
A Related Work

This work draws on three lines of research. The first are importance sampling and Sequential Monte
Carlo methods, many of which can be described as properly weighted nested importance samplers.
The second are approaches that combine importance sampling with stochastic variational inference,
either by maximizing a stochastic lower bound, or by minimizing the forward KL divergence using
self-normalized estimators. Finally there are a multitude of approaches that combine stochastic
variational inference with some form of forward and reverse kernel, often in the form of an MCMC
transition operator. We will discuss the most directly relevant approaches in these three lines of work.

Importance Samplers, SMC, and Proper Weighting. There is a vast literature on importance
sampling methods, a full review of which is beyond the scope of this paper. For introductory texts on
SMC methods we refer to Doucet, Johansen (2009) and Doucet et al. (2001). Much of this literature
has focused on state-space models, which define a distribution over a sequence of time-dependent
variables. In these models, SMC is typically used to approximate the filtering distribution at each
time, which is also known as particle filtering in this context.

A limitation of SMC methods for filtering is that resampling introduces degeneracy; particles will
typically coalesce to a common ancestor in O(S logS) steps [Jacob et al., 2013]. This has given
a rise to a literature on backwards simulation methods, which perform additional computation to
reduce sample degeneracy (see Lindsten, Schön (2012) for a review). A second challenge is the
estimation of global parameters of the likelihood and the transition distribution, which has given
rise to a literature on particle Markov Chain Monte Carlo (PMCMC) methods [Andrieu et al., 2010;
Lindsten et al., 2012; Kantas et al., 2015]. Much of this literature orthogonal to the contributions
in this paper. Backward simulation and PMCMC updates preserve proper weighting, and could
therefore be used in NVI, but we do not consider such approaches here.

There is also a large literature on applications of importance sampling and SMC in contexts other than
state space models. SMC and its extensions have been applied to non-sequential graphical models
[Naesseth et al., 2014], and are widely used to perform inference in probabilistic programs [Murray,
2013; Wood et al., 2014; Meent et al., 2015; Rainforth et al., 2016; Murray, Schön, 2018]. As we
mention in the main text, two classes of methods that are directly relevant to the experiments in this
paper are annealed importance sampling [Neal, 2001] and SMC samplers [Del Moral et al., 2006],
which can be used to target an annealing sequence by either applying an MCMC transition operator
at each step, or by defining a density on an extended space in terms of a forward and reverse kernel in
the same manner as we do in this paper.

Much of this literature can be brought under a common denominator using the framework of proper
weighting [Naesseth et al., 2015; Naesseth et al., 2019], which formalizes the requirements on weights
that are returned by an importance sampler relative to the unnormalized density that the sampler
targets. This defines an abstraction boundary, which makes it possible reason about the validity of
operations at the current level of nesting in terms of the marginal of the target density at the preceding
level of nesting, without having to consider the full density on the extended space for sampling
operations that precede the current level. In the context of NVI, the implication of this is that we
could in principle different sampling strategies at each level of nesting. We have left such approaches
to future work.

Combining Importance Sampling and Stochastic Variational Inference. In recent years we
have seen a large number of approaches that combine stochastic variational inference with importance
sampling. Much of the early work in this space was motivated by the desire to define a tighter
variational lower bound. Work by Burda et al. (2016) proposed to train variational autoencoders by
maximizing a stochastic lower bound L̂ = log Ẑ, where Ẑ is defined by using the encoder distribution
as a proposal in an importance sampler. This bound can be further tightened by using SMC rather
than sequential importance sampling to compute Ẑ, which yields a lower-variance estimator Ẑ [Le
et al., 2018; Naesseth et al., 2018; Maddison et al., 2017]. More generally, tighter bounds have been
proposed by using thermodynamic integration [Masrani et al., 2019] and by defining a bounds on the
predictive marginal likelihood at each step [Chen et al., 2021].

Methods that make use of importance-weighted stochastic lower bounds have proven well-suited
to maximum likelihood estimation, but suffer from a poor signal-to-noise ratio when performing
variational inference. Rainforth et al. (2018) show that the signal-to-noise ratio for the gradient with
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respect to the proposal parameters deteriorates as we increase the number of samples, which means
that it is generally inadvisable to optimize a stochastic lower bound L̂ to learn these parameters. This
realization has led to the development of doubly-reparameterized estimators [Tucker et al., 2018],
which have since been generalized to hierarchical models and score function terms w.r.t. distribution
other than the sampling distribution [Bauer, Mnih, 2021].

The realization that stochastic lower bounds are poorly suited to variational inference has also lead
to a resurgence of interest in methods that derive from reweighted wake sleep [Bornschein, Bengio,
2015; Le et al., 2019], which minimize the forward KL divergence. A recent example along these
lines is our own work on amortized Gibbs samplers [Wu et al., 2019], which learns proposals that
approximate Gibbs kernels in an SMC sampler. This method is a special case of NVI based on the
forward KL divergence at each level of nesting, in which the same target density is used at each level
of nesting. Optimizing the a forward KL divergence to learn better variational proposals was also
explored in recent work by Jerfel et al. (2021) using a variational boosting approach which iteratively
constructs a Gaussian mixture model proposal.

Concurrent work by Arbel et al. (2021) focuses on combining AIS and SMC samplers with normal-
izing flows, where the reverse kernel can be chosen based on the inverse mapping defined by the
flow. Similar to our work, which mainly focuses on stochastic transitions, this work optimizes a
sequence of KL divergences and makes use of importance resampling between steps. However this
work focuses on flow-based models and does not consider the task of learning intermediate densities.

Combining MCMC with Stochastic Variational Inference. There are a large number of ap-
proaches that combine variational inference with MCMC and/or learned forward and reverse kernels,
which leads to approaches that have similar use cases to the variational methods for SMC samplers
that we consider in our experiments. Early work in this space by Salimans et al. (2015) computes a
lower bound using Hamiltonian dynamics and defines importance weights in terms of learned forward
and reverse kernels. This work ommits the Metropolis-Hastings correction step typically used with
HMC due to the inability of computing the density of the transition operator. Later work by Wolf
et al. (2016) incorporates an MH correction, hereby ensuring convergence to the posterior.

Work by Hoffman (2017) also initialized HMC with samples from a variational proposal but does not
learn forward and reverse transition kernels; this work simply optimizes a lower bound w.r.t. the initial
variational distribution and use the samples from HMC only to train the generative model. Caterini
et al. (2018) combine time-inhomogeneous Hamiltonian dynamics within variational inference using
an SMC sampler construction where the reverse kernel can be chosen optimally by making use of the
deterministic Hamiltonian dynamics. Wang et al. (2018) develop a meta-learning approach in which
samples from a ground-truth generative model serve to train variational distributions that approximate
Gibbs kernels for the generative model.

Optimizing a step-wise objectives to learn forward and reverse kernels has also previously been
proposed by Huang et al. (2018). However, this work differs from a SMC sampler trained with NVI
in that samples are proposed from the marginal of the forward kernels as opposed to the last target
density. Here, due to the intractibility of the marginal density, we can not compute and incremental
importance weight to perform resampling.

B Notation

πk(zk) k-th target density on Zk
γk(zk) = Zkπk(zk) k-th unnormalized target
π̌k(zk, zk−1) = πk(zk)rk−1(zk−1 | zk, φ̌k) k-th extended target on Zk−1 ×Zk
γ̌k(zk, zk−1) = Zkπ̌k(zk, zk−1) k-th extended unnormalized proposal
π̂k(zk, zk−1) = πk−1(zk−1)qk(zk | zk−1, φ̂k) k-th extended proposal on Zk−1 ×Zk
γ̂k(zk, zk−1) = Zkπ̂k(zk, zk−1) k-th extended unnormalized proposal
vk = γ̌(zk,zk−1)

γ̂(zk,zk−1) = γk(zk)rk−1(zk−1|zk,φ̌k)

γk−1(zk−1)qk(zk|zk−1,φ̂k)
k-th incremental weight

ṽk = vk
Zk−1

Zk
= πk(zk)rk−1(zk−1|zk,φ̌k)

πk−1(zk−1)qk(zk|zk−1,φ̂k)
k-th normalized incremental weight

wk =
∏k
k′=1 vk′ k-th cumulative weight
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C Important Identities

Thermodynamic Identity:

d

dθ
logZθ =

1

Zθ

d

dθ

∫
Zθ
dz γ(z; θ) =

∫
Zθ
dz

γ(z; θ)

Zθ

d

dθ
log γ(z; θ) = E

z∼π(·;θ)

[
∂ log γ

∂θ

]
. (21)

Log-derivative trick a.k.a. reinforce trick:

d

dθ
π(z; θ) = π(z)

1

π(z; θ)

d

dθ
π(z; θ) = π(z)

d

dθ
log π(z; θ) (22)

Consequently, it holds that

E
z∼π(·;θ)

[
d

dθ
log π(z; θ)

]
=

∫
Z
dz π(z; θ)

d

dθ
log π(z; θ) =

∫
Z
dz

d

dθ
π(z; θ) =

d

dθ

∫
Z
dz π(z; θ) = 0

Fisher’s Identity:

∇θ log pθ(x) =

∫
dz pθ(z | x)

d

dθ
log pθ(x, z) (23)

Reweighted wake-sleep gradient for φ:

− ∂

∂φ
KL
(
π(z; θ)

∥∥ q(z;φ)
)

= E
z∼π(z;φ)

[
∂

∂φ
log q(z;φ)

]
(24)

D Connection to ELBO & EUBO

When the final the target density of interest is some posterior distribution p(z|x), the NVI objective
in equation 6 also defines a lower bound (or an upper bound in the case of forward KL divergence)
on the logZK = log p(x). Minimizing the reverse KL divergence at the last step K is equivalent to
maximizing the standard ELBO with variational distribution π̂K :

KL (π̂K‖π̌K) = − E
πK−1(zK−1)qK(zK |zK−1)

[
log

rK−1(zK−1|zK)πK(zK)

πK−1(zK−1)qK(zK |zK−1)

]
= − E

πK−1(zK−1)qK(zK |zK−1)

[
log

rK−1(zK−1|zK)p(zK |x)

πK−1(zK−1)qK(zK |zK−1)

]
= − E

πK−1(zK−1)qK(zK |zK−1)

[
log

rK−1(zK−1|zK)p(x, zK)

πK−1(zK−1)qK(zK |zK−1)

]
+ log p(x),

which in turn yields the following equality:

log p(x)− KL (π̂K‖π̌K) = E
πK−1(zK−1)qK(zK |zK−1)

[
log

rK−1(zK−1|zK)p(x, zK)

πK−1(zK−1)qK(zK |zK−1)

]
︸ ︷︷ ︸

ELBO

Adding the divergences at the previous steps defines a looser lower bound on the log marginal
likelihood:

log p(x)− KL (π̂K‖π̌K) ≥ log p(x)− KL (q1‖π1)−
K∑
k=2

KL (π̂k‖π̌k) .

With similar derivations in the case of the forward KL divergence, we can derive an upper bound on
the log marginal likelihood.
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E Gradient estimation

To compute the gradient of the nested variational objective (NVO) we need to compute the gradients
of the individual terms Df (π̌k || π̂k) w.r.t. parameters φ̌k, φ̂k, θk, and θk−1,

dD
dφ̂k

=
dDf (π̌k || π̂k)

dφ̂k
,

dD
dθk

=
dDf (π̌k || π̂k)

dθk
+
dDf (π̌k+1 || π̂k+1)

dθk
,

dD
dφ̌k

=
dDf (π̌k || π̂k)

dφ̌k
,

dD
dθk−1

=
dDf (π̌k || π̂k)

dθk−1
+
dDf (π̌k−1 || π̂k−1)

dθk−1
.

In the following we are deriving the relevant gradient terms for the general case, i.e. using an
f-divergence, and state the gradient of the reverse KL-divergence, i.e. f(w) = − logw, and forward
KL-divergence, i.e. f(w) = w logw, as special cases.

E.1 Gradients for general f-divergences

Gradient w.r.t. parameters φ̂k of the forward kernel. Reparameterizing the sample zk ≡
zk(εk; φ̂k) allows us, under mild conditions 3, to interchange the order of integration and differ-
entiation and compute path-wise derivatives

d

dφ̂k
Df (π̌k || π̂k)

= E
zk−1∼πk−1

[
E

εk∼pk

[
d

dφ̂k
f

(
vk
Zk−1

Zk

)]]

= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̂k


= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

(
∂vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

− ∂qk

∂φ̂k

)
= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(
∂ log vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

− ∂ log qk

∂φ̂k

) .
Alternatively, we can compute a score function gradient which does not require the target density γk
to be differentiable w.r.t. the sample zk and hence can also be computed for discrete variable models.

d

dφ̂k
Df (π̌k || π̂k)

= E
zk−1∼πk−1

[∫
Zk
dzk

d

dφ̂k

(
qk(zk | zk−1, φ̂k)f

(
vk
Zk−1

Zk

))]

= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
∂ log qk

∂φ̂k
+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̂k


= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
∂ log qk

∂φ̂k
+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log vk

∂φ̂k


= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log qk

∂φ̂k


3These condition are given by the Leibniz integration rules
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Gradient w.r.t. parameters φ̌k of the reverse kernel. Computing the gradient w.r.t. parameters
of the reverse kernel is straightforward as the expectation does not depend on parameters φ̌k,

d

dφ̌k
Df (π̌k || π̂k)

= E
zk−1,zk∼π̂k

[
d

dφ̌k
f

(
vk
Zk−1

Zk

)]

= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̌k


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log vk

∂φ̌k


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log rk−1

∂φ̌k

 .

Gradient w.r.t. parameters θk−1 of the current proposal. The gradient w.r.t. θk−1 requires to
compute a score-function style gradient and the computation of the gradient of the log normalizing
constant logZk−1.

d

dθk−1
Df (π̌k || π̂k)

= E
zk−1∼πk−1

[
∂ log πk−1

∂θk−1
E

zk∼qk(·|zk−1,φ̂k)

[
f

(
vk
Zk−1

Zk

)]
+ E
zk∼qk(·|zk−1,φ̂k)

[
∂

∂θk−1
f

(
vk
Zk−1

Zk

)]]

= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
∂ log πk−1

∂θk−1
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log πk−1

∂θk−1


= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log πk−1

∂θk−1


= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(∂ log γk−1

∂θk−1
− ∂ logZk−1

∂θk−1

)
= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log γk−1

∂θk−1


− E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
zk−1∼πk−1

∂ log γk−1

∂θk−1


= Covπ̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk
,
∂ log γk−1

∂θk−1


= Covπ̂k

f (vkZk−1

Zk

)
,
∂ log γk−1

∂θk−1

− Covπ̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk
,
∂ log γk−1

∂θk−1


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Gradient w.r.t. parameters θk of the current target The gradient w.r.t. θk requires to compute
the gradient of the log normalizing constant logZk.

d

dθk
Df (π̌k || π̂k)

= E
zk−1,zk∼π̂k

[
d

dθk
f

(
vk
Zk−1

Zk

)]

= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk
∂θk


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log πk
∂θk


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(
∂ log γk
∂θk

− ∂ logZk
∂θk

)
= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log γk
∂θk

− E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
zk∼πk

[
∂ log γk
∂θk

]

E.2 Gradients for the reverse KL-divergence (f(w) = − log(w))

Building on the deviations for the general case derived in Appendix E.1, we derive the gradients for
the reverse KL-divergence as special cases by substituting f(w) = − log(w).

Gradient w.r.t. parameters φ̂k of the forward kernel:
The reparameterized gradient takes the form

d

dφ̂k
D− logw (π̌k || π̂k) = E

zk−1∼πk−1

[
E

εk∼pk

[
−∂ log vk

∂zk

∂zk

∂φ̂k
− ∂ log qk

∂φ̂k

]]
(25)

= E
zk−1∼πk−1

[
E

εk∼pk

[
−∂ log vk

∂zk

∂zk

∂φ̂k

]]
, (26)

whereas the score function gradient takes the form

d

dφ̂k
D− logw (π̌k || π̂k) = E

zk−1∼πk−1

[
E

zk∼qk(·|zk−1;φ̂k)

[(
1− log

(
vk
Zk−1

Zk

))
∂ log qk

∂φ̂k

]]
(27)

= E
zk−1,zk∼π̂k

[
− log vk

∂ log qk

∂φ̂k

]
. (28)

The final equalities hold due to the reinforce property

E
εk∼pk

[
∂ log qk

∂φ̂k

∣∣∣∣
zk=zk(ε,φ)

]
= E
zk∼qk(·|zk−1,φ̂k)

[
∂ log qk

∂φ̂k

]
= 0.

Gradient w.r.t. parameters φ̌ of the reverse kernel

d

dφ̌k
D− logw (π̌k || π̂k) = E

zk−1,zk∼π̂k

[
−∂ log rk

∂φ̌k

]
. (29)

Gradient w.r.t. parameters θk of the current target

d

dθk
D− logw (π̌k || π̂k) = E

zk−1,zk∼π̂k

[
−∂ log γk

∂θk

]
+ E
zk∼πk

[
∂ log γk
∂θk

]
. (30)
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Gradient w.r.t. parameters θk−1 of the current proposal

d

dθk−1
D− logw (π̌k || π̂k) = Covπ̂k

[
− log vk,

∂ log γk−1

∂θk−1

]
(31)

E.3 Gradients for the forward KL-divergence (f(w) = w log(w))

First notice that

Dw logw(π̌k || π̂k) = E
zk−1,zk∼π̂k

[w logw] (32)

= E
zk−1,zk∼π̌k

[logw] (33)

= E
zk−1,zk∼π̌k

[
− logw−1

]
(34)

= D− logw(π̂k || π̌k). (35)

Hence the gradients for the forward KL-divergence follow by symmetry from the gradient of the
reverse KL-divergence by identifying the components rk, πk and corresponding parameters φ̂k, θk
with the components of the forward density qk, πk−1 and parameters φ̌k, θk−1 respectively.

Gradient w.r.t. parameters φ̂k of the forward kernel:

d

dφ̂k
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
−∂ log qk

∂φ̂k

]

Gradient w.r.t. parameters φ̌k of the reverse kernel: Note that the sample zk−1 is assumed to be
non-reparameterized. Hence we only state the score-function gradient for the forward KL-divergence.

d

dφ̌k
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
log vk

∂ log rk

∂φ̌k

]
. (36)

Gradient w.r.t. parameters θk of the current target

d

dθk
Dw logw (π̌k || π̂k) = Covπ̌k

[
log vk,

∂ log γk
∂θk

]
(37)

Gradient w.r.t. parameters θk−1 of the current proposal

d

dθk−1
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
−∂ log γk−1

∂θk−1

]
+ E
zk∼πk−1

[
∂ log γk−1

∂θk−1

]
. (38)

Notice that the expectations of the gradients for the forward KL-divergence are w.r.t. the extended
target density π̌ as opposed to the extended proposal π̂ as it is the case for the reverse KL-divergence.

E.4 Estimation of expectations w.r.t. intermediate target densities.

When estimating an expectation of some function h w.r.t. an intermediate extended proposal π̂k, we
can rewrite the expectation w.r.t. properly weighted samples from the previous level of nesting using
Definition 2.1

E
zk−1,zk∼π̂k

[h(zk−1, zk)] = E
wk−1,zk−1∼Πk−1

[
wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

[
h(zk−1, zk)

]]
. (39)

Here, Πk denotes the probability density over weighted samples (zk, wk) of the nested importance
sampler from the k-th level of nesting. In our experiments we have c = 1. Similarly, we can rewrite
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expectation w.r.t. intermediate extended target density π̌k

E
zk−1,zk∼π̌k

[h(zk−1, zk)] = E
zk−1,zk∼π̂k

[
Zk−1

Zk
vk h(zk−1, zk)

]
(40)

= E
wk−1,zk−1∼Πk−1

[
wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

[
Zk−1

Zk
vk h(zk−1, zk)

]]
(41)

= E
wk−1,zk−1∼Πk−1

[
wk−1vk
cZk

E
zk∼qk(·|zk−1,φ̂k)

[
h(zk−1, zk)

]]
. (42)

The resulting expressions can be approximated using a self-normalized estimator as stated in Equa-
tion 2. In NVI, we assume that samples (zk, wk) ∼ Πk are non-reparameterized and hence do not
carry back gradient to the previous level of nesting. In practice, these samples might be generated
using a reparameterized forward kernel and hence their gradient has to be detached.

F NVI Algorithm Block

Algorithm 1: Nested Variational Inference

Input: {πk(zk; θk)}Kk=1, q1(z1, φ̂1), {qk+1(zk+1|zk; φ̂k+1), rk(zk|zk+1; φ̌k)}K−1
k=1

ρ = {θk}Kk=1 ∪ {φ̂k+1, φ̌k−1}Kk=2
while not converged do

z1 ∼ q1(·; φ̂1)

logw1 ← log γ1(z1)
q1(z1)

∆ρ← ∇ρ1Df

(
πq
∣∣∣∣ q1

)
for k = 2 · · ·K do

if resample then
zk−1, wk−1 ← resample(wk−1)

zk−1 ← ⊥zk−1 ; // detach previous sample
zk ∼ qk(·|zk−1; φ̂k)

log vk ← log γ̂k(zk−1,zk)
γ̌k(zk−1,zk)

logwk ← logwk−1 + log vk
∆ρ← ∆ρ+∇ρ̂kDf

(
π̌k
∣∣∣∣ π̂k) ; // based on Eq. 9 or Eq. 12

∆ρ← ∆ρ+∇ρ̌kDf

(
π̌k
∣∣∣∣ π̂k) ; // based on Eq. 10 or Eq. 13

end
ρ← ρ+ η∆ρ

end

21



G Experiment Details

G.1 Experiment 1: Annealing

We are targeting an unnormalized Gaussian mixture model (GMM)

γK(zK) =

M∑
m=1

N (zK ; µm, σ
2I2×2), µm =

(
r sin

(
2mπ

M

)
, r cos

(
2mπ

M

))
,

with M = 8 equidistantly spaced modes with variance σ2 = 0.5 along a circle with radius r = 10.

We do not perform an initial importance sampling step in this experiment and define the initial
proposal density q1 := π1 to be a multivariate normal with mean 0 and standard deviation 5. We
model the transition kernels to be conditional normal,

qk(zk | zk−1) = N (zk; µk(zk−1), σk(zk−1)2I2×2),

rk−1(zk−1 | zk) = N (zk−1; µk(zk), σk(zk)2I2×2).

with mappings for the mean µ and standard deviation σ as follows:

µ(z) = WT
µ (h(z) + z) + bµ, σ(z) = softplus(WT

σ h(z) + bσ) h(z) = WT
h z + bh. (43)

In the experiments the hidden layer consists of 50 neurons, i.e. h(z) ∈ R50. For the flow-based
models the kernels are specified by the flow and hence fully deterministic. In this case the incremental
importance weight simplifies to

vk =
γk+1(zk+1)

qk(zk+1)
=

γk+1(zk+1)

γk(zk) log |Jf−1
k

(zk+1)| =
γk+1(fk(zk))

γk(zk) log |Jfk(zk)|−1
, (44)

where the mapping fk is a planar flow consisting of 32 layers. All methods are trained for 20, 000
iteration using the Adam optimizer with a learning rate of 1e−3. In AVO and NVI methods we
observed very small standard deviations across runs for the log normalizing constant and the ESS,
which is why we did not include them in Table 1. This excludes flow-based methods for K = 2
(one-step flow) where we observed significant variance in standard between runs (AVO-flow: 28 ±
12, NVIR∗-flow: 28 ± 11).

Figure 8 shows examplary samples from flow based models trained with AVO-flow and NVIR∗-flow.

Figure 8: Samples from forward kernels trained with AVO, and NVIR∗.

G.2 Experiment 2: Learning Heuristic Factors for state-space models

We evaluate NVI for a hidden Markov model (HMM) where the likelihood is given by a mixture of
Gaussians (GMM),

τm, µm ∼ p(τ, µ) = NormalGamma(α0, β0, µ0, ν0), m = 1, 2, ...,M,

z1 ∼ p(z1) = Categorical(π),

zk | zk−1 = m ∼ p(zk | zk−1) = Categorical(Am),

xk | zk = m ∼ p(xk | zk, τ, µ) = Normal(µm, σm), k = 1, 2, ...,K.

where M is the number of clusters and K is the number of time steps in a HMM instance; z1:K and
x1:K are the discrete hidden states and observations respectively, η := {τm, µm}Mm=1 is the set of
global variables, where τm, and µm are precision and mean of the m-th GMM cluster respectively.
We choose M = 4, K = 200, and the hyperparameters as follows

α0 = 8.0, β = 8.0, µ0 = 0.0, ν0 = 0.001, π = (0.25, 0.25, 0.25, 0.25). (45)
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To perform inference, we learn the following proposals in form of

qφ(µ1:M , τ1:M | x1:K) =

M∏
m=1

NormalGamma(α̃m, β̃m, µ̃m, ν̃m), (46)

qφ(z1 | x1, µ1:M , τ1:M ) = Categorical(π̃1), (47)
qφ(zk | xk, zk−1, τ1:M , µ1:M ) = Categorical(π̃k). (48)

We use the tilde symbol (̃ ) to denote the parameters of the variational distributions that are the
outputs of the neural networks. We also use NVI to learn a heuristic factor ψθ(xk:K | τ, µ) in form of

ψθ(xk:K | τ, µ) =
∏K

l=k

∑M

m=1
Normal(xl; τm, µm)ψMLP

θ (zl = m | η, xl).

In addition we consider a baseline that uses a Gaussian mixture model as hand-coded heuristic in
form of

ψGMM(xk:K | τ, µ) =
∏K

l=k

∑M

m=1
Normal(xl; τm, µm)p(zl = m),

We optimize the parameters {φ, θ} by minimizing forward KL divergences defines as follows

L0(θ, φ) = KL (π̌0,θ(η) || qφ(η|x1:T ))

= KL (π0,θ(η) || qφ(η|x1:T )) ,

L1(θ, φ) = KL (π̌1,θ(z1, η) || π̂1,θ(z1, η))

= KL (π1,θ(z1, η) ||π0,θ(η)qφ(z1|x1, η)) ,

Lk(θ, φ) = KL (π̌k,θ(z1:k, η) || π̂k,θ(z1:k, η))

= KL (πk,θ(z1:k, η) ||πk−1,θ(z1:k−1, η)qφ(zt|xt, zk−1, η)) , k = 2, 3, ...,K.

In NVI, we learn heuristic factors ψθ that approximate the marginal likelihood of future observations.
We define a sequence of densities (γ0, . . . , γK),

γ0(η) = p(η) ψθ(x1:K |η), γk(z1:k, η) = p(x1:k, z1:k, η) ψθ(xk+1:K | η), k = 1, 2, ...,K.

In practice we found that partial optimization (i.e. only taking gradient w.r.t the right hand side of
each KL) yields better performance compared to the full optimization of the objective. We will derive
the gradient for each case.

G.2.1 Partial optimization.

We consider only taking gradient w.r.t. the right hand side of each KL divergence.

When k = 0, we have

−∇φL0(φ) = −∇φKL (π0(η) || qφ(η | x1:T )) = Eπ0
[∇ log qφ(η | x1:T )] . (49)

When k = 1 : K, we have

−∇φ,θLk(φ, θ) = −∇φ,θKL (πk(z1:k, η) ||πk−1,θ(z1:k−1, η)qφ(zt | xk, zk−1, η)) (50)
= Eπk [∇ log πk−1,θ(z1:k−1, η) +∇ log qφ(zt | xk, zk−1, η)] (51)
= Eπk [∇ logψθ(xk:K | η) +∇ log qφ(zt | xk, zk−1, η)] (52)
− Eπk−1

[∇ logψθ(xk:K | η)] (53)
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Full optimization. Now we consider taking gradient w.r.t. the full objective.

When k = 0,

−∇φ,θL0(φ, θ) = −∇φ,θKL (π0,θ(η) || qφ(η | x1:K)) (54)
= Eπ0 [−∇ log π0,θ(η | x1:K) +∇ log qφ(η | x1:K)] (55)

+ Eπ0

[
−∇ log π0,θ(η | x1:T )

(
log

p(η)ψθ(x1:K | η)

qφ(η | x1:K)
− logZ0

)]
, (56)

= Eπ0

[
∇ log qφ(η | x1:K)

]
− Eπ0

[
log

p(η)ψθ(x1:K | η)

qφ(η | x1:K)
∇ logψθ(x1:K | η)

]
(57)

+ Eπ0

[
log

p(η)ψθ(x1:K | η)

qφ(η | x1:K)

]
Eπ0

[
∇ logψθ(x1:K | η)

]
(58)

If k = 1 : K,

−∇φ,θLk(φ, θ) (59)
= −∇φ,θKL (πk,θ(z1:k, η) ||πk−1,θ(z1:k−1, η)qφ(zk | xk, zk−1, η)) (60)

= Eπk
[
−∇ log

πk,θ(z1:k, η)

πk−1,θ(z1:k−1, η) qφ(zk | xk, zk−1, η)

]
(61)

+ Eπk
[
log

πk,θ(z1:k, η)

πk−1,θ(z1:k−1, η) qφ(zk | xk, zk−1, η)
(−∇ log πk,θ(z1:k, η))

]
(62)

= Eπk [∇ logψθ(xk:K | η) +∇ log qφ(zk | xk, zk−1, η)]−∇ logZk−1 (63)

+ Eπk
[
log

ψθ(xk+1:K | η)

ψθ(xk:K | η) qφ(zk | xk, zk−1, η)
(−∇ log πk(z1:k, η))

]
, (64)

= Eπk [∇ logψθ(xk:K | η) +∇ log qφ(zk | xk, zk−1, η)]− Eπk−1
[∇ logψθ(xk:K | η)] (65)

+ Eπk
[
log

ψθ(xk+1:K | η)

ψθ(xk:K | η) qφ(zk | xk, zk−1, η)
(−∇ logψθ(xk+1:K | η))

]
(66)

+ Eπk
[
∇ logψθ(xk+1:K | η)

]
Eπk

[
log

ψθ(xk+1:K | η)

ψθ(xk:K | η) qφ(zk | xk, zk−1, η)

]
(67)

G.2.2 Architectures of the Proposals and Heuristic Factor

For the neural proposals, we employ the neural parameterizations based on the neural sufficient
statistics [Wu et al., 2019]. We will discuss each of them in the following.

Proposal for the global variables.

qφ(µ1:M , τ1:M | x1:K) =

M∏
m=1

NormalGamma(α̃m, β̃m, µ̃m, ν̃m)

We firstly feed each xk into a MLP to predict pointwise features, also known as neural sufficient
statistics [Wu et al., 2019]

Input xk ∈ R1

FC 128. Tanh.
FC 4. Softmax. (tk,1, tk,2, tk,3, tk,4)

Then we aggregate over all points and compute the intermediate-level features for each of the clusters,

Hm =

(∑
k

tk,m,
∑
k

tk,m xk,
∑
k

tk,m x
2
k

)
, m = 1, 2, 3, 4.

We feed these features into a MLP to predict the parameters of the variational distribution,
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Input Hm ∈ R3

FC 128. Tanh. FC 128. Tanh. FC 128. Tanh. FC 128. Tanh.
FC 1. Exp(). (α̃m) FC 1. Exp(). (β̃m) FC 1. (µ̃m) FC 1. Exp(). (ν̃m)

where Exp() means that we exponentiate the corresponding output values.

Proposal for the initial state.

qφ(z1 | x1, τ1:M , µ1:M ) = Categorical(π̃1)

We concatenate each xk with each of the cluster parameters and then predict logits as the assignments,
followed by a softmax normalization. Then we normalize the logits as

Input xk ∈ R1, µm ∈ R1, τm ∈ R1
+

Concatenate[xk µm, τm]
FC 128. Tanh. FC 1. (π̃k,m)

π̃k = Softmax
(
π̃k,1, π̃k,2, π̃k,3, π̃k,4

)
.
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Proposal for the forward transitional state.

qφ(zk | xk, zk−1, τ1:M , µ1:M ) = Categorical(π̃k)

This is similar to the initial proposal, except that we concatenate the previous state as the input. We

Input xk ∈ R1, zk−1 ∈ R1, µm ∈ R1, τm ∈ R1
+

Concatenate[xk zk−1, µm, τm]
FC 128. Tanh. FC 1. (π̃k,m)

then normalize the logits using a softmax,

π̃k = Softmax
(
π̃k,1, π̃k,2, π̃k,3, π̃k,4

)
.

Heuristic factor ψθ(xk:K | η).
The neural heuristic factor takes as input the concatenation of each point and each of the cluster
parameters, and output the logits

Input xk ∈ R1, µm ∈ R1, τm ∈ R1
+

Concatenate[xk µm, τm]
FC 128. Tanh. FC 1. (ψθ(z = m | xk, τm, µk))

G.3 Experiment 3: BGMM-VAE

We train on the datasets MNIST and FashionMNIST in which we sample mini-batches of sizeN = 10
such that the classes are distributed based on a Dirichlet distribution with the same α as the generative
model (We set α = 0.5 in our experiments). In NVI, we used a higher N for the first two KLs (this is
only applicable to NVI because the KLs are optimized locally). For RWS, we used 10 samples per
xn. We trained all models for 50k iterations, and we used 20 mini-batches per iteration to estimate
the overall objective. Fro the optimizers, we used Adam with learning rate 1e-3 for the q(x|z, θx)
and r(z|x, φz) and 5e-2 for all models.

Optimization In this experiment, we only optimize the intermediate only at the target level at each
level of nesting. For example, in the 1st step, we optimize

min KL (π̂1(λ, c)‖π̌1(λ, c)) := min KL (p(λ)p(c|λ)‖π(c), q(λ|c))
with respect to π(c). This way π(c) is optimized to match the marginal distribution p(c) of the
generative model. In the next step, we detach the parameters for p(c) and only optimize to q and π(z).
Assuming π(c) ≈ p(c), optimizing the 2nd step in this manner leads π(z) to match the marginal
distribution p(z) of the generative model.

Generative Model Inference Model

α λ cn

µ τ

zn

θx

xn

N

λ cn

φzφcφλ

zn xn

N

Figure 9: Overview of BGMM-VAE.
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Encoder q(z|x;φz)

Input x ∈ R1×28×28

Conv 32. 4× 4, Stride 2, SiLU activation
Conv 64. 4× 4, Stride 2, SiLU activation
Conv 64. 4× 4, Stride 2, SiLU activation
Conv 64. 4× 4, Stride 2, SiLU activation
FC 2× 10

Decoder p(x|z, θx)

Input z ∈ R10

FC 256. SiLU activation
UpConv 64. 4× 4, Stride 2, SiLU activation
UpConv 64. 4× 4, Stride 2, SiLU activation
UpConv 64. 4× 4, Stride 2, SiLU activation
UpConv 32. 4× 4, Stride 2, Sigmoid activation

q(c|z, φc)
Input z ∈ R10

FC 64. SiLU activation
FC 64. SiLU activation
FC 10 (# clusters)
Categorical(output)

q(λ|c, φλ)

Input {cn}Nn=1 cn ∈ N+

FC 64. SiLU activation
Mean() (over N )
FC 64. SiLU activation
FC 10. SoftPlus activation (# clusters)
Dirichlet(output +

∑
c c_onehot)

Figure 10: BGMM-VAE architectures.
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