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ABSTRACT

Visual active search (VAS) has been introduced as a modeling framework that
leverages visual cues to direct aerial (e.g., UAV-based) exploration and pinpoint
areas of interest within extensive geospatial regions. Potential applications of
VAS include detecting hotspots for rare wildlife poaching, aiding in search-and-
rescue missions, and uncovering illegal trafficking of weapons, among other uses.
Previous VAS approaches assume that the entire search space is known upfront,
which is often unrealistic due to constraints such as a restricted field of view
and high acquisition costs, and they typically learn policies tailored to specific
target objects, which limits their ability to search for multiple target categories
simultaneously. In this work, we propose DiffVAS, a target-conditioned policy
that searches for diverse objects simultaneously according to task requirements
in partially observable environments, which advances the deployment of visual
active search policies in real-world applications. DiffVAS uses a diffusion model to
reconstruct the entire geospatial area from sequentially observed partial glimpses,
which enables a target-conditioned reinforcement learning-based planning module
to effectively reason and guide subsequent search steps. Our extensive experiments
demonstrate that DiffVAS excels in searching diverse objects in partially observable
environments, significantly surpassing state-of-the-art methods across datasets.

1 INTRODUCTION

Consider a scenario where a search-and-rescue mission is underway, and rescue personnel needs to
scan across hundreds of potential regions from a helicopter to locate a missing person. A crucial
strategy in such operations involves using UAVs to capture aerial imagery that can help identify a
target of interest (e.g., the missing person). However, constraints like a limited field of view, high
acquisition costs, time constraints, and restricted bandwidth between the sensor and the processing
unit can make the search extremely challenging, demanding strategic decisions on where to query
next based on the observations gathered so far. A similar challenge arises in other scenarios, such
as locating a specific vehicle in an abduction case – however, note that the target may differ, but the

underlying problem structure remains the same. In fact, many other scenarios share this general
structure, such as anti-poaching enforcement (Fang et al., 2015), pinpointing landmarks, identifying
drug or human trafficking sites, and more (Fang et al., 2016; Bondi et al., 2018).

In this work, we derive and formalize a general task setup that encompasses these types of scenarios,
and that allows for controllable and reproducible model development and experimentation. We
refer to our proposed task setup as Target-Conditioned Visual Active Search in Partially Observable

environments (TC-POVAS), the details of which are given in Sec. 2. The setup of TC-POVAS is as
follows: Given a target category (or multiple target categories, depending on the task requirement),
one should leverage a series of partially observed glimpses – which are sequentially queried during
active exploration – to locate as many target objects as possible. Note that the number of allowed
queries is limited in TC-POVAS, to reflect factors such as time or resource constraints.

TC-POVAS builds on the visual active search (VAS) framework in which one aims to find a target
object using visual cues through sequential exploration (Sarkar et al., 2023; 2024a). Past work on
visual active search (VAS) has assumed access to a complete description of the search space (typically
an image that spans the whole area) for making decisions. However, in many real-world situations,
e.g. search-and-rescue operations, an entire image of the search space may not be available upfront.
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For example, an autonomous drone on a rescue mission might only be able to capture partial glimpses
through a series of narrow observations due to constraints like a confined viewing range and high data
collection costs. In these scenarios, the agent has to make decisions with incomplete information,
and thus models trained assuming access to complete images will struggle.

The challenge is twofold: (i) the agent must query the most informative patch from a partially
observed scene to maximize information gain about the search space, and (ii) it must simultaneously
ensure that this patch helps achieve the goal of locating regions containing the target objects. One
might question why an agent cannot simply learn to choose patches that reveal target regions directly,
without the need for acquiring knowledge about the underlying scene. The challenge arises because
reasoning in an unknown partially observable environment is inherently difficult. Thus, an agent must
strike a balance between exploration – identifying patches that reveal the most information about
the search space – and exploitation – focusing on areas likely to contain the target object based on
updated knowledge about the environment. An optimal agent must master this delicate balance to be
effective. Additionally, previous VAS policies (Sarkar et al., 2023; 2024a) are designed to search
for specific target objects and cannot handle multiple categories simultaneously, which limits their
adaptability to specific task preferences.

To address these challenges, and to effectively tackle the TC-POVAS task setting, we propose DiffVAS,
a novel framework that consists of two key modules: (1) a diffusion-based conditional generative

module (CGM) and (2) a target-conditioned planning module (TCPM). The goal of the CGM is to
learn how to reconstruct the entire scene (search space) contingent on the partially observed glimpses
gathered so far. To achieve this, we employ a neural network architecture that enables precise control
over image generation by conditioning the diffusion-based generative model on the partially observed
glimpses. Such a CGM attains fine control over image generation by integrating input conditions, like
previously observed glimpses, directly into the model’s intermediate layers, influencing the output at
various stages of the diffusion process. This layered integration allows the model to align closely
with the input conditions, ensuring that the generated image adheres to the desired structure while
benefiting from the diffusion model’s generative capabilities.

The objective of the TCPM is to decide which patch to query next by analyzing the scene generated
by the CGM and the partially observed glimpses, with the aim of revealing as many target regions as
possible within the query budget. To accomplish this, the TCPM must learn to simultaneously explore
the environment efficiently to maximize information gathering (exploration) and select patches
that reveal as many target regions as possible based on its acquired knowledge of the environment
(exploitation). To this end, we develop an RL-based policy that learns to balance exploration
and exploitation. To train the policy, we design a reward function that – besides encouraging
target discovery – takes into account two key factors: local uncertainty and global reconstruction

quality. Together, these factors measure how effectively the policy issues actions that contribute
to gaining information about the environment. Additionally, we designed the TCPM to be target-
conditioned, which enables it to search for different target categories according to task requirements
and handle multiple categories simultaneously. We accomplish this by introducing an inference
strategy that leverages target-conditioned probability distributions over grid cells for each target
category, computed via TCPM, and learning target-aware state representation by leveraging cross-
attention. Finally, we conduct extensive experiments to demonstrate the effectiveness of DiffVAS.

In summary, we make the following contributions:

• We introduce TC-POVAS, a novel task setup that addresses target-conditional (TC) visual active
search (VAS) in partially observable (PO) environments, and which extends traditional VAS to
become more closely aligned with practical scenarios.

• We propose DiffVAS, an agent that effectively tackles this task by reconstructing the whole search
area as it explores and searches for targets. Unlike previous approaches, DiffVAS can search a
diverse range of target objects and tackle multiple target categories simultaneously.

• We demonstrate the significance of each component within DiffVAS through a comprehensive
series of quantitative and qualitative ablation analyses.

• Our extensive experimental evaluations using two publicly available satellite imagery datasets
(xView and DOTA), across various unknown target settings, demonstrate that DiffVAS significantly
outperforms all baseline approaches. The code and models will be made public.
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2 TC-POVAS TASK SETUP

In this section, we describe the details of our proposed TC-POVAS task setup; see Fig. 1 for an
overview. TC-POVAS is a search task in which one or multiple targets should be localized within
a search area – represented here as an aerial image x that is partitioned into N grid cells, such that
x = (x(1), x(2), ..., x(N)) – within a given query budget B which here represents the number of
movement actions. Each grid cell corresponds to a sub-image and represents the limited field of
view of the agent (akin to a UAV hovering at a limited altitude), i.e., the agent can only observe
the aerial content of a sub-image x(i) corresponding to the ith grid cell in which it is located at
time step t. The agent’s action space corresponds to all possible movements to other grid cells.

Figure 1: An overview of the TC-POVAS task setup.

For each task configuration,
the target object categories are
predefined in natural language,
such as “small car, boat”, and
represented as a set Z . The ob-
jective is to uncover as many
grid cells as possible that con-
tain objects in Z by strategi-
cally exploring the grid cells
within the budget constraint B.
To keep track of which grid
cells x(j) contain targets, we
label each grid cell x(j) with
y(j)(⋅ � Z) ∈ {0, k}, where
y(j)(⋅ � Z) = k if cell j contains at least one instance each of k different target object categories
from set Z , and 0 otherwise. The full label vector for the task is y(⋅ � Z) = (y(1)(⋅ � Z), y(2)(⋅ �
Z), ..., y(N)(⋅ � Z)). Naturally, at decision time we assume no direct knowledge of y(⋅ � Z), but
it is used to evaluate an agent’s task performance at the end of an episode. Moreover, when an
agent queries a grid cell j, it receives x(j) (the aerial image content of the j:th grid cell) and the
corresponding ground truth label y(j)(⋅ � Z) for that cell.1 An overview of the search task is provided
in Fig. 1. Denoting a query performed in step t as qt and c(i, j) as the cost associated with querying
grid cell j starting from grid cell i, the overall task optimization objective is:

max
{qt}
�
t

y(qt)(⋅ � Z) subject to �
t≥0

c(qt−1, qt) ≤ B (1)

Target-Conditioned Partially Observable Markov Decision Process (TC-POMDP). With ob-
jective (1) in mind, we aim to learn a search policy that can efficiently explore a search area
and discover target regions, and to achieve this through learning from similar pre-labeled search
tasks, referred to as D = {(xi, yi(⋅ � Z))}, which consists of images xi paired with correspond-
ing grid cell labels yi(⋅ � Z). Here, each xi is composed of N elements (x(1)i , x(2)i , . . . , x(N)i )
which represent the grid cells in the image, and each yi(⋅ � Z) contains N corresponding labels
y(1)i (⋅ � Z), y

(2)
i (⋅ � Z), . . . , y

(N)
i (⋅ � Z). We model this problem as a TC-POMDP and consider a

family of TC-POMDP environmentsMe = {(Se,A,X e,T e,Ge,�)�e ∈ ✏}, where e is the environ-
ment index. Each environmentMe comprises a state space Se, shared action space A, observation
space X e ∈ {(x(1)e , x(2)e , . . . , x(N)e )}, transition dynamics T e, target space Ge(Z) ⊂ Se such that
Ge(Z) = {x(g)e ∈ X e � y(g)e (⋅ � Z) ≠ 0 for g ∈ {1,2, . . . ,N}}, and discount factor � ∈ [0,1]. T e

involve updating the remaining budget Bt+1 by subtracting the current query cost c(qt−1, qt) and
incorporating the latest query outcomes, i.e. x(qt)e , y(qt)e (⋅ � Z), into the state at time t + 1. The
observation xe ∈ X e is determined by state se ∈ Se and the unknown environmental factor be ∈ Fe,
i.e. xe(se, be), where Fe encompasses variations (including seasonality, weather effects, etc) related
to diverse geospatial regions. x(qt)e denote the observation associated with qt at step t, for domain e.

The primary objective in a TC-POMDP is to learn a history-aware target-conditioned policy
⇡(at�xe

ht
,Z,Bet ) – where xe

ht
= (x(q1)e , . . . , x(qt)e ) combines all the previous observations up to

1It would also be possible to consider a setting where an aerial object detector is used to assess what objects
are within a grid cell.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

time t, Bet represents the remaining budget at time t – that maximizes the discounted state density
function J(⇡) across all domains e ∈ ✏ as follows:

J(⇡) = Ee ∼ ✏,Be
0 ∼B

e,Z ∼ RandomSubset(Oe),⇡ �(1 − �)
∞

�
t=0

�tpe⇡(st ∈ Ge(Z)�Z,Bet )� (2)

Here pe⇡(st ∈ Ge(Z)� Z,Bet ) represents the probability of querying a grid cell containing at least
one target at step t within domain e under the policy ⇡(.�xe

ht
,Z,Bet ), Oe denotes the set of object

categories in domain e, and e ∼ ✏,Be0 ∼ Be refer to uniform samples from each set. The total query
budget allocated for a search task is denoted as Be. Throughout the training process, the agent is
exposed to a set of training environments {ei}Ni=1 = ✏train ⊂ ✏, each identified by its environment index.
To reduce clutter, we omit the notation e for the rest of the paper. Next, we explore how we design
and train a policy – which we call DiffVAS – to effectively maximize the objective outlined in (2).

3 DIFFVAS: A DIFFUSION-GUIDED APPROACH FOR TACKLING TC-POVAS

In this section we introduce DiffVAS, a diffusion-guided, reinforcement learning (RL)-based agent
designed to address VAS in partially observable environments. DiffVAS is composed of two main
modules: (1) a conditional generative module (CGM) and (2) a target-conditioned planning module
(TCPM). Next, we detail each component of the proposed DiffVAS framework, starting with the
training strategy for both modules to learn an efficient policy, followed by the inference procedure.

3.1 TRAINING

Our approach uses a two-phase training strategy: In the first phase, we train the CGM, and then we
freeze its parameters while training the TCPM in the second phase. The purpose of the CGM is to
synthesize the entire scene (i.e., the search space) from the partially observed glimpses collected so far,
thereby assisting the TCPM in deciding the next query location. To achieve this, the conditional gen-
erative model leverages a diffusion-based adapter-style approach (Mou et al., 2024; Zhang et al., 2023).

Figure 2: The conditional generative module within DiffVAS.

Diffusion models are powerful
generative models that allow for
precise control over the attributes
of the generated samples. While
these diffusion models trained on
large datasets have achieved suc-
cess, there is often a need to intro-
duce additional controls in down-
stream fine-tuning processes. In
our case, the CGM finetunes the
diffusion model by integrating in-
formation about previously ob-
served glimpses xht while pre-
serving the integrity of the pre-
trained diffusion model. This is
done by freezing the parameters
of a trained diffusion model and creating a trainable copy that takes an external conditioning vector
xht as input (see Fig. 2). The trainable copy is connected to the frozen pre-trained diffusion model
using zero convolution layers Z(; ), which are 1 × 1 convolution layers initialized with weights and
biases set to zero, safeguarding the model against any harmful noise in the early stages of training, as
outlined in (Zhang et al., 2023). This design strategy thus retains the capabilities of the large-scale
pre-trained diffusion model while allowing the trainable copy to adapt to new conditions.

To train the parameters of the CGM, we randomly sample an image x0 corresponding with an entire
search space, and progressively add noise to create a noisy image xk, where k indicates the number
of noise additions. Conditioned on partially observed glimpses xht , CGM trains a network ✏✓ to
predict the noise added to xk using the following equation:

LCGM = Ex0,k,xht ,✏∼N (0,1)
��✏ − ✏✓(xk, k, xht)�22� (3)

LCGM represents the overall learning objective of the CGM. Note that xht is obtained by randomly
selecting a history length ht ∈ {1, . . . ,N − 1}, then choosing ht random patches while masking the
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rest of x0. An overview of the CGM is presented in Fig. 2, with detailed architecture and training
hyperparameters provided in the appendix. Next, we discuss the training procedure for the TCPM.

TCPM training. The role of the TCPM is to determine the next query location based on xht , Bt,
and the target category Z . The planning module must explore – seeking patches that provide the
most insight into the search space – while also exploiting known information, focusing on areas
with a high likelihood of containing the target. To this end, we develop an actor-critic style PPO
algorithm (Schulman et al., 2017) for learning a policy that balances exploration and exploitation,
which is essential for solving this task. Since decision-making in an unknown environment is
challenging, we leverage the trained CGM to reconstruct the entire search space xre(t) from partially
observed glimpses xht . This reconstructed information aids the planning module in making more
informed decisions about the next query location. As illustrated in Fig. 3, the latent representation
lre(t) of xre(t) is extracted from the encoder at the final step of the reverse diffusion process of the
pre-trained CGM (i.e., xre(t) =D(lre(t) = CGM(xht)). We use the encoder eCGM(⋅) of the CGM
as a feature extractor to derive the latent representation lh(t) of xht , i.e. lh(t) = eCGM(xht). We
merge lre(t) and lh(t) channel-wise, forming the combined representation limg(t). The key reason
for incorporating lh(t) into the state space is that early in the search, the reconstruction xre(t) of the
search space may be unreliable, making it imprudent to base decisions solely on lre(t).
As we want to learn a policy capable of searching for diverse target objects, we condition it on
the target object z. Here, z is an element of the set of target object categories (i.e., z ∈ Z; see
Sec. 3.2 for how the multi-target setting is handled). The target object embedding lz is obtained
via the CLIP (Radford et al., 2021) text encoder (i.e., lz = fCLIP(z)). A learnable cross-attention
layer is then applied between lz and limg(t), which allows us to obtain a representation of the
search space that is target-aware, denoted as lzimg(t). At time t, the planning module’s input state
comprises limg(t), lz , the remaining budget Bt, and an observation vector ot(⋅ � z) that encodes
previous search query outcomes. Each element of ot(⋅ � z) corresponds to a grid cell index, where
ot
(j)(⋅ � z) = 2y

(j)(⋅ � z) − 1 if the j:th grid cell has been explored, and ot
(j)(⋅ � z) = 0 otherwise. The

primary reason for incorporating Bt and ot(⋅ � z) into the state space is to ensure that the planning
module makes decisions with full awareness of both remaining budget and previous query outcomes.

Let us denote the state at time t as st = [limg(t), lz, ot(⋅ � z),Bt]. Training TCPM is done using
PPO Schulman et al. (2017) and involves learning both an actor (policy network, parameterized by ⇣)
⇡⇣ ∶ st �→ p(A) and a critic (value function, parameterized by ⌘) V⌘ ∶ st �→ R that approximates the
true value V true(st) = Ea∼⇡⇣(.�limg(t),lz,ot(⋅�z),Bt)[R(st, at, z) + �V (T (st, at))]. We optimize both
the actor and critic networks using the following loss function:

Lplanner
t (⇣,⌘) = Et �−Lclip(⇣) + ↵Lcrit(⌘) − �H[⇡⇣(.�limg(t), lz, ot(⋅ � z),Bt)]� (4)

Here ↵ and � are hyperparameters, and H denotes entropy, so minimizing the final term of (4)
encourages the actor to exhibit more exploratory behavior. The Lcrit loss is used specifically to
optimize the parameters of the critic network and is defined as a squared-error loss, i.e. Lcrit =
(V⌘(limg(t), lz, ot(⋅ � z),Bt) − V true(st))2. The clipped surrogate objective Lclip is employed to
optimize the parameters of the actor-network while constraining the change to a small value ✏ relative
to the old actor policy ⇡old and is defined as:

Lclip(⇣) =min� ⇡⇣(.�limg(t), lz, ot(⋅ � z),Bt)
⇡old(.�limg(t), lz, ot(⋅ � z),Bt)At, clip�1 − ✏,1 + ✏, ⇡⇣(.�limg(t), lz, ot(⋅ � z),Bt)

⇡old(.�limg(t), lz, ot(⋅ � z,Bt))At��
At = rt + �rt+1 + . . . + �T−t+1rT−1 − V⌘(limg(t), lz, ot(⋅ � z),Bt)

(5)

After every fixed update step, we copy the parameters of the current policy network ⇡⇣ onto the old
policy network ⇡old to enhance training stability. All hyperparameter details for training the actor
and critic network are in Appendix A5. Our proposed DiffVAS framework is illustrated in Fig. 3.
Next, we introduce a novel reward functionR designed to guide the planning module in mastering an
efficient search strategy in partially observed scenes.

Reward structure. The rewardR consists of three components: (i) local uncertainty rewardRLU,
(ii) global reconstruction reward RGR, and (iii) active search reward RAS. The RLU and RGR

rewards are designed to assess how efficiently the planning module’s choice of movement enhances
information-gathering about the environment (exploration), whereas RAS assesses how well the
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Figure 3: DiffVAS framework for visual active search in partially observable environments.

policy is discovering target regions (exploitation). We defineRLU as follows:

RLU = sgn ��SSIM �x(aran)
true ,D (CGM(xht−1))(aran)�� − �SSIM �x(at)

true ,D (CGM(xht−1))(at)��� (6)

where, the structural similarity index (Wang & Bovik, 2002) SSIM(a, b) is used to measure the
similarity between two images a and b; aran represents a randomly selected grid cell at time t; x(aran)

true

and x(at)
true refer to the aran:th and at:th grid cells of the ground truth image, respectively. According

to (6), the agent receives a positive reward when the ground truth and reconstructed patches are more
dissimilar (according to the SSIM score) for the queried grid cell than for a randomly selected grid
cell index (i.e., aran). Thus, (6) gives a positive reward when the agent queries a patch that it is
uncertain of, encouraging the discovery of novel (and uncertain) parts of the overall search area.

As for the global reconstruction reward, it is defined similarly as follows:

RGR = sgn �{SSIM (xtrue,D (CGM(xht)))} − �SSIM �xtrue,D �CGM(xhran
t
)���� (7)

where xhran
t

is identical to xht , except the action at at time t is replaced with a random action aran.
RGR rewards the agent if querying the grid cell (at) results in a better reconstruction of the entire
search space by the CGM module compared to querying a random grid cell such as aran – thus note
that this reward term is in some sense “inverse” relative to (6). In the early stages of the search, the
search space reconstruction by CGM is poor (see an example in Fig. 4) regardless of the queried
grid cell, making the RGR reward signal weak. Therefore, relying solely on RGR is not effective
for distinguishing between good and bad grid cell selections. In this scenario,RLU offers a sharper
distinction, as it is based on evaluating a single grid cell.

To ensure the agent’s queried grid cell also contributes to identifying regions with the target object,
we design an active search reward function RAS defined as RAS = y(at)(⋅ � z). Thus, the agent
receives a positive reward for querying an unexplored cell containing a target; otherwise,RAS = −5,
which penalizes the agent heavily for querying the grid cell more than once. Finally, we train the
agent using the following reward function:

R(st, at, z) =RLU +RGR +RAS (8)

Next, we discuss the inference procedure of our proposed DiffVAS framework.

3.2 INFERENCE

In this section we outline the approach for searching one or multiple target categories simultaneously,
based on task requirements, using the trained DiffVAS agent. Denote the set of target objects to be
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Figure 4: CGM’s reconstruction from partially observed glimpses at various search stages.

searched as Z = {z1, . . . , zk}. At each search step, we compute the probability of querying each
grid cell, conditioned on the i’th element of set Z , using the trained DiffVAS, representing the
resulting distribution over grid cell as ⇡⇣(.�limg(t), lzi , ot(⋅ � zi),Bt). We independently compute
such conditional probability distribution for each element in set Z and select a grid cell to query
based on the joint probability distribution, defined as follows:

⇡⇣(⋅ � limg(t), lZ , ot(⋅ � Z),Bt) = k�
c=1

pc where pc = ⇡⇣(⋅ � limg(t), lzc , ot(⋅ � zc),Bt) (9)

Algorithm 1 Inference procedure of DIFFVAS

Require: Task instance with initial observation(x(init), y(init)); set of target objects Z = {z1, . . . , zk}; budgetB; trained CGM; encoder eCGM of CGM; CLIP text encoder fCLIP; trained TCPM parameters (⇣, ⌘).
1: Initialize o0(⋅ � zc) = [0...0] for each c ∈ {1, . . . , k};B0 = B; xh0 = {x(init)}; step t = 0;Rtask = 0
2: while Bt > 0 do

3: limg(t) = CGM(xht)⊕ eCGM(xht), where ⊕ represents channel-wise concatenation operation.
4: for c = 1 to k do

5: Compute lzc = fCLIP(zc), and pc = ⇡⇣(⋅ � limg(t), lzc , ot(⋅ � zc),Bt)
6: end for

7: j ∼ p, where p =∏k
c=1 pc

8: Query grid cell with index j and observe x(j) and true label y(j) = {y(j)(⋅ � z1), . . . , y(j)(⋅ � zk)}.
9: Obtain Rt = ∑k

c=1 y(j)(⋅ � zc); Update ot(j)(⋅ � zc) with ot+1(j) (⋅ � zc) = 2y(j)(⋅ � zc) − 1 (for each
c ∈ {1, . . . , k}), and update Bt with Bt+1 = Bt − c(k, j) (assuming we query k’th grid at (t − 1)).

10: Rtask = Rtask +Rt; Incorporate latest observation x(j) into xht , i.e., xht+1 = {xht , x
(j)}.

11: t ←� t + 1
12: end while

13: Return Rtask

Here,Z denotes the set of target categories specified in natural language (e.g.,Z ={car, truck,boat}),
while zc represents an individual category within this set. Our proposed inference approach enables

DiffVAS to flexibly handle tasks with varying numbers of target categories, overcoming a key limitation

of previous VAS frameworks. We detail our inference process in Algorithm 1.

4 EXPERIMENTS AND RESULTS

Evaluation metrics. Since VAS aims to maximize the identification of patches with target objects,
we evaluate performance using the average number of targets (ANT) identified through exploration
in partially observable environments. In this work, we focus primarily on uniform query costs, i.e.,
c(i, j) = 1 for all i, j, so B represents simply the total number of queries. Hence, ANT is defined as:

ANT = 1

L

L

�
i=1

B

�
t=1

y(qt)i (⋅ � Z) where L = number of test search tasks instances (10)

We evaluate DiffVAS and baselines across varying search budgets B ∈ {5,7,10} on a 5 × 5 grid
structure. In Appendix A2, we conduct additional experiments across various grid configurations,
each employing different values of B with varying target category sets Z .

Baselines. We compare our proposed DiffVAS policy to the following baselines:
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• Random Search (RS), in which unexplored grid cells are selected uniformly at random.
• E2EVAS (Sarkar et al., 2024b), an RL-based approach for VAS in a fully observable space.
• Meta Partially Supervised VAS (MPS-VAS) (Sarkar et al., 2023), the state-of-the-art RL-based

approach for single-target VAS, is designed to learn an adaptable policy in a fully observable space.

Datasets. We evaluate DiffVAS and the baselines on two datasets: xView (Lam et al., 2018) and
DOTA (Xia et al., 2018). Both xView and DOTA are satellite image datasets, with roughly 3000 px
per dimension and representing approximately 60 object categories. We use 50%, 17%, and 33% of
the large satellite images to train, validate, and test the methods, respectively. In the main paper, we
compare the performance of DiffVAS with the baselines using the DOTA dataset. Similar results for
the xView dataset are presented in Appendix A1.

Single-category search tasks. We begin by considering a setting with Z containing a sin-
gle target category, as in most prior works. We evaluate the proposed methods with the following
target classes: Large Vehicle (LV), Helicopter, Ship, Plane, Roundabout, and Harbor. The results
are presented in Table 1. We observe significant improvements in the performance of the proposed
DiffVAS approach compared to all baselines in each different target setting, ranging from 8.9% to
28.8% improvement relative to the most competitive MPS-VAS method.

Table 1: ANT comparisons on the DOTA dataset for the single-target category setting.

Test withZ = { Ship } Test withZ = { LV } Test withZ = { Plane }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 1.68 2.23 3.24 2.05 2.76 4.88 2.11 2.95 3.92
E2EVAS 1.73 2.47 3.52 2.19 3.11 4.91 2.42 3.14 4.01
MPS-VAS 1.77 2.50 3.59 2.22 3.15 4.96 2.53 3.17 4.08
DiffVAS 2.12 3.22 3.91 2.54 3.57 5.78 3.12 4.07 5.24

Test withZ = { Harbor } Test withZ = { Roundabout } Test withZ = { Helicopter }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 1.56 2.43 3.67 1.54 2.83 4.04 1.32 3.15 4.56
E2EVAS 1.68 2.57 3.90 1.77 2.97 4.18 1.61 3.29 4.61
MPS-VAS 1.73 2.63 3.96 1.86 3.01 4.25 1.70 3.44 4.78
DiffVAS 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05

In each target setting, search performance improves as B increases, with DiffVAS typically gaining a
greater advantage over other baselines. As more patches are revealed, the CGM-based reconstruction
becomes more accurate, allowing DiffVAS to better exploit the search space and further enhance
its search policy with a larger search budget B. The importance of TCPM is demonstrated by the
superior performance of DiffVAS across all diverse target categories, as presented in Table 1.

Table 2: ANT comparisons on the DOTA dataset for the multiple-target category setting.

Test withZ = { Ship, Harbor } Test withZ = { LV, Small Vehicle } Test withZ = { Plane, Helicopter}

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 2.34 3.19 4.12 2.31 3.67 4.91 1.99 3.90 5.26
E2EVAS 2.37 3.22 4.14 2.33 3.71 4.93 2.04 3.95 5.30
MPS-VAS 2.38 3.26 4.18 2.38 3.72 4.97 2.09 3.98 5.33
DiffVAS 2.98 4.16 4.92 3.05 4.33 5.52 3.11 4.34 6.02

Multi-category search tasks. Next, we evaluate the proposed DiffVAS with Z encompassing
multiple target categories and present the results in Table 2. We observe a substantial performance
boost across various target category sets, ranging from 8.3% to 48.8% improvement relative to the
most competitive baseline, highlighting the effectiveness of our proposed inference strategy. Note
that, as shown in Tables 1 and 2, ANT values vary across different Z because each target category
appears with different frequencies in the search space. Next, we analyze each module within DiffVAS.

Importance of CGM. To investigate the significance of CGM in the DiffVAS framework,
we assess a DiffVAS variant, denoted Mask-DiffVAS, where we exclude the latent representation of
the search space reconstructed using CGM (i.e., lre(t), cf. Fig. 3) from the input state of TCPM and
compare its performance against the full DiffVAS. We see from Table 3 that DiffVAS significantly
outperforms Mask-DiffVAS, with performance increases ranging from 8.1% to 37.7%. This
highlights the crucial role of utilizing the latent representation of the synthesized search space lre(t)
for planning and underscores the importance of CGM within DiffVAS.

8
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Table 3: Significance of the conditional generative module (CGM) within DiffVAS.
Test withZ = { Ship } Test withZ = { LV } Test withZ = { Plane }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Mask-DiffVAS 1.82 2.65 3.29 2.32 2.91 4.95 2.45 3.23 4.03
DiffVAS 2.12 3.22 3.91 2.54 3.57 5.78 3.12 4.07 5.24

Test withZ = { Harbor } Test withZ = { Roundabout } Test withZ = { Helicopter }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Mask-DiffVAS 1.75 2.56 3.82 1.91 2.99 4.10 1.54 3.33 4.67
DiffVAS 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05

Importance of TCPM. To assess the importance of the planner module in DiffVAS, we replace
the TCPM with a classifier trained to predict a target-containing grid cell based on the same input
state st = �lzimg(t), ot(⋅ � z),Bt� as the planner. The classifier is trained using binary cross-entropy
loss. We then compare the performance of this modified version, Greedy-DiffVAS, with the original
DiffVAS. We emphasize that the only distinction between Greedy-DiffVAS and DiffVAS is the
replacement of the planner module with the classifier. We evaluate their performances across different
target categories, as reported in Table 4. DiffVAS consistently outperforms Greedy-DiffVAS, with
performance increases ranging from 16.4% to 91.0% across the various evaluation settings. These
empirical results thus demonstrate that relying solely on greedy actions is inadequate for tasks that
require a balance between exploration and exploitation, which highlights the critical role of the
planning module in learning an efficient search policy in partially observable environments.

Table 4: Significance of the target-conditioned planning module (TCPM) within DiffVAS.
Test withZ = { Ship } Test withZ = { LV } Test withZ = { Plane }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Greedy-DiffVAS 1.29 2.01 2.96 1.81 2.45 4.46 2.00 2.57 3.77
DiffVAS 2.12 3.22 3.91 2.54 3.57 5.78 3.12 4.07 5.24

Test withZ = { Harbor } Test withZ = { Roundabout } Test withZ = { Helicopter }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Greedy-DiffVAS 1.23 2.19 3.32 1.22 2.57 3.92 1.11 3.02 4.34
DiffVAS 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05

Impact of RGR
and RLU

on search performance. We conduct an ablation study to analyze the
significance of various reward components in the proposed reward function (8). We train DiffVAS
with different reward components and compare the performances across various target settings, with
results reported in Table 5. The results suggest that relying solely onRAS is insufficient, emphasizing
the importance of actions that enhance information gathering about the search space. However, as
would be expected, merely gathering information is not enough, as performance drops when training
the policy using onlyRGR +RLU. Thus, incorporating bothRAS andRGR +RLU is essential for
learning an effective search policy in partially observed environments. Additionally, we observe a
slight performance drop when we excludeRLU from (8) during training.

Table 5: Ablation study of the different components of the proposed reward function.
Test withZ = { Ship } Test withZ = { LV } Test withZ = { Plane }

Reward B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RAS 1.65 2.71 3.77 1.89 2.85 3.90 2.05 3.50 4.68RGR +RLU 1.63 2.67 3.66 1.73 2.78 3.79 1.80 3.43 4.69RAS +RGR 1.76 2.88 3.82 1.90 2.98 4.32 1.89 3.54 4.78
Full reward 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05

Effectiveness of strategy for handling multiple target categories. We evaluate the proposed
inference approach (detailed in Sec. 3.2) by comparing the performance of DiffVAS with two variants
that use the same training strategy but differ in their inference methods, specifically the way lz is
computed: (1) Avg-DiffVAS computes lz by inputting the entire target category set Z into the CLIP
text encoder, requiring only a single forward pass through the planning module at each time step
and (2) Emb-DiffVAS computes target-specific embeddings by processing each target category in
the set Z individually through the CLIP text encoder, then averages them to obtain lz. We compare
their performance across different Z in Table 6. We observe that these natural alternative strategies
perform worse than our proposed strategy.
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Table 6: Effectiveness of the proposed inference strategy.
Test withZ = { Ship, Harbor } Test withZ = { LV, Small Vehicle } Test withZ = { Plane, Helicopter }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Avg-DiffVAS 2.45 3.32 4.45 2.51 3.82 5.10 2.21 4.09 5.55
Emb-DiffVAS 2.67 3.55 4.67 2.81 4.02 5.31 2.45 4.23 5.89
DiffVAS 2.98 4.16 4.92 3.05 4.33 5.52 3.11 4.34 6.02

Visualizing reconstructions from the CGM. Fig. 4 illustrates an example of CGM’s reconstruction
of the search space from partially observed glimpses; see more in Appendix A3.

Zero-shot generalization. To assess the zero-shot generalizability of DiffVAS, we evalu-
ate a policy trained solely on DOTA, while ensuring that the target category set Z from DOTA
differs from that in xView (this has to be done, since the categories partially overlap between these
datasets). We present the result in Table 7. The results show performance improvements ranging
between 36.3% to 281.5% compared to the baseline approaches and highlight the effectiveness of
DiffVAS in zero-shot generalization. The superior zero-shot generalizability of DiffVAS stems from
the CGM module, which preserves the strength of the trained diffusion model. This ensures that the
representation extracted from CGM (i.e., lre(t), lh(t)), a key component of the planning module’s
state input (st), remains robust. See Appendix A4 for additional results.

Table 7: DiffVAS has superior zero-shot generalization performance relative to the other methods.
Test withZ = { Small Car } Test withZ = { Sail Boat } Test withZ = { Helipad }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

E2EVAS 1.51 2.03 3.04 0.25 0.35 0.47 0.15 0.21 0.29
MPS-VAS 1.54 2.09 3.12 0.27 0.36 0.49 0.16 0.31 0.38
DiffVAS 2.10 2.95 4.34 1.03 1.19 1.30 0.45 0.89 1.02

5 RELATED WORK

Visual active search (VAS). The VAS framework was first introduced by Sarkar et al. (2024b),
who framed it as a budget-constrained MDP and tackled it using deep RL. Sarkar et al. (2023;
2024a) introduced a meta-learning approach that enables the policy to utilize supervised information
gathered during the search. Key limitations of previous VAS approaches are the reliance on full
observation of the search area and the focus on learning policies tailored to specific target objects,
making them incapable of handling multiple target categories simultaneously. Similar to VAS, is
the task of active geo-localization (Pirinen et al., 2022; Sarkar et al., 2024c), in which an agent with
aerial view observations of a scene seeks to actively localize a goal. However, that task considers
only the single-target location and assumes access to an observation of the target location.
Autonomous UAV exploration. Methodologically, our work also falls within the broad scope of
literature within autonomous control and navigation of UAVs (Dang et al., 2018; Popović et al., 2020;
Stache et al., 2022; Meera et al., 2019; Zhao et al., 2021; Bartolomei et al., 2020; Sadat et al., 2015).
Many of these prior works (Wu et al., 2019; Yang et al., 2020; Wang et al., 2020; Thavamani et al.,
2021; Meng et al., 2022a;b) assume access to a global lower-resolution observation of the whole area
of interest, while DiffVAS reconstructs the region of interest from partial observations.
Active scene/object reconstruction. There is extensive prior work on active reconstruction of scenes
and/or objects (Jayaraman & Grauman, 2016; 2018; Xiong & Grauman, 2018; Pirinen et al., 2019).
However, these methods typically focus solely on optimizing for reconstruction, while our ultimate
goal is identifying target-rich regions. Success for our task hinges on balancing exploration (obtaining
useful information about the scene) and exploitation (finding objects of interest).

6 CONCLUSIONS

We have presented DiffVAS, a novel multi-target visual active search approach that generalizes across
domains. At its core is a diffusion-based conditional generative module (CGM) that dynamically
reconstructs the search area, enabling the target-conditioned planning module to plan movements
effectively in a partially observable environment. Furthermore, our inference method enables DiffVAS
to handle tasks that involve searching multiple target categories simultaneously, with varying category
counts. Trained with a novel reward balancing exploration and exploitation, DiffVAS outperforms
strong baselines and prior methods, while demonstrating excellent zero-shot generalization.
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