable decline in
the loss value, they rapidly reach the convergence state during the
initial training phase and gradually stabilize.

Table 3: The homophily ratio of reconstruction graphs.

Datasets Gra};hs A? N A?
Texas zf 00871 | 05699 1|0 5795 1
wisconsin| 2 |01001 |0 dors 1| 0.3308 |
comell |, |0 o ores |
I } 44 451
acvoo | 2 |0 ooolo'saso 1 o sriz |
acuor | Gy e e et |
I 2 452 4
ACMO2 gz g.zggg 8.4§7Z$ 832221

In addition to conducting supplementary comparison and conver-

gence analysis experiments, we conducted evaluation experiments
on diverse metrics pertaining to the graphs. Specifically, we perform

experiments on datasets with a low homophily ratio of the original
adjacency matrix A?, attempting to evaluate the homophily ratios of
the node correlation matrix S and the reconstruction graph A?. As
can be seen in Table 3, both the node correlation matrix S? and the
adaptive reconstruction graph A? show a significant improvement
in the homophily ratio compared to the original adjacency matrix
A®. Furthermore, the incorporation of original structural informa-
tion in reconstruction graph A% does not lead to a notable reduction
in the homophily ratio, thus indirectly affirming the efficiency and
practicality of our adaptive mechanism.

2.8 28 —— ACMO3

ACMO4

2.6 26 \ ---- ACMOS

2.4

Loss
I
N

2.0-

1.8-

0 50 100 150 200 0 50 100 150 200
Epoch

Figure 1: Supplementary convergence analysis.
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