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ABSTRACT

Embodied AI models often employ off the shelf vision backbones like CLIP to
encode their visual observations. Although such general purpose representations
encode rich syntactic and semantic information about the scene, much of this
information is often irrelevant to the specific task at hand. This introduces noise
within the learning process and distracts the agent’s focus from task-relevant vi-
sual cues. Inspired by selective attention in humans—the process through which
people filter their perception based on their experiences, knowledge, and the task
at hand—we introduce a parameter-efficient approach to filter visual stimuli for
embodied AI. Our approach induces a task-conditioned bottleneck using a small
learnable codebook module. This codebook is trained jointly to optimize task
reward and acts as a task-conditioned selective filter over the visual observation.
Our experiments showcase state-of-the-art performance for object goal naviga-
tion and object displacement across 5 benchmarks, ProcTHOR, ArchitecTHOR,
RoboTHOR, AI2-iTHOR, and ManipulaTHOR. The filtered representations pro-
duced by the codebook are also able generalize better and converge faster when
adapted to other simulation environments such as Habitat. Our qualitative analyses
show that agents explore their environments more effectively and their representa-
tions retain task-relevant information like target object recognition while ignoring
superfluous information about other objects. Code is available on the project page.

1 INTRODUCTION

Human visual perception is far from a passive reception of all available visual stimuli; it is an actively
tuned mechanism that operates selectively, allocating attention and processing stimuli that are deemed
relevant to the current task (Bugelski & Alampay, 1961). An illustrative example of this phenomenon
is the common experience of misplacing one’s keys; we become subsequently oblivious to most
visual cues in our environment, except for those directly related to the search for the lost keys. In this
case, we become particularly attentive to surfaces where we usually place our keys and navigate our
environment by similarly processing the walkable areas around us (Figure 1).

The subfield of embodied artificial intelligence (AI) studies AI agents tasked with very analogous
situations (Duan et al., 2022). Embodied AI tasks such as navigation (Batra et al., 2020b; Krantz
et al., 2023), instruction following (Anderson et al., 2018; Krantz et al., 2020; Shridhar et al.,
2020), manipulation (Ehsani et al., 2021; Xiang et al., 2020), and rearrangement (Batra et al.,
2020a; Weihs et al., 2021a), necessitate goal-directed behaviors, such as navigating to a specific
goal or relocating target objects. Conventional frameworks usually employ general-purpose visual
backbones (Khandelwal et al., 2022; Yadav et al., 2023b) to extract representations from visual input.
These representations are then fused with goal embeddings (e.g., object type, images, or natural
language instructions) to construct a goal-conditioned representation E ∈ RD, where D often has
dimensions as large as a 1568-dimensional Hilbert space. E captures an abundance of details from
the visual input, of which a policy determines which action to take next. Given E’s general-purpose
nature, it often contains a significant amount of task-irrelevant information. For example to find a
specific object in a house, the agent doesn’t need to know about other distractor objects in the agent’s

∗Equal contribution

1

https://embodied-codebook.github.io
https://embodied-codebook.github.io/


Published as a conference paper at ICLR 2024

Bottom-Up Processing

Green plant in a 
white vase

3 brown sofas
Coffee table with a 

laptop on the surface
Brown box

Textured 
carpetWalkable path

Gray ceiling

Key

4 big windows
Black lamp

Wooden 
 floor

Chandelier
TV

Encoder

Input Frame

Goal: Key

TV

Key
Flat surface might 

contain the key

Flat surface might 
contain the key

Walkable path to 
the flat surfaces

Top-Down Selective Attention
Input Frame

Goal: Key

Encoder 
with  

Codebook  
bottleneck

Figure 1: Selective Attention. Imagine an agent is tasked to locate a key in an environment. Standard visual
encoders such as CLIP encoder capture general purpose scene information which include details not relevant to
the task, such as the color of the sofa or texture of the floor. This mirrors the concept of bottom-up processing,
where perception is influenced by external stimuli in the environment. To address this, we equip the encoder
with a codebook bottleneck that only retains the most task-relevant information such as identifying flat surfaces
likely to hold the key and the walkable paths to these surfaces. This represents top-down selective processing
where the perception is guided by internal goals and expectations.

view, about their colors, materials, attributes, etc. These distractions introduce unnecessary noise into
the learning process, distracting the agent’s focus away from more pertinent visual cues.

In this paper, we draw from the substantial body of research in cognitive psychology and neuroscience
to induce selective task-specific representations that filter irrelevant sensory input and only retain
the necessary stimuli. In Psychology, inattentional blindness posits that people become “blind”
to objects and details irrelevant to the task at hand (as depicted by the famous invisible gorilla
video on YouTube1) (Simons & Chabris, 1999). Similar studies in human visual search (Wolfe,
1994; Treisman & Gelade, 1980) find that people become oblivious to the distracting items when
searching through a cluttered environment. The principle of top-down selective attention (Desimone
& Duncan, 1995; Buschman & Miller, 2007) also projects a similar theory: that our goals bottleneck
our visual processing guided by internal goals (in contrast to bottom-up processing, which is how
vision encoders are usually trained).

To apply this principle of selective attention to embodied AI agents, we propose a parameter-efficient
approach to bottleneck visual representations conditioned on the task. We insert a simple codebook
module into our agent, which consists of a collection of K = 256 learnable latent codes, each with a
dimension of Dc = 10, where Dc ≪ D. This codebook module accepts E as input, attends over the
K latent codes, to produce a codebook representation Ê. Ê is a weighted convex combination of the
K latent codes, weighted by the attention estimates (see Figure 2). Given the bottleneck induced by
needing to choose amongst K = 256 possible Dc = 10-dimensional representations, the codebook
module enforces selective filtering, encoding only the essential cues necessary for the task.

We demonstrate the effectiveness of our approach by achieving zero-shot, state-of-the-art perfor-
mances on 2 Embodied-AI tasks: object goal navigation(ObjNav) (Deitke et al., 2020) and object
displacement (ObjDis) (Ehsani et al., 2022) across 5 benchmarks (ProcTHOR(Deitke et al., 2022b),
ArchitecTHOR, RoboTHOR (Deitke et al., 2020), AI2-iTHOR(Kolve et al., 2017a), and Manip-
ulaTHOR (Ehsani et al., 2021)). Across all benchmarks, our approach yields significant absolute
improvements in success rate and reductions in episode length. Moreover, we further show the adapt-
ability of our codebook representations to new visual domains by lightweight finetuning in Habitat
environments (Savva et al., 2019). Finally, we conduct a comprehensive analysis, verifying that the
codebook encodes better information about the task, about the distance to the goal for navigation, etc.
while its ability to identify individual objects in its view diminishes significantly. Surprisingly, we
observe noticeable improvements in the agent’s behavior in the form of smoother trajectories and
more efficient exploration strategies.

2 RELATED WORK

We situate our work amongst methods that learn performant representations for Embodied AI tasks.
Learning representation through proxy objectives. A common approach to learning useful
representations is defining proxy objectives for the visual encoder. For example, a paradigm outlines a
set of invariant transformations and learns representations with a contrastive learning objective while
simultaneously optimizing task reward (Du et al., 2021; Singh et al., 2023; Guo et al., 2018; Laskin

1Link to invisible gorilla video depicting selective attention
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et al., 2020; Majumdar et al., 2022). Others use auxiliary tasks, such as predicting depth (Mirowski
et al., 2017; Gordon et al., 2019), reward (Jaderberg et al., 2017), forward dynamics (Gregor et al.,
2019; Zeng et al., 2023; 2021; Guo et al., 2020; Kotar et al., 2023), inverse dynamics (Pathak et al.,
2017; Ye et al., 2021b;a), scene graphs (Gadre et al., 2022; Du et al., 2020; Savinov et al., 2018; Wu
et al., 2019), or 2D maps (Chaplot et al., 2020b;a). In contrast, our proposed codebook module is
jointly trained with the overall policy to optimize the task rewards only.
Learning representations through pretraining. Alternately, many proposed methods self-supervise
representations by sampling image frames from the environment during a pre-training stage (Yadav
et al., 2023b;a; Kotar et al., 2023; Mezghan et al., 2022). Some utilize 3D constraints to induce 3D-
awareness into the visual representations (Wallingford et al., 2023; Marza et al., 2023). There are even
been complicated games designed to encourage the emergence of useful representations (Weihs et al.,
2021b). Of particular interest is the EmbCLIP (Khandelwal et al., 2022) model, which serves as our
main baseline. This method leverages the large-scale, pretrained representations by CLIP (Radford
et al., 2021) as the visual encoder. Our model builds upon EmbCLIP, incorporating the proposed
codebook module to filter out redundant stimuli.
Bottleneck and regularize representation. Bottlenecked representations are common in machine
learning (Hinton et al., 2011; Kingma & Welling, 2014; Alemi et al., 2017; Koh et al., 2020; Federici
et al., 2020; Mairal et al., 2008), computer vision (He et al., 2016; Srinivas et al., 2021; Riquelme
et al., 2021; Van Den Oord et al., 2017; Chen et al., 2023; Kolesnikov et al., 2022; Hsu et al., 2023),
natural language processing (Shazeer et al., 2017; Fedus et al., 2022; Mahabadi et al., 2021), and even
reinforcement learning (Serban et al., 2020; Fan & Li, 2022; Pacelli & Majumdar, 2020). The current
most popular bottlenecked representation is VQ-GAN (Esser et al., 2021). Nonetheless, relatively few
have implemented these techniques in Embodied AI. Most applications of information bottlenecks in
this space, as far as we are aware, have been applied to full-observable MiniGrid (Chevalier-Boisvert
et al., 2023) or Atari (Bellemare et al., 2013) environments (Goyal et al., 2019; Igl et al., 2019; Bai
et al., 2021; Lu et al., 2020). By contrast, we situate our work within the partially-observed, physics-
enabled, and visually rich Embodied AI environments. The closest related work is a recent proposal
for learning a codebook for embodied AI using a NERF-based rendering objective (Wallingford et al.,
2023); this method pre-trains the codebook and later uses it for downstream tasks. By contrast, we
learn our codebook representations while simultaneously learning the policy to act.

3 METHODOLOGY

We first provide a brief background on how embodied AI agents are designed today. Next, we
introduce our contributions to make the model. We lay out the details of our task-conditioned
codebook and also describe our training strategy.

Background. The modern design for embodied agents share a common core architecture (Batra
et al., 2020b; Khandelwal et al., 2022). This architecture contains three main components. First, three
encoders encode the necessary information required to take an action. A visual encoder transforms
visual observations (e.g., RGB or depth) into a visual representation v; a goal encoder transforms the
task’s objective (e.g., GPS location, target object type, or natural language instructions) into a goal
embedding g; a previous-action encoder to embed the most recently executed action into an action
embedding α. For the visual encoder v, we mainly use the RGB sensors as visual stimuli. The only
exception is the object displacement task, for which we follow prior work to also include a depth
sensor, the segmentation mask sensor, and the end-effector sensor (Ehsani et al., 2022). The second
component of the architecture fuses v, g, α together. The three representations are flattened and then
concatenated to form the task-conditioned representation E. Finally, the third component keeps
track of the history of the agent’s trajectory and proposes the next action. This component includes a
recurrent state encoder to encode and remember past steps. So, r = Et|t = 1, ..., T encodes all the
past representations into a single state representation. This is injected by an actor-critic head, which
predicts a distribution over action space and also produces a value estimation of the current state.
The need for task-bottlenecked visual representations. EmbCLIP (Khandelwal et al., 2022) is
today’s state-of-the-art model for the tasks that we consider which encodes the three representations
in E ∈ RD, where D = 1568. This embedding contains CLIP features, which were trained for
general-purpose vision tasks and guided through language self-supervision (Radford et al., 2021).
Therefore, when presented with the appropriate input image, this representation can identify a large
number of object categories, their attributes, their spatial relationships, etc. It can even encode the
materials and textures of objects, and outline the actions that people appear to be taking in the image.
However, for tasks in Embodied AI, where the agent is asked to locate a pair of, say, lost “keys”,
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Figure 2: An overview of EmbCLIP-Codebook. The 3 representations corresponding to the input frame, the
goal, and the previous action get concatenated to form E ∈ R1568. The codebook module takes E and generates
a probability simplex P ∈ R256 over the latent codes. The hidden compact representation h ∈ R10 is a convex
combination of the codes weighted by P . The final task-bottlenecked codebook representation Ê is derived by
upsampling h which is subsequently passed to the recurrent state encoder and the policy to produce an action.

knowing the texture of the couch in the living room or the color of the flower vase on the dining table
seems irrelevant. These additional pieces of information, therefore, are also sent over to the policy,
which is often designed as a recurrent neural network (RNN) followed by a small actor-critic module.
These few parameters, therefore, must serve two purposes: they must identify what information is
useful for the task at hand and what action to take given that information.

The codebook module. We introduce a module that decouples the two objectives across different
parameters in the network. The input encoders and the codebook focus on extracting essential
information for the task from the visual input, whereas the policy (RNN and actor-critic heads) can
focus on taking actions conditioned on this filtered information.

We design the codebook to be a parameter-efficient module to transform the general-purpose
representation E into a compact task-bottlenecked one. The module inputs E and generates
a compact Ê (see Figure 2). This module contains codes, defined as a set of latent vectors
C = [c1, c2, ..., cK ] ∈ RK×Dc where K denotes codebook’s size and Dc is the dimensionality
of each latent code ck. To create a strong bottleneck, we set Dc = 10 and K = 256. These codes are
initialized randomly via a normal distribution and optimized along with the overall training algorithm.

To extract Ê from E, the module contains a scoring function ϕ(.) and an upsampling layer. We
first use P = ϕ(E) to generate a probability simplex over the K latent codes, where P = [pi]

K
i=1

such that
∑K

i=1 pi = 1. The scoring function ϕ is implemented as a single-layer MLP followed
by a softmax function. This configuration forces the agent to select which latent code(s) are more
useful for representing the current frame. Next, the hidden compact representation h is derived by
taking a convex combination of the learnable codes {ci}Ki=1 weighted by their corresponding pi:
h = PTC =

∑K
i=1 pi.ci. Further, the upsampling layer, implemented as a linear layer, upsamples

the hidden embedding h to the task-bottlenecked codebook representation Ê.

By design, we place the codebook module immediately before the RNN and after the E is fused.
In this way, the module focuses on single-step processing, prompting the codebook to compile
information at each individual step rather than relying on past steps. By positioning the codebook
module right after E, it fuses the visual representation v with the goal g. We compare our design
choice with the codebook module positioned right after the visual encoder (without goal-conditioning)
in Sec. A.9. In essence, this module design is reminiscent of memory networks, which keep track of
information (Han et al., 2020), except without the write functionality; not requiring a write operation
makes sense because we make the assumption that everything the agent needs to act is already
encoded in the CLIP embeddings.

Training algorithm. We employ Proximal Policy Optimization (PPO) (Schulman et al., 2017)2

to train the agent. PPO is an on-policy reinforcement learning algorithm, which optimizes all
three components of the architecture, including the codebook module. One critical challenge we

2We use DD-PPO to optimize the policy for the object displacement task (Ehsani et al., 2022).
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Table 1: Our method with the codebook outperforms the baselines on 2 different tasks, including zero-shot
evaluation on 4 Object Goal Navigation benchmarks and results on Object Displacement benchmark. We use ↑
and ↓ to denote if larger or smaller values are preferred.

Object navigation
Benchmark Model SR(%)↑ EL↓ Curvature↓ SPL↑ SEL↑

ProcTHOR-10k (validation) EmbCLIP 67.70 182.00 0.58 49.00 36.00
+codebook 73.72 136.00 0.23 48.37 43.69

ARCHITECTHOR (0-shot) EmbCLIP 55.80 222.00 0.49 38.30 20.57
+Codebook 58.33 174.00 0.20 35.57 28.31

RoboTHOR (0-shot) EmbCLIP 51.32 - - 24.24 -
+Codebook 55.00 - - 23.65 -

AI2-iTHOR (0-shot) EmbCLIP 70.00 121.00 0.29 57.10 21.45
+Codebook 78.40 86.00 0.16 54.39 26.76

Object displacement
PU(%)↑ SR(%)↑

ManipulaTHOR m-VOLE 81.20 59.60
+Codebook 86.00 65.10

encounter when training codebooks is codebook collapse (Van Den Oord et al., 2017; Riquelme
et al., 2021; Shazeer et al., 2017), where only a handful of codes are used by the agent, limiting the
model’s full capacity. While several solutions3 have been proposed to this problem, we find that
using dropout (Srivastava et al., 2014) is the straightforward yet effective approach to overcome this
challenge. Instead of directly employing the probability scores P for the convex combination, we
first apply dropout to it with a rate of 0.1. This produces new probability scores P̂ , which we then
use to combine the latent codes: h = P̂TC. Intuitively, this equates to randomly setting 10% of the
latent codes to zero before integrating them through a convex combination, preventing the agent from
relying on only a handful of codes.

4 EXPERIMENTS AND ANALYSIS

In our experiments, we demonstrate that the goal-conditioned codebook embedding Ê results in
significant improvements over the non-bottlenecked embedding E across a variety of Embodied-AI
benchmarks (Sec. 4.1). We further show that our bottlenecked embeddings are more generalizable
and can be applied across different domains without exhaustive finetuning (Sec. 4.2). We study (both
qualitatively and quantitatively) the visual cues encoded in the codebook and how they relate to the
target task (Sec. 4.3). Finally, we evaluate whether our approach is suitable for other pretrained
visual encoders. We substitute the CLIP representations with DINOv2 (Oquab et al., 2023) visual
features and replicate our experiments. The results confirm that our proposed codebook module is
representation-agnostic and can effectively bottleneck various pretrained visual representations.

4.1 CODEBOOK-BASED REPRESENTATIONS IMPROVE PERFORMANCE IN EMBODIED-AI

Tasks. We present our results on several navigation benchmarks and a manipulation benchmark to
demonstrate the benefits of compressing the task-conditioned embedding using the codebook. We
consider ObjectNav (navigate to find a specific object category in a scene) in PROCTHOR (Deitke
et al., 2022a), ARCHITECTHOR, ROBOTHOR (Deitke et al., 2020),and AI2-iTHOR (Kolve et al.,
2017b). We also consider Object Displacement (bringing a source object to a destination object using
a robotic arm) (Ehsani et al., 2022) in ManipulaTHOR (Ehsani et al., 2021) as our manipulation task.

4.1.1 OBJECT NAVIGATION

Model. We adopt the same core architecture used in EmbCLIP (Khandelwal et al., 2022) for Object
Navigation. RGB images are encoded using a frozen CLIP ResNet-50 model to a 2048× 7× 7 tensor
and then compressed by a 2-layer CNN to another 32× 7× 7 tensor v. This tensor is concatenated
with the 32-dim goal embedding t and a previous action embedding α, passed through another 2-layer
CNN and flattened to form a D = 1568-dim goal-conditioned observation embedding E. While
EmbCLIP directly passes this 1568-dim representation, E, to to a 1-layer recurrent state encoder
with 512 hidden units, we use a codebook module with codebook’s size of K = 256 and Dc = 10 as
a bottleneck to compress this goal-conditioned embedding and filter out the irrelevant information.
We further pass the resulting goal-bottlenecked codebook embedding Ê to the following recurrent
state encoder. We term our model as EmbCLIP-Codebook in the rest of the paper.

3We tried Linde-Buzo-Gray (Linde et al., 1980) splitting algorithm and Gumbel Softmax (Jang et al., 2017)
with careful temperature tunning, but have found that the dropout is the most effective approach.
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Table 2: Results for models trained on ProcTHOR and evaluated with fine-tuning on Habitat Object Goal
Navigation benchmarks. Our method with the codebook can adapt to Habitat environment through the lightweight
finetuning. We use ↑ and ↓ to denote if larger or smaller values are preferred.

Object goal navigation
Benchmark Fine-tuning parts Model SR(%)↑ SPL↑ Invalid Actions(%)↓ Curvature↓

Habitat challenge 2022
(HM3D Semantics)

Adaptation Module EmbCLIP 36.45 18.18 28.10 0.53
+Codebook 50.25 25.76 21.50 0.26

Entire Model EmbCLIP 58.00 30.97 15.80 0.52
+Codebook 55.00 29.21 15.40 0.38
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Figure 3: Sample Trajectory.
EmbCLIP agent takes many re-
dundant rotations, resulting in a
high average curvature, whereas
ours navigates more smoothly.

Experiment Details. All models are trained using the AllenAct
framework. We follow (Deitke et al., 2022b) to pretrain the Emb-
CLIP baseline and EmbCLIP-Codebook on the the PROCTHOR-10k
houses with 96 samplers for 435M steps. The models are evaluated
zero-shot on the downstream benchmarks, including PROCTHOR-
10k val scenes, ARCHITECTHOR val scenes, ROBOTHOR test
scenes4, and AI2-iTHOR val scenes. Each model is evaluated for
5 checkpoints between 415M to 435M training steps and we select
the best model results from the ARCHITECTHOR val scenes. Please
refer to the supplementary Sec. A.1 for more training details.

Result. Table 1 shows EmbCLIP-Codebook achieves best Success
Rate (SR) across all 4 benchmarks. Furthermore, Episode Length
(EL) is significantly lower compared to EmbCLIP suggesting that our
agent is able to find the goal in much fewer steps. We further present
Curvature as a key evaluation metric comparing the smoothness of
the trajectories. Smoother trajectories are generally safer and more
energy-efficient. Excessive rotations and sudden changes in direction
can lead to increased energy consumption and increase the chances
of collisions with other objects. The curvature value k is defined as
k = dx×ddy−dy×ddx

(dx2+dy2)
3
2

for each coordinate (x, y) on the trajectory and

it’s averaged across all time steps in the agent’s path. A higher value of average Curvature signifies
more rotations and changes in direction. Conversely, a value closer to zero suggests a predominantly
straight and smooth trajectory. Our agent travels in much smoother paths across all benchmarks.
Figure 3 shows an illustrative example. Please find more examples in Supplementary Sec. A.7.

SPL Limitations and Introducing a New Metric SEL. We further report the Success Weighted by
Path Length (SPL) as one of the common metrics used in the field for Object Navigation task. SPL
is defined as 1

N

∑N
i=1 Si

li
max(li,pi)

where li is the shortest possible path (traveled distance) to the
target object, pi is the taken path by the agent and Si is a binary indicator of success for episode i. As
shown in the table, EmbCLIP-Codebook outperforms in Success Rate and solves the task with fewer
steps (smaller EL). However, it lags behind in the SPL metric. This discrepancy arises because SPL is
evaluated based on the distance traveled rather than the actual number of steps taken. This highlights
a limitation in this metric since the efficiency of a path should consider factors like time and energy
consumption. Actions such as rotations and look-ups/downs, which also consume time and energy,
are not accounted for in this metric. In light of this observation, we further report Success Weighted
by Episode Length (SEL): 1

N

∑N
i=1 Si

wi

max(wi,ei)
, where wi is the shortest possible episode length

to the target object, and ei is the episode length produced by the agent. We utilize the privileged
information from the environment to develop an expert agent to collect wi for each episode. Shown
in Table 1, EmbCLIP-Codebook outperforms EmbCLIP by a significant margin in SEL.

4.1.2 OBJECT DISPLACEMENT

Model. We adopt the same model architecture (m-VOLE w. GT mask) used in m-VOLE (Ehsani
et al., 2022). The model consists of a 3-layers CNN to encode the RGB-D and a ground truth
segmentation mask, a frozen ResNet-18 to encode the query images of target classes, including
the source object (i.e., an apple) as the object has not picked up yet or the destination object after
the source object (i.e., a table) has been picked up, and a distance embedder to encode the relative
distance computed by the Object Location Estimator Module, which measures the distance between

4Link to RoboTHOR leaderboard
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the end-effector and the source/destination object. The resulting visual features of current observation
and query image are then concatenated with the distance feature to construct the goal-conditioned
observation embedding E with D = 1536. While m-VOLE directly passes the embedding E to the
following recurrent state encoder, we add our codebook module with codebook’s size of K = 256

and Dc = 10 to compress the embedding E to the goal-conditioned codebook embedding Ê. Finally,
the recurrent state encoder processes the embedding Ê and the actor-critic after the recurrent state
encoder further predicts the action probability distribution as well as the state value estimation. We
call our model as m-Vole-Codebook in the rest of the paper.

Experiment Details. We, again, use the AllenAct framework to train our m-Vole-Codebook with the
default reward shaping provided by (Ehsani et al., 2022). Following (Ehsani et al., 2022), we train our
agent by DD-PPO (Wijmans et al., 2019) with 80 samplers for 20M steps on APND dataset (Ehsani
et al., 2021) in 30 kitchen scenes, where we split them into 20 training scenes, 5 validation scenes,
and 5 testing scenes. During the training stage, the agent is required to navigate to the source object,
pick it up, and bring it to the destination object. Please refer to Sec. A.1 for more training details.

Results. To quantify the models’ performance, we report PickUp Success Rate (PU) and Success
Rate (SR) as our evaluation metrics. As shown in Table 1, we can find that our m-Vole-Codebook
outperforms m-VOLE baseline on both PU and SR. It demonstrates that our codebook module is
applicable to the Embodied AI tasks involving interactions between the agent and environment.

4.2 CODEBOOK EMBEDDING IS EASIER TO TRANSFER TO NEW VISUAL DOMAINS
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Figure 4: Lightweight Finetuning of the Adap-
tation Module. We only finetune a few CNN lay-
ers, action/goal embedders, and the codebook scor-
ing function when moving to new visual domain.

Model. This section investigates the capability of
the codebook embedding to transfer across new vi-
sual domains without exhaustive finetuning. Efficient
transfer of Embodied-AI agents between distinct vi-
sual domains remains a important challenge for many
downstream applications. For example, there might
be a desire to retain the high-level decision-making
policy established in the recurrent state encoder and
the actor-critic during large-scale pretraining. Alter-
natively, resource constraints may prevent end-to-end
finetuning of the entire model in the target domain.
To address this, we propose finetuning only the CNN
layers that follow the frozen CLIP ResNet backbone,
the goal encoder, and the previous action encoder.
This way ensures adjustments only to the visual rep-
resentation and the task embedding, thereby adapting
the agent to the target domain without changing the
policy’s behaviors completely. We call these fine-
tuned components as the Adaptation Module, shown in Figure 4. Meanwhile, other components,
including the CLIP ResNet, codebook, recurrent state encoder, and actor-critic, remain frozen.

Experiment Details. We conduct lightweight finetuning of the Adaptation Module in both EmbCLIP-
Codebook and the baseline for Object Navigation on Habitat 2022 ObjectNav challenge. Since
AI2THOR and Habitat simulators exhibit variations in visual characteristics, lighting, textures and
other environmental factors, they are appropriate platforms for studying the lightweight transfer
capabilities of Embodied-AI agents. Following (Deitke et al., 2022b), we use the checkpoint at 200M
steps to perform the finetuning in Habitat for another 200M steps with 40 samplers. Since the target
object types in Habitat are subset of the ones in PROCTHOR, we discard the parameters in the goal
embedder corresponding to the unavailable object types (more details in Supplementary Sec. A.1).

Results. Table 2 shows that EmbCLIP-Codebook achieves superior performance during the
lightweight fine-tuning of the Adaptation Module across all metrics. To elaborate, we attain a
13.8% higher success rate and a 7.58% improvement in SPL, all while executing fewer invalid actions
and achieving smoother trajectories. Our codebook bottleneck effectively decouples the process of
learning salient visual information for the task from the process of decision-making based on this
filtered information. Consequently, when faced with a similar task in a new visual domain, the need
for adaptation is significantly reduced. In this scenario, only the modules responsible for extracting
essential visual cues in the new domain require fine-tuning, while the decision-making modules
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Alarm Clock Vase Laptop House Plant Basketball Bowl Chair

EmbCLIP

EmbCLIP 
+Codebook

Goal:

Figure 5: GradCAM Attention Visualization. While EmbCLIP is distracted by different objects and other
visual cues even though the target object is visible in the frame, EmbCLIP-Codebook is able to effectively ignore
such distractions and only focus on the object goal.

Table 3: Linear probing shows code-
book embeddings encode more task-
relevant cues

Task Model Accuracy↑ F1 Score↑
Object Presence EmbCLIP 0.10 0.55
(all 125 categories) +Codebook 0.05 0.29
Object Presence EmbCLIP 0.36 0.53
(16 goal categories) +Codebook 0.27 0.11
Goal Visibility EmbCLIP 0.87 -
(binary) +Codebook 0.92 -
Distance to Goal EmbCLIP 0.29 -
(5-way classification) +Codebook 0.31 -

Table 4: Our method with the codebook consistently outperforms
the baselines using DINOv2 (Oquab et al., 2023) visual features in
zero-shot evaluation on 4 Object Goal Navigation benchmarks.

Object navigation
Benchmark Model SR(%)↑ EL↓ Curvature↓ SPL↑ SEL↑

ProcTHOR-10k (validation) DINOv2 (Oquab et al., 2023) 74.25 151.00 0.24 49.53 43.20
+Codebook (Ours) 76.31 129.00 0.12 50.26 44.70

ARCHITECTHOR (0-shot) DINOv2 57.25 218.00 0.25 36.83 29.00
+Codebook (Ours) 59.75 194.00 0.11 36.00 31.70

AI2-iTHOR (0-shot) DINOv2 74.67 97.00 0.19 59.45 26.50
+Codebook (Ours) 76.93 68.00 0.07 60.14 28.30

RoboTHOR (0-shot) DINOv2 60.54 - - 29.36 -
+Codebook (Ours) 61.03 - - 28.01 -

can remain fixed. In contrast, EmbCLIP, which does not decouple this skill learning, necessitates
adaptation of both visual cue extraction and decision-making modules when transitioning to a new
domain. This is the primary reason for the substantial performance gap observed in the lightweight
fine-tuning setting. These results are upper-bounded by end-to-end finetuning of the entire model
with access to more training resources. Here, EmbCLIP-Codebook performs nearly on par with the
EmbCLIP while still maintaining smoother trajectories, as evidenced by the curvature metric.

4.3 CODEBOOK ENCODES ONLY THE MOST IMPORTANT INFORMATION TO THE TASK

We conduct an analysis (both qualitatively and quantitatively) to explore the information encapsulated
within our bottlenecked representations after training for Object Navigation on PROCTHOR-10k.

Linear Probing. We use linear probing to predict a list of primitive tasks from the goal-conditioned
visual embedding E in EmbCLIP and the bottlenecked version Ê in EmbCLIP-Codebook generated
for 10k frames in ARCHITECTHOR scenes. The selected tasks include Object Presence (identifying
which of the 125 object categories are present in the image), Goal Presence (identifying which of the
16 goal categories are present in the image), Goal Visibility (determining if the object goal is visible
in the frame and within 1.0m distance from the agent), and Distance to Goal (predicting the distance
to the target object only when it’s closer than 5m to the agent). We train simple linear classifiers for
each of these tasks to predict the desired outcome from the embeddings. The results are summarized
in Table 3. Our goal-bottlenecked representations effectively exclude information related to object
categories other than the specified goal. Consequently, although our performance in predicting the
presence of all object categories may be suboptimal, this information is usually irrelevant to the object
navigation task. Instead our method improves accuracy in predicting goal visibility. Furthermore, our
representations better encode information about the distance to the goal (when it’s close enough to
the agent) resulting in better navigation towards the goal in the final stages of the task.

Grad-Cam Visualization. We utilize Grad-Cam (Selvaraju et al., 2017) to visualize the attention map
in the visual observation. Given an action predicted by the policy model at a single step, we treat it as
a classification target and calculate the gradients to minimize the classification objective. With the
gradients, we further apply XGradCAM to visualize the final CNN layer producing goal-conditioned
embeddings E. As shown in Figure 5, we observe that EmbCLIP often focuses on many different
objects, including their appearance, texture, or other distracting visual cues, even though the target
object has been visible in view. However, EmbCLIP-Codebook is able to ignore many distracting
visual cues and concentrate on the target object.

Nearest Neighbor Visualization To visually assess the information captured in our embeddings, we
employ a nearest neighbor retrieval using a sample of 10k frames from Procthor, each accompanied
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Figure 6: Nearest-Neighbor Retrieval in the Goal-Conditioned Embedding Space (E and Ê). The 4
examples show that EmbCLIP-Codebook prioritizes task semantics while EmbCLIP focusses on scene semantics.
In (a) and (b), our nearest neighbors are based on goal visibility and goal proximity to the agent whereas
EmbCLIP ones are based on the overall semantics of the scene (tables in the left, toilets far away). In (c) and (d),
ours favor the overall scene layout whereas EmbCLIP mostly focuses on colors and appearances.

by a corresponding goal specification, which may or may not be visible in the frame. We feed these
frames and goals into our pretrained Objectnav models, generating their respective goal-conditioned
embeddings (denoted as E in EmbCLIP and Ê in EmbCLIP-Codebook). We then identify nearest
neighbors in both the Ê and Ê embedding spaces, as illustrated in Figure 6 (a) - (d).

In (a), the codebook-based nearest neighbors for the Vase query image are other instances of ob-
servations with the goal prominently visible, including goals that are not Vase. Similarly in (b),
the nearest neighbors are observations with the goal visible, but now at a further distance from
the agent, akin to the query image. In contrast, the EmbCLIP neighbors for (a) include a wooden
table on the left, like the query image, and in (b) include free space with a toilet in the distance.
These examples indicate that EmbCLIP-Codebook prioritizes task semantics over EmbCLIP which
tends to focus on scene semantics. In (c) and (d), the query does not contain the goal object. Here,
EmbCLIP-Codebook neighbors show a similarity in the overall scene layout, where as EmbCLIP
neighbors tend to prioritize the appearance of the floor and walls.

4.4 CODEBOOK MODULE IS REPRESENTATION-AGNOSTIC

To assess the applicability of the codebook to other visual encoders and to quantify the extent of the
improvements irrespective of the underlying representation, we replaced the CLIP representations
with DINOv2 (Oquab et al., 2023) visual features. DINOv2 relies on discriminative self-supervised
pre-training (which is different from the image-text pretraining approach utilized in CLIP) and is
proven to be effective across a wide range of tasks, including Embodied-AI. We use the frozen
DINOv2 ViT-S/14 model to encode RGB images into a 384× 7× 7 tensor which is compressed to
tensor v using a 2-layer CNN. Similar to EmbCLIP, v is concatenated with a 32-dimensional goal
embedding and the previous action embedding and the result is flattened to obtain a 1574-dimensional
goal-conditioned observation embedding, denoted as E. We employed a codebook with similar
dimensions, K = 256 and Dc = 10, to bottleneck the goal-conditioned representations. The results
are presented in Table 4. Consistently, our approach outperforms the DINOv2 baseline models across
a variety of Object Navigation metrics in various benchmarks. This experiment underscores the
effectiveness of our codebook module in bottlenecking other visual features for embodied-AI tasks.

5 CONCLUSION

Inspired by selective attention in humans, we proposed a compact learnable codebook module for
Embodied-AI that decouples identifying the salient visual information useful for the task from
the process of decision-making based on that filtered information. It acts as a task-conditioned
bottleneck that filters out unnecessary information, allowing the agent to focus on more task-related
visual cues. It significantly outperforms state-of-the-art baselines in Object goal navigation and
Object displacement tasks across 5 benchmarks. This results in significantly faster adaptation to new
visual domains. Our qualitative and quantitative analyses show that it captures more task-relevant
information, resulting in more effective exploration strategies.
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A APPENDIX

The following items are provided in the Appendix:

I. Training details and code along with our pretrained models for reproducing our experiments
(§ A.1).

II. A qualitative analysis of the information captured in our codebook module using nearest
neighbor retrieval (§ A.2).

III. A comparison of our codebook-based architecture with other information-bottlenecked
baselines (§ A.3).

IV. Qualitative examples of the failure cases of our approach (§ A.4).
V. An analysis of the impact of end-to-end finetuning of the CLIP visual encoder on final

performance (§ A.5).
VI. An ablation study on codebook regularization and codebook collapse (§ A.6).

VII. A study of our agent’s behavior compared to the baseline in terms of trajectory smoothness,
redundant actions, etc. (§ A.7).

VIII. A comparison with other object goal navigation baselines (§ A.8).
IX. An ablation study of codebook hyperparameters including codebook size, scoring mechanism

applied to the codebook entries, etc. (§ A.9).

A.1 TRAINING DETAILS

Code and pretrained models are publicly available through the project page.

Object Goal Navigation

We follow (Deitke et al., 2022b) to pretrain the EmbCLIP baseline and EmbCLIP-Codebook on
the the PROCTHOR-10k houses using the default action space {MoveAhead, RotateRight,
RotateLeft, LookUp, LookDown, Done}. During this stage, we optmize the models by
Adam (Kingma & Ba, 2014) optimizer with a fixed learning rate of 3e−4. In addition, we fol-
low (Deitke et al., 2022b) to have two warm up stages by training model parameters with lower
number of steps per batch for PPO training (Schulman et al., 2017). In the first stage, we set number
of steps as 32, and in the second stage, we increase the number of steps to 64. These two stages are
trained by 1M steps, respectively. After the second stage, we increase the number of steps to 128
and keep it till the end of training (e.g., 435M steps). For reward shaping, we employ the default
reward shaping defined in AlleAct: Rpenalty + Rsuccess + Rdistance, where Rpenalty = −0.01,
Rsuccess = 10, and Rdistance denotes the cahnge of distances from target between two consecutive
steps. In the experiments, we follow (Deitke et al., 2022b) to use 16 objects as possible target
objects, include {AlarmClock, Apple, BaseballBat, BasketBall, Bed, Bowl, Chair,
GarbageCan, HousePlant, Laptop, Mug, Sofa, SprayBottle, Television, Toilet,
Vase}. Figure 7 compares the Success Rate training curves for EmbCLIP and EmbCLIP-Codebook.
As shown in the figure, adding our codebook bottleneck significantly improves the sample efficiency
through faster convergence, makes the training more robust, and achieves a better performance by the
end of the training.

Object Displacement

Following (Ehsani et al., 2022), we optimize our agent’s model parameters by Adam opti-
mizer (Kingma & Ba, 2014) with a fixed learning of 3e−4 and number of steps of 128 for DD-PPO (Wi-
jmans et al., 2019) training. On APND dataset (Ehsani et al., 2021) we use 12 possible target objects,
including {Apple, Bread, Tomato, Lettuce, Pot, Mug, Potato, Pan, Egg, Spatula, Cup,
and SoapBottle. During the training stage, we sample an initial location from 130 possible agent
initial locations to spawn the agent and sample initial locations for source and target objects from 400
possible object-pair locations to place objects. The action space in this environment is {MoveAhead,
RotateRight, RotateLeft, MoveArmBaseUp, MoveArmBaseDown, MoveArmAhead,
MoveArmBack, MoveArmRight, MoveArmLeft, MoveArmUp, MoveArmDown}.

Habitat Finetuning
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Figure 7: Success Rate training curve comparing EmbCLIP and EmbCLIP-Codebook

Table 5: Our proposed codebook module consistently outperforms other information bottleneck baselines
across different ObjectNav benchmarks. EmbCLIP-AE uses an auto-encoder to bottleneck the task-conditioned
embedding E and EmbCLIP-SelfAttn applies self attention on top of the goal-conditioned CLIP feature maps.
(Models are evaluated at 210M training steps.)

Object navigation
Benchmark Model SR(%)↑ EL↓ SPL↑

ProcTHOR-10k (validation)

EmbCLIP 63.43 133.00 45.98
EmbCLIP-AE 59.35 145.00 42.14
EmbCLIP-SelfAttn 56.50 126.00 44.02
EmbCLIP-Codebook (Ours) 72.49 134.00 49.37

ARCHITECTHOR (0-shot)

EmbCLIP 52.67 172.00 34.93
EmbCLIP-AE 48.67 166.00 32.58
EmbCLIP-SelfAttn 50.00 151.00 36.32
EmbCLIP-Codebook (Ours) 55.25 160.00 35.31

AI2-iTHOR (0-shot)

EmbCLIP 64.13 108.00 52.76
EmbCLIP-AE 58.93 96.00 47.29
EmbCLIP-SelfAttn 59.07 77.00 52.30
EmbCLIP-Codebook (Ours) 74.80 81.00 57.79

As mentioned in the main paper (Sec. 4.2), we follow (Deitke et al., 2022b) to use the checkpoint at
200M steps to perform another 200M finetuning. However, in our lightweight finetuning, we only
update the model parameters inside the adaption module (shown in Fig. 4). In this finetuning stage,
we use Adam (Kingma & Ba, 2014) optimizer to update the model parameters and we set the number
of steps in the PPO (Schulman et al., 2017) training as 128. We try 4 learning rates, incluing {1e−4,
2e−4, 3e−4, 4e−4} and find 1e−4 works best for EmbCLIP and 3e−4 works best for the model with
our codebook module. Furthermore, as mentioned in the Sec. 4.2, because the target object types in
Habitat, including {Bed, Chair, HousePlant, Sofa, Television, Toilet}, are subset of
the ones in PROCTHOR, we remove the parameters in the goal embedder corresponding to the rest of
10 objects presented in the pretraining stage.

A.2 WHAT’S ENCODED IN THE CODEBOOK MODULE?

We expand our analysis of nearest neighbor retrieval to further evaluate the information captured
within our codebook module. Utilizing a set of 10k frames from ProcTHOR, each accompanied
by a corresponding goal specification that may or may not be visible in the frame, we input these
frames and their associated goals into our pretrained EmbCLIP-Codebook model. This process
generates hidden compact representations h, which are convex combinations of learnable codes
{ci}Ki=1. To visually assess the information encoded in each individual learnable code ci, we perform
nearest neighbor retrieval on the dataset using each code ci as a query. Fig. 8 illustrates the 8 nearest
neighbors for 9 different codes. The figure reveals that certain codes primarily contribute to goal
visibility, determined by their proximity to the agent, while others capture various geometric and
semantic details of scene layouts, such as walkable areas, corners, doors, etc.
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Table 6: We fine-tune the CLIP ResNet visual encoder in an end-to-end manner for an additional 30M steps.
The table shows the results for the frozen backbone and after end-to-end finetuning. EmbCLIP-Codebook
consistently outperforms EmbCLIP both with frozen and fine-tuned visual encoder.

Object navigation
Benchmark Model SR(%)↑ EL↓ SPL↑

ProcTHOR-10k (validation)

EmbCLIP 67.70 182.00 49.00
EmbCLIP-Codebook 73.72 136.00 48.37
EmbCLIP + CLIP ResNet fine-tuning 74.37 138.00 52.46
EmbCLIP-Codebook + CLIP ResNet fine-tuning 79.38 120.00 52.67

ARCHITECTHOR (0-shot)

EmbCLIP 55.80 222.00 38.30
EmbCLIP-Codebook 58.33 174.00 35.57
EmbCLIP + CLIP ResNet fine-tuning 59.00 182.00 38.92
EmbCLIP-Codebook + CLIP ResNet fine-tuning 62.58 168.00 37.10

AI2-iTHOR (0-shot)

EmbCLIP 70.00 121.00 57.10
EmbCLIP-Codebook 78.40 86.00 54.39
EmbCLIP + CLIP ResNet fine-tuning 72.53 88.00 59.28
EmbCLIP-Codebook + CLIP ResNet fine-tuning 77.75 99.00 59.33

A.3 COMPARISON WITH OTHER INFORMATION-BOTTLENECKED BASELINES

We ablate the choice of the bottleneck architecture and conduct a comparison between our code-
book module and two alternative information-bottlenecked baselines. Specifically, we evaluate
against EmbCLIP-AE, which employs an auto-encoder on the goal-conditioned embedding E.
This autoencoder comprises a series of linear layers with ReLU activation functions, mapping the
representation to P ∈ R256 and h ∈ R10 before resizing back to Ê ∈ R1574. Additionally, we
introduce EmbCLIP-SelfAttn as another baseline, utilizing self-attention on the CLIP feature maps.
To achieve this, we merge the compressed CLIP feature map v with the goal embedding g, resulting
in a 32× 7× 7 goal-conditioned feature map. This map is then processed through the self-attention
module, where 1x1 convolutions serve as the k, q, and v functions. Due to limited computational
resources and time constraints during the discussion period, the results are reported for the Object
Navigation task at 210M training steps as shown in Table 5.

A.4 WHAT ARE THE FAILURE CASES FOR EMBCLIP-CODEBOOK?

Fig. 9 illustrates examples of two modes of failure in our EmbCLIP-Codebook agent: perception and
exploration. Although the codebook module enables the agent to effectively filter out distractions
and concentrate on the target object, the agent’s performance remains constrained by the perceptual
capabilities of the pretrained visual encoder. The top row of Fig. 9 showcases examples of failures
related to the perception. These instances predominantly occur when the goal object is either too
small or challenging to identify (the baseball bat on the table in the top left example). In these
scenarios, although the agent traverses past the object, it fails to accurately locate the target. The
second row of the figure presents additional instances of failure, wherein the agent fails to explore
specific areas of the environment where the target object is located.

A.5 END-TO-END FINE-TUNING OF THE VISUAL ENCODER

In this section, we investigate the impact of end-to-end finetuning the entire policy model, including
the CLIP ResNet visual encoder. Initially, we trained the models with the visual backbone frozen for
420 million steps, as depicted in Figure 2, with the results in Table 1. Subsequently, we fine-tuned
the entire policy model, including the visual encoder, end-to-end for an additional 30 million steps.
This process of fine-tuning the entire policy model incurs high computational costs. To facilitate this,
we utilize multi-node training on 4 servers, each equipped with eight A-100-80GB GPUs. Moreover,
we found that it is important to (1) employ a larger number of samplers (128) to match the substantial
batch size (32, 768) used in the CLIP’s pretraining (Radford et al., 2021), and (2) use a small learning
rate (1e−6) for training stability. As shown in Table 6, while there is a substantial improvement
from fine-tuning the entire policy model, including the visual encoder, compared to the frozen
one, a noticeable gap still exists between fine-tuned EmbCLIP and fine-tuned EmbCLIP-Codebook.
Remarkably, with further end-to-end finetuning, EmbCLIP-Codebook achieves significantly superior
results compared to all other models.
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Table 7: Adding a dropout on top the probability distribution over the latent codes acts as a codebook
regularization and improves the performance. (Models are evaluated at 150M training steps.)

Object navigation
Benchmark Model SR(%)↑ EL↓ SPL↑

ProcTHOR-10k (validation)
EmbCLIP 59.35 115.00 45.27
EmbCLIP-Codebook w/o Dropout 62.52 126.00 45.46
EmbCLIP-Codebook 71.39 147.00 47.46

ARCHITECTHOR (0-shot)
EmbCLIP 45.67 127.00 33.68
EmbCLIP-Codebook w/o Dropout 48.08 164.00 33.61
EmbCLIP-Codebook 57.17 192.00 35.65

AI2-iTHOR (0-shot)
EmbCLIP 58.93 67.00 51.55
EmbCLIP-Codebook w/o Dropout 66.93 102.00 54.13
EmbCLIP-Codebook 73.47 108.00 54.40

A.6 CODEBOOK REGULARIZATION

Codebook collapse is a prevalent issue marked by the assignment of overconfident or high probabilities
to a specific subset of latent codes in the codebook, causing the majority of codes to be underutilized.
This restrains the models from fully leveraging the codebook’s capacity. While it’s important to note
that our codebook module doesn’t experience a complete collapse, incorporating regularization into
the codebook enhances overall performance by promoting a more balanced utilization over all the
latent codes. While various solutions have been suggested, we have found that applying a simple
dropout on top of the codebook probabilities is the most effective and straightforward approach.
In Fig. 10, we compare the average codebook probability distributions between two models—one
trained with a 0.1 dropout probability and the other without any dropout. The figure shows that
this regularization leads to a more uniform average usage of the latent codes. Fig. 11 compares the
training curves of the two models and Table 7 presents the corresponding evaluation results. Clearly,
introducing such regularization to the codebook results in an improved performance. We additionally
tried Linde-Buzo-Splitting algorithm (Linde et al., 1980) to balance the codebook useage. More
specifically, during the training process, if there is a code vector that is underutilized, we perform
a split on the most frequently used latent code, creating two equal embeddings and replacing the
unused one. The corresponding training curve is depicted in Fig. 11, which shows a severe imbalance
and eventual collapse during the training.

A.7 COMPARISON OF AGENT’S BEHAVIOR

To enhance our understanding of the agent’s navigation behavior, we delved deeper than the conven-
tional embodied navigation metrics. We assessed the sequential actions and curvature values, offering
empirical insights into the agent’s behavior throughout the navigation episodes. Fig. 12 shows the
action distribution of EmbCLIP-Codebook compared to EmbCLIP baseline in ARCHITECTHOR
scenes. As shown in the plot, EmbCLIP-Codebook mostly favors MoveAhead actions while EmbCLIP
baseline performs lots of redundant rotations. This observation is also supported by Fig. 13 which
plots the frequencies of sequential MoveAhead actions taken by the agents. EmbCLIP-Codebook
takes sequential MoveAhead actions much more frequently than the baseline resulting in smoother
trajectories travelled by the agent. This provides further evidence for the lower average curvature for
the EmbCLIP-Codebook trajectories as reported in Table 1. This is qualitatively visualized in the
top-down maps shown in Fig. 14.

A.8 COMPARISON TO OTHER BASELINES

Table 8 compares our method with 2 other baselines SGC (Singh et al., 2023) and NRC (Wallingford
et al., 2023) on 3 Object Navigation benchmarks based on the numbers reported in the papers. Scene
Graph Contrastive (SGC) improves the representation by building a scene graph from the gent’s
observations. Neural Radiance Field Codebooks (NRC) learns object-centric representations through
novel view reconstruction and finetunes the representation for Object Navigation task. As shown in
the table, we achieve better success rate and lower episode length compared to all methods across all
3 benchmarks.
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Table 8: Comparisons against 2 other methods SGC (Singh et al., 2023) and NRC (Wallingford et al., 2023) on
Object Navigation Benchmarks. Our method outperforms all the baselines on both Success Rate and Episode
Length in all 3 benchmarks.

Object navigation
Benchmark Model SR(%)↑ EL↓ SPL↑

ARCHITECTHOR (0-shot)
SGC (Singh et al., 2023) 53.80 204.00 34.80
EmbCLIP 55.80 222.00 38.30
EmbCLIP+Codebook 58.33 174.00 35.57

RoboTHOR-Test (0-shot) NRC (Wallingford et al., 2023) (finetuned) 50.10 - 23.90
EmbCLIP (0-shot) 51.32 - 24.24
EmbCLIP+Codebook (0-shot) 55.00 - 23.65

AI2-iTHOR (0-shot)
SGC (Singh et al., 2023) 71.40 124.00 59.30
EmbCLIP 70.00 121.00 57.10
EmbCLIP+Codebook 78.40 86.00 54.39

Table 9: Ablations of Different Codebook Hyper-Parameters on 3 Object Navigation Benchmarks.

Object Navigation
Benchmark Codebook Indexing Codebook Size Goal-Conditioned SR(%)↑ EL↓ SPL↑

ProcTHOR-10k (validation)

1024 × 10 ✓ 72.56 119 48.88
Softmax 256 × 10 ✓ 73.4 124 49.84

256 × 10 ✗ 65.31 134 43.62
Top-1 gating 38.06 110 29.39
Top-8 gating 256 × 10 ✓ 68.22 160 45.86
Top-32 gating 73.27 138 48.5
EmbCLIP Baseline - - 59.81 176 43.91

ARCHITECTHOR (0-shot)

1024 × 10 ✓ 60.00 160 37.33
Softmax 256 × 10 ✓ 55.67 171 34.49

256 × 10 ✗ 48.42 181 31.02
Top-1 gating 25.83 112 20.00
Top-8 gating 256 × 10 ✓ 52.50 222 32.07
Top-32 gating 59.33 188 36.14
EmbCLIP Baseline - - 50.5 209 35.64

AI2-iTHOR (0-shot)

1024 × 10 ✓ 76.4 65 57.4
Softmax 256 × 10 ✓ 72.67 93 54.82

256 × 10 ✗ 66.93 107 48.53
Top-1 gating 46.13 100 37.5
Top-8 gating 256 × 10 ✓ 73.2 129 51.23
Top-32 gating 72.93 101 50.57
EmbCLIP Baseline - - 60.80 137 52.35

A.9 CODEBOOK ABLATIONS

Table 9 compares different codebook hyperparameters including codebook size, scoring mechanism
applied to the codebook entries and the choice of representation that undergoes compression by the
codebook (goal-conditioned or not). All models are trained on PROCTHOR-10k houses for 300M
training steps and evaluated zero-shot on ProcTHOR (validation), ArchitecTHOR and AI2-iTHOR
benchmarks. We ablate 2 different codebook sizes specifically 256×10 and 1024×10. To underscore
the significance of goal-conditioning, we employ the codebook to compress representations both
before and after they are fused with the goal (v or E embeddings). As shown in the table, our
codebook bottleneck is only effective when the visual representation is conditioned on the goal across
all the benchmarks. Moreover, to further intensify the bottlenecking mechanism, we selectively
retain only the top-N scores, disregarding the rest, before computing the convex combination of
the codebook entries. This is inspired by the gating mechanism in Mixture of Experts (Riquelme
et al., 2021; Shazeer et al., 2017) and results in only the top N most important codes to contribute
to the bottlnecked representation at any given time. As shown in the table, selecting the top 32
codes for the convex combination can sometimes work as well as using all 256 latent codes. Using
a bigger codebook size (1024 instead of 256) improves the zero-shot generalization in some of the
benchmarks.
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Figure 8: Nearest-neighbor retrieval in the hidden compact Representation Space h ∈ R10

using {ci}Ki=1 as queries. We show the 8 nearest neighbors of 9 learnable codes in the codebook
module. While some codes seem to be responsible for encoding the object goal visibility depending
on different proximities to the agent (codes 1 to 5), some others encode other semantic and geometric
information about the scene layout such as walkable surfaces (code 6,7), corners (code 8), and doors
(code 9) etc.
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Figure 9: Failure cases of EmbCLIP-Codebook in Object Navigation. Top row shows the failure
examples related to perception, where the agent traverses past the goal object but fails to identify it.
The bottom row shows another failure mode where the agent fails to explore specific areas of the
environment where the target object is located. (Agent’s starting pose is shown in white circle and
the target object is shown in a red circle)
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Figure 10: Average probability distribution P ∈ R256 over the latent
codes comparing the codebook trained with 0.1 dropout probability and
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utilization of all the latent codes in the codebook module. (P is reshaped
to 16× 16 for visualization.)

0.2

0.4

0.6

0.8

S
uc

ce
ss

 R
at

e

20M 100M

Training Step
40M 60M 80M 120M 140M

EmbCLIP-Codebook w/ Dropout 0.1

EmbCLIP

EmbCLIP-Codebook w/o Dropout

EmbCLIP-Codebook + Linde-Buzo-Gray (LBG)

Figure 11: Success Rate training
curve comparing EmbCLIP (baseline),
EmbCLIP-Codebook with and without
dropout regularization, and EmbCLIP-
Codebook trained with Linde-Buzo-
Gray splitting algorithm.

Actions

MoveAhead RotateLeft RotateRight End LookUp LookDown

0.1

0.2

0.3

0.4

Fr
eq
ue
nc
y

EmbCLIP-Codebook
EmbCLIP
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Figure 14: Top-down Maps of Agents’ Trajectories. Our agent travels in smoother paths and explores
the environment more effectively.
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