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A APPENDIX

A.1 EVALUATION WITH XVIEW DATASET

Evaluation in single-target category search tasks In this section we compare DiffVAS to baseline
approaches using the xView dataset, starting with a single-target category search setting. The
evaluation includes target classes such as Small Car (SC), Helicopter, Sail Boat (SB), Container Ship,
Building, and Helipad. The results in Table 8 reveal a similar trend to those observed with the DOTA
dataset (main paper), with significant performance improvements of the proposed DiffVAS approach
over all baselines, ranging from 11.2% to 109.7% compared to the strongest baseline, MPS-VAS. The
empirical results further confirm the effectiveness of our proposed DiffVAS framework in learning an
efficient visual active search policy in partially observed environments.

Evaluation in multi-target category search tasks In this section we evaluate DiffVAS using the
xView dataset with Z containing multiple target categories, and the results are presented in Table 9.
Consistent with our findings on the DOTA dataset (main paper), we observe a notable improvement
in performance across different target category sets, ranging from 8.8% to 17.3% compared to the
strongest baseline, MPS-VAS. This further underscores the effectiveness of our proposed DiffVAS
inference strategy in handling diverse and complex search tasks involving multiple target categories.

Table 8: ANT comparisons on the xView dataset for the single-target category setting.

Test with Z = { Small Car } Test with Z = { Helicopter } Test with Z = { Bus }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 1.92 2.51 3.51 0.17 0.24 0.41 0.31 0.35 0.48
E2EVAS 2.37 3.07 3.88 0.19 0.28 0.40 0.29 0.41 0.47
MPS-VAS 2.45 3.12 3.93 0.23 0.31 0.43 0.30 0.43 0.51
DiffVAS 2.91 3.89 4.53 0.45 0.65 0.81 0.42 0.56 0.66

Test with Z = { Building } Test with Z = { Container Ship } Test with Z = { Truck }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 2.34 3.32 3.91 0.20 0.31 0.42 0.18 0.31 0.40
E2EVAS 2.61 3.45 4.18 0.21 0.35 0.47 0.18 0.33 0.42
MPS-VAS 2.68 3.51 4.22 0.23 0.36 0.48 0.21 0.37 0.45
DiffVAS 2.93 3.92 4.52 0.31 0.45 0.60 0.29 0.50 0.62

Table 9: ANT comparisons on the xView dataset for the multiple-target category setting.

Test with Z = { Small Car, Bus } Test with Z = { Small Car, Truck } Test with Z = { Small Car, Building }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RS 2.12 2.67 3.31 2.01 2.89 3.77 2.53 3.91 5.44
E2EVAS 2.46 3.25 4.05 2.43 3.17 3.96 2.97 4.66 5.31
MPS-VAS 2.53 3.32 4.11 2.48 3.25 4.03 3.08 4.95 5.45
DiffVAS 3.02 3.81 4.54 2.91 3.99 4.46 3.67 5.32 5.93

A.2 EVALUATION WITH DIFFERENT GRID SIZES

We evaluate DiffVAS performance on a 10 × 10 grid using the DOTA dataset, with results shown
in Table 10. Table 10 shows results for the single-target category search task. We compare the
search performance of the proposed approach against the baselines across different search budgets,
B ∈ {25,30,35}, on a 10 × 10 grid. Similar to the 5 × 5 setting, we observe a performance
improvement over the baselines, ranging from 0.1% to 8.8% across different evaluation scenarios.
As anticipated, the overall performance is lower in the larger grid setting, highlighting the increased
difficulty and motivating further research into VAS in partially observable environments.
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Figure 5: Visualizations of CGM’s reconstruction of the search space from partially observed glimpses
at various stages of the search. The reconstruction quality improves as more patches are revealed.

Table 10: ANT comparisons on the DOTA dataset for the single-target category in 10 × 10 settings.

Test with Z = { Large Vehicle } Test with Z = { Helicopter } Test with Z = { Plane }

Method B = 25 B = 30 B = 35 B = 25 B = 30 B = 35 B = 25 B = 30 B = 35

RS 5.92 7.12 8.21 1.19 1.32 1.41 5.32 7.02 8.19
E2EVAS 6.34 7.74 8.91 1.27 1.44 1.56 5.87 7.74 8.92
MPS-VAS 6.37 7.80 8.96 1.32 1.49 1.60 5.93 7.83 9.01
DiffVAS 6.39 7.94 9.02 1.39 1.55 1.74 6.12 7.99 9.21

Test with Z = { Roundabout } Test with Z = { Ship } Test with Z = { Harbor }

Method B = 25 B = 30 B = 35 B = 25 B = 30 B = 35 B = 25 B = 30 B = 35

RS 5.11 7.02 8.13 1.10 1.15 1.47 5.47 7.02 8.57
E2EVAS 5.75 7.63 8.69 4.78 5.96 7.88 6.15 7.98 9.24
MPS-VAS 5.82 7.71 8.78 4.83 6.04 7.97 6.19 8.03 9.35
DiffVAS 5.94 7.92 8.89 5.05 6.23 8.09 6.31 8.32 9.56

A.3 VISUALIZATIONS OF CGM SEARCH SPACE RECONSTRUCTIONS FROM PARTIALLY
OBSERVED GLIMPSES

In this section we provide additional illustrative visualizations of CGM’s reconstruction of search
spaces from partially observed glimpses at various stages of the search, corresponding to different
history lengths (ht). These visualizations are obtained using the CGM trained with the DOTA dataset.
We depict the visualizations in Fig. 5, 6 and 7. These visualizations offer a qualitative perspective on
CGM’s search space reconstruction quality derived from partially observed glimpses.

A.4 IMPLEMENTATION DETAILS

In this section, we detail the training process for DiffVAS. The proposed DiffVAS framework
comprises two modules: the conditional generative module (CGM), and the task-conditioned planning
module (TCPM). Since each module is trained independently, we discuss the training details for each
module separately, beginning with the CGM.

Details of CGM We use Stable Diffusion v2.1 (Rombach et al., 2022) as CGM’s primary latent
diffusion model. We integrate partially observed glimpses into the diffusion model by attaching a
trainable adapter module following (Zhang et al., 2023). The diffusion model2 is kept frozen while

2https://huggingface.co/stabilityai/stable-diffusion-2-1
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Figure 6: Visualizations of CGM’s reconstruction of the search space from partially observed glimpses
at various stages of the search. The reconstruction quality improves as more patches are revealed.

Figure 7: Visualizations of CGM’s reconstruction of the search space from partially observed glimpses
at various stages of the search. The reconstruction quality improves as more patches are revealed.
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the adapter module is fully optimized end-to-end. We use an empty string as the input prompt to
the latent diffusion model during training and inference. We randomly mask the ground truth image
during training and pass it to the adapter module. We use the Adam optimizer (Kingma, 2014) and a
learning rate of 1e-5 to optimize the adapter module.

Details of TCPM The planner module consists of four main components: (1) a CLIP text en-
coder (Radford et al., 2021); (2) a cross-attention module; (3) a positional encoding module; and (4)
an actor-critic network with a shared backbone. The CLIP text encoder provides information about
the target category to the planner module, by computing the text embedding of the target category.
The cross-attention module consists of a single cross-attention block 3 that fuses the information
from the CGM and the CLIP text encoder. The positional encoding module provides TCPM with
two key pieces of information: (i) the relative positions of each patch in the latent representation
space; and (ii) the positions of the revealed patches, and the position of the patches that CGM
has reconstructed. Finally, the actor and critic network consists of a lightweight shared backbone
comprising 3 convolutional filters and pooling operations. The actor head and critic head are simple
MLPs, each comprising three hidden layers with Tanh non-linear activation layers in between. We
also incorporate a softmax activation at the final layer of the actor network to output a probability
distribution over the grid cells. Except for the CLIP text encoder 4, all the components of the TCPM
are trainable. We use a learning rate of 1e-4, batch size of 1, number of training steps as 100,000, and
the Adam optimizer. The script for training and inference of DiffVAS can be accessed through the
anonymous link provided here.

Compute resources We use a single NVidia H100 GPU server with a memory of 80 GB for
training and a single NVidia V100 GPU server with a memory of 32 GB for running the inference.
It requires approximately 50 GPU hours to train TCPM, while the adapter module is optimized for
approximately 100 GPU hours. The inference time is 22 seconds for a single search task on a single
NVidia V100 GPU, with a maximum exploration budget B of 10. Precisely, our end-to-end DiffVAS
framework infers the next region to query in approximately 2.20 seconds on a standard NVIDIA V100
GPU. Specifically, a diffusion-based CGM module approximately takes 1.07 seconds to reconstruct a
single full image on NVIDIA V100 GPU with 32GB of GPU memory. Given that verifying a search
query by a park ranger typically takes a few minutes to hours (depending on the search space), the
response time of our system is well within the operational requirements. This efficiency ensures that
our framework can provide timely and actionable support, making it highly suitable for real-world
deployment where swift decision-making is crucial.

A.5 VISUALIZATION OF EXPLORATION BEHAVIOR OF DIFFVAS

In this section, we showcase visualizations of exploration behaviors of DiffVAS across diverse search
tasks, covering both single- and multi-target category searches. These visualizations are obtained
using the DiffVAS policy trained with the DOTA dataset. We depict the visualizations in Fig. 8, 9
and 10. These visualizations provide a comprehensive view of the exploration behaviors of DiffVAS,
enabling a nuanced comparison of how the policy adapts to different target specifications.

A.6 EFFECTIVENESS OF CROSS-ATTENTION LAYER

Here, we analyze the efficacy of the cross-attention layer in learning a target-aware representation
suitable for planning. To evaluate the role of the cross-attention layer in the target-conditioned
planner module, we remove it and instead concatenate limg(t) and lz channel-wise to derive the
target-aware representation lzimg(t), while keeping the rest of the DiffVAS framework unchanged.
We refer to the resulting framework as Concat-DiffVAS. We compare the performance of DiffVAS
and Concat-DiffVAS across different target category sets Z using the DOTA dataset, as shown in
Table 11. We see that in most cases, Concat-DiffVAS obtains a lower ANT score, which indicates
that the cross-attention layer is effective in learning target-aware representations for planning.

3https://style-aligned-gen.github.io/
4https://huggingface.co/openai/clip-vit-base-patch32
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Figure 8: Query sequences for different target category sets Z , as well as corresponding heat maps
(darker indicates higher probability). Note that as the search proceeds, the agent becomes relatively
more confident (lower entropy) in terms of where it wants to query next.

Figure 9: Query sequences for different target category sets Z , as well as corresponding heat maps
(darker indicates higher probability). Note that as the search proceeds, the agent becomes relatively
more confident (lower entropy) in terms of where it wants to query next.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Query sequences for different target category sets Z , as well as corresponding heat maps
(darker indicates higher probability). Note that as the search proceeds, the agent becomes relatively
more confident (lower entropy) in terms of where it wants to query next.

Table 11: Effectiveness of cross-attention layer in learning a target-aware representation.
Test withZ = { Large Vehicle } Test withZ = { Helicopter } Test withZ = { Plane }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Concat-DiffVAS 2.02 3.13 4.21 2.36 3.41 5.94 3.04 3.92 5.12
DiffVAS 2.12 3.22 3.91 2.54 3.57 5.78 3.12 4.07 5.24

Test withZ = { Roundabout } Test withZ = { Ship } Test withZ = { Harbor }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

Concat-DiffVAS 1.91 3.08 4.42 2.30 3.27 4.95 2.04 3.80 5.11

DiffVAS 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05

A.7 COMPARISON WITH FULLY OBSERVABLE SEARCH SETTING

To evaluate the efficacy of the proposed DiffVAS framework, we compare its performance to a
similar approach that assumes full observability of the search space, referred to as FullVAS. FullVAS
is identical to DiffVAS, except it provides the full search space image x to the eCGM feature
extractor to derive the latent representation of search space (denoted as limg), i.e., limg(t) = eCGM(x).
Interestingly, we see from Table 12 that DiffVAS achieves results comparable to those of FullVAS,
despite the fact that DiffVAS never observes the full search area as FullVAS does. This further
showcases the strength of our proposed approach, and highlights the strong benefit of the diffusion-
based CGM module which reconstructs the underlying search area on the fly.

Table 12: DiffVAS achieves results that are on average very close to those of FullVAS, despite the
fact that DiffVAS never observes the entire search area (which FullVAS does).

Test withZ = { Large Vehicle } Test withZ = { Helicopter } Test withZ = { Plane }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

FullVAS 2.31 3.32 3.87 2.62 3.76 5.89 3.22 4.19 5.19
DiffVAS 2.12 3.22 3.91 2.54 3.57 5.78 3.12 4.07 5.24

Test withZ = { Roundabout } Test withZ = { Ship } Test withZ = { Harbor }

Method B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

FullVAS 2.20 3.31 4.43 2.35 3.41 4.95 2.22 4.03 5.15

DiffVAS 2.01 3.15 4.45 2.32 3.33 4.89 2.12 3.91 5.05
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Figure 11: Visualizations of CGM’s reconstruction of the search space from partially observed
glimpses at various stages of the search. The reconstruction quality improves as more patches are
revealed.

Figure 12: Visualizations of CGM’s reconstruction of the search space from partially observed
glimpses at various stages of the search. The reconstruction quality improves as more patches are
revealed.

A.8 MORE VISUALIZATIONS OF CGM SEARCH SPACE RECONSTRUCTIONS FROM PARTIALLY
OBSERVED GLIMPSES

In this section, we present additional visualizations of search space reconstruction by CGM from
partially observed glimpses at different stages of the search. See figure 11, 12, 13.

Figure 13: Visualizations of CGM’s reconstruction of the search space from partially observed
glimpses at various stages of the search. The reconstruction quality improves as more patches are
revealed.
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A.9 REASONING FOR SELECTING THE TARGET CATEGORIES FOR EVALUATION

In both xView and DOTA, certain classes are extremely rare within the dataset. For instance, images
containing at least one instance of class Cement-Mixer appear only once. Consequently, including
such classes as targets is not meaningful, as evaluating performance based on a single image does
not provide robust analysis/results. Therefore, we excluded these classes. A similar situation applies
to multi-target categories. This consideration forms the primary motivation behind our selection
of target classes. Note that for zero-shot evaluation on xView, we train models on DOTA using
categories that do not appear in xView.

A.10 PROCEDURE FOR SAMPLING AN EPISODE DURING TRAINING

During training, we randomly sample an image from the training set and select a random budget
within the range {1 to N-1} (where N is the number of grids). We then extract the set of target
categories if at least one instance of each category is present in the image, based on the ground
truth annotations (which also include the precise locations of these target objects as a bounding box).
Once the target category set is determined, we randomly select a category from this set to train our
policy. The rationale for using a random budget and random target is to ensure that the policy learns
to be both target and budget-agnostic. Across various experiments, we demonstrate that DiffVAS
consistently outperforms the baseline across different budgets and target categories.

A.11 EFFICACY OF LOCAL UNCERTAINTY BASED REWARD RLU

Table 13: Effectiveness ofRLU.
Test withZ = { Ship } Test withZ = { LV } Test withZ = { Plane }

Reward B = 5 B = 7 B = 10 B = 5 B = 7 B = 10 B = 5 B = 7 B = 10

RAS 1.65 2.71 3.77 1.89 2.85 3.90 2.05 3.50 4.68
RAS +RLU

1.71 2.79 3.79 1.90 2.92 4.11 2.09 3.53 4.74

In order to analyze the importance ofRLU, we conduct an additional experiment where we trained
DiffVAS using the RAS+RLU reward function and compare its performance with the reward function
containing onlyRAS. We observed a slight improvement in search performance when incorporating
RLU into the reward function for training the TCPM module, underscoring the importance of the
local uncertainty-based reward factor (RLU ).

A.12 FURTHER DETAILS OF CROSS-ATTENTION LAYER

We depict the cross-attention layer in Figure 3. Note that, by “reference features”, we refer to the latent
features extracted by the CGM module, specifically the latent representation of the reconstructed
image (i.e., limg(t)). On the other hand, “target features” refer to the latent features of the target
category, which are computed using the CLIP-based text encoder (i.e.,lz). Additionally, “AdaIN”
stands for “adaptive instance normalization”, as originally proposed in Huang & Belongie (2017).
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