
Under review as a conference paper at ICLR 2024

APPENDIX

A USING DISTATTN IN LIGHTSEQ

Algorithm 1 DISTATTN in LIGHTSEQ (forward pass)

Require: Matrices Q𝑝 ,K𝑝 ,V𝑝 ∈ R 𝑁
P ×𝑑 in HBM, block sizes 𝐵𝑐, 𝐵𝑟 , rank

0: function STANDALONE FWD(q, k, v, o, ℓ, m, causal, last)
1: Divide 𝑞 into 𝑇𝑟 =

⌈
𝑁
P𝐵𝑟

⌉
blocks 1, . . . ,𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide 𝑘, 𝑣 in to 𝑇𝑐 =

⌈
𝑁
P𝐵𝑐

⌉
blocks 𝑘1, . . . , 𝑘𝑇𝑐 and 𝑣1, . . . , 𝑣𝑇𝑐 , of size 𝐵𝑐 × 𝑑 each.

2: Divide the output 𝑜 ∈ R 𝑁
P ×𝑑 into 𝑇𝑟 blocks 𝑜𝑖 , . . . , 𝑜𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide the

logsumexp 𝐿 into 𝑇𝑟 blocks 𝐿𝑖 , . . . , 𝐿𝑇𝑟 of size 𝐵𝑟 each.
3: for 1 ≤ 𝑖 ≤ 𝑇𝑟 do
4: Load 𝑞𝑖 from HBM to on-chip SRAM.
5: Load 𝑜𝑖 ∈ R𝐵𝑟×𝑑 , ℓ𝑖 ∈ R𝐵𝑟 , 𝑚𝑖 ∈ R𝐵𝑟 from HBM to on-chip SRAM as 𝑜 (0)

𝑖
, ℓ (0)

𝑖
, 𝑚 (0)

𝑖
.

6: for 1 ≤ 𝑗 ≤ 𝑇𝑐 do
7: if causal and 𝑖 ≤ 𝑗 then
8: Continue
9: end if

10: Load 𝑘 𝑗 , 𝑣 𝑗 from HBM to on-chip SRAM.
11: On chip, compute 𝑠

(𝑗)
𝑖

= 𝑞𝑖𝑘
𝑇
𝑗
∈ R𝐵𝑟×𝐵𝑐 .

12: On chip, compute 𝑚
(𝑗)
𝑖

= max(𝑚 (𝑗−1)
𝑖

, rowmax(𝑠 (𝑗)
𝑖

)) ∈ R𝐵𝑟 , 𝑝 (𝑗)
𝑖

= exp(𝑆 (𝑗)
𝑖

− 𝑚
(𝑗)
𝑖

) ∈
R𝐵𝑟×𝐵𝑐 (pointwise), ℓ (𝑗)

𝑖
= 𝑒𝑚

𝑗−1
𝑖

−𝑚(𝑗)
𝑖 ℓ

(𝑗−1)
𝑖

+ rowsum(𝑝 (𝑗)
𝑖

) ∈ R𝐵𝑟 .

13: On chip, compute 𝑜
(𝑗)
𝑖

= diag(𝑒𝑚
(𝑗−1)
𝑖

−𝑚(𝑗)
𝑖)−1𝑜

(𝑗−1)
𝑖

+ 𝑝
(𝑗)
𝑖

𝑣
𝑝

𝑗
.

14: end for
15: On chip, compute 𝑜𝑖 = diag(ℓ (𝑇𝑐)

𝑖
)−1𝑜

(𝑇𝑐)
𝑖

.
16: Write 𝑜𝑖 to HBM as the 𝑖-th block of 𝑜.
17: if last then
18: On chip, compute 𝐿𝑖 = 𝑚

(𝑇𝑐)
𝑖

+ log(ℓ (𝑇𝑐)
𝑖

).
19: Write 𝐿𝑖 to HBM as the 𝑖-th block of 𝐿.
20: end if
21: end for
22: Return 𝑜, ℓ, 𝑚 and the logsumexp 𝐿.
22: end function
22: Initialize O𝑝 = (0) 𝑁

P ×𝑑
∈ R 𝑁

P ×𝑑 , ℓ (𝑝) = (0) 𝑁
P
∈ R 𝑁

P , 𝑚𝑝 = (−∞) 𝑁
P
∈ R 𝑁

P .
22: O𝑝 , ℓ𝑝 , 𝑚𝑝 , 𝐿 𝑝 = standalone fwd(Q𝑝 ,K𝑝 ,V𝑝 , O𝑝 , ℓ𝑝 , 𝑚𝑝 , True, p=1)
23: for 1 ≤ 𝑟 < 𝑝 do
24: Receive K𝑟 and V𝑟 from Remote worker 𝑟 into HBM.
25: O𝑝 , ℓ𝑝 , 𝑚𝑝 , 𝐿 𝑝 = standalone fwd(Q𝑝 ,K𝑦 ,V𝑦 , O𝑝 , ℓ𝑝 , 𝑚𝑝 , False, r=(p-1)
26: Delete K𝑟 and V𝑟 from HBM.
27: end for
28: Return the output O𝑝 and the logsumexp 𝐿. =0

In this section, we provide more details of DISTATTN, and how it can be used with the outer LIGHT-
SEQ logic of the forward pass (Alg 1). For conceptual simplicity, we demonstrate it in the most
vanilla version, without the actual scheduling (e.g. load balancing and overlapping). We also demon-
strate it with the causal language modeling objective. The standalone attention is mainly borrowed
from the FlashAttention2 paper (Dao, 2023). To make it compatible with DISTATTN, we mainly
revised the several points:

1. Accumulate results statistics 𝑜, 𝑚 and 𝑙 from previous computation, instead of initializing
them inside the function.

2. Pass an extra argument ”last”, which means whether this is the last chunk of attention
computation. Only when it is true, we compute the logsumexp 𝐿.

12

Under review as a conference paper at ICLR 2024

At a high level, on a worker 𝑝, LIGHTSEQ first initializes local statistics 𝑚, 𝑙, 𝐿. Then LIGHTSEQ
loops over all its previous workers. In each iteration, it fetches the key and the value from a worker
and invokes the revised standalone attention to update local statistics. At the end of the iteration,
it needs to delete the remote key and value from HBM so that the memory does not accumulate.
At the last iteration of the loop, it additionally calculates the logsumexp according to the final 𝑚
and 𝑙 (the ”last” variable in the algorithm). At the end of the forward pass, worker 𝑝 has the correct
𝑚, 𝑙, 𝐿. The backward pass is similar and conceptually simpler because we do not need to keep track
of statistics such as 𝑚 and 𝑙. Instead, we only need to use the logsumexp stored in the forward pass.

B COMPARISON WITH DEEPSPEED ULYSSES

Method # GPUs Sequence Length Time Speedup
Per GPU Total

Llama-7B

Megatron-LM

2x8 4K 64K 5.29 1.0x
2x8 8K 128K 14.26 1.0x
2x8 16K 256K 43.44 1.0x
2x8 32K 512K 147.06 1.0x

DeepSpeed-Ulysses

2x8 4K 64K 4.29 1.23x
2x8 8K 128K 11.61 1.23x
2x8 16K 256K 37.53 1.16x
2x8 32K 512K 134.09 1.10x

LIGHTSEQ

2x8 4K 64K 6.85 0.77x
2x8 8K 128K 12.75 1.12x
2x8 16K 256K 30.21 1.44x
2x8 32K 512K 106.37 1.38x

Llama-33H

Megatron-LM

2x8 4K 64K 7.52 1.0x
2x8 8K 128K 20.63 1.0x
2x8 16K 256K 62.78 1.0x
2x8 32K 512K 216.70 1.0x

DeepSpeed-Ulysses

2x8 4K 64K 6.42 1.17x
2x8 8K 128K 17.47 1.18x
2x8 16K 256K 56.63 1.11x
2x8 32K 512K 202.89 1.07x

LIGHTSEQ

2x8 4K 64K 7.03 1.07x
2x8 8K 128K 13.12 1.57x
2x8 16K 256K 31.33 2.00x
2x8 32K 512K 107.76 2.01x

Table 4: Per iteration wall-clock time of LIGHTSEQ, Megatron-LM (Korthikanti et al., 2023) and
DeepSpeed Ulysses (Unit: seconds). Speedup in bold denotes the better of the three systems. We
calculate the speedup based on Megatron-LM iteration time.

13

Under review as a conference paper at ICLR 2024

We run a subset of the experiments compared with DeepSpeed-Ulysses. Firstly, DeepSpeed-Ulysses
does reduce the communication overhead, and thus better than Megatron-LM on scenarios listed in
Table 4. LIGHTSEQ achieves better performance than DeepSpeed-Ulysses on longer sequences
or models with a more general number of heads (e.g. Llama-33H). We also note that DeepSpeed-
Ulysses can not scale beyond the number of attention heads because it also relies on sharding the
attention heads. However, we need to point out that in shorter sequences and MHA models (where
LIGHTSEQ does not have a communication advantage, compared to GQA/MQA models), the com-
munication primitives used in DeepSpeed-Ulysses are more advantageous. We leave our further
optimization in P2P in shorter sequences and MHA models as an exciting future work.

14

