
Appendix

A Definition of Gâteaux and Fréchet derivatives

We first recall the notion of Gâteaux and Fréchet derivatives for F : M(X ) → R ∪ {±∞} where
M(X ) is a topological vector space (Aliprantis and Border, 2006, Chapter 7, pp.267,273), see also
Phelps (1989, Section 1) for Banach spaces.
Definition 5. The function F is said to be Gâteaux differentiable at ν if there exists a linear operator
∇F (ν) : M(X ) → R such that for any direction µ ∈ M(X ):

∇F(ν)(µ) = lim
h→0

F(ν + hµ)−F(ν)

h
. (34)

The operator ∇F(ν) is called the Gâteaux derivative of F at ν, and if it exists, it is unique.
Definition 6. If M(X ) is a normed space, the function F is said to be Fréchet differentiable at ν if
there exists a bounded linear form δF(ν, ·) : M(X ) → R such that

F(ν + hµ) = F(µ) + hδF(ν, µ) + ho(∥µ∥M(X )) (35)

Equivalently, the operator δF(ν, ·) is called the Fréchet derivative of F at ν if it is a Gâteaux derivative
of F at ν and the limit (34) holds uniformly in µ in the unit ball (or unit sphere) in M(X ).

If F is Fréchet differentiable, then it is also Gâteaux differentiable, and its Fréchet and Gâteaux
derivatives agree: ∇F(ν)(µ) = δF(ν, µ).

B Additional details on the well-posedness of the mirror descent scheme

Recall Assumption (A’1)(Lower semicontinuity and coercivity): (i) the set C is τ -closed in M(X ),
the functionals Gn(·) := d+F(µn)(· − µn) and Dϕ(·|µn) are proper and τ -l.s.c. when restricted to
C, and the functional Gn +Dϕ(·|µn) + iC

5 has at least one τ -compact sublevel set. (ii) For each
n ≥ 0, the first variations ∇Cϕ(µn) exist. (iii) The iterates belong to R.

Case where F has first variations. Equip M(X ) with a topology τ that is stronger than the M(X )∗-
weak topology. If F has first variations, then we can even remove Gn(·) from Assumption (A’1),
since Gn(·) is linear on the set of interest and τ -l.s.c. Whence we get the simpler assumption

(A”1) (Lower semicontinuity and coercivity) For each n ≥ 0, the iterates belong to R and the first
variations ∇Cϕ(µn) and ∇CF(µn) exist. Moreover the set C is τ -closed in M(X ), the
functional ϕ is proper and τ -l.s.c. when restricted to C, and ϕ(·) has at least one τ -compact
sublevel set when restricted to C ∩ dom(F).

Weakly compact sets of M(X ). In finite dimensions, a set is compact iff bounded and closed;
however, in infinite dimensions, characterizing compact sets is more delicate. Below we recall some
classical set of conditions that guarantee (weak) compactness or lower semicontinuity.

If M(X ) is a reflexive Banach space, then the weakly compact sets are just the bounded weakly
closed sets, as a consequence of the Banach–Alaoglu theorem (see e.g. Attouch et al., 2014, Theorem
2.4.2). In other cases, one needs more specific theorems such as Dunford–Pettis’ theorem for L1(ρ)
(see e.g. Attouch et al., 2014, Theorem 2.4.5). Since we are dealing with convex functions, for
normed M(X ), strongly closed sublevel sets are also weakly closed, a result known as Mazur’s
lemma. So the notions of weakly l.s.c. and strongly l.s.c. convex functions coincide, as recalled in
Attouch et al. (2014, Theorem 3.3.3).

We now regroup some known properties of KL, in particular to show that Assumption (A’1) holds for
ϕ = ϕe.
Remark 5 (Properties of KL). For compact X , the domain of the negative entropy ϕe is strictly
included in L1

+(X ), contains Lq+(X ) for q > 1, and is of empty interior for the norm/strong topology
of Lq(X ) (Resmerita, 2005, Lemma 4.1). Regarding the use of ϕ = ϕe in (8), one can for instance

5iC denotes the indicator function of the set C, defined by iC(µ) = 0 if µ ∈ C, +∞ otherwise for any
µ ∈ M(X ). Notice that iC being τ -l.s.c. is equivalent to C being τ -closed in M(X ).
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take M(X ) = L1(X ) equipped with the weak topology induced by L∞(X ) and the Lebesgue
measure as reference. We have that P(X) ∩ L1(X ) is weakly closed and that KL and ϕe are strictly
convex, weakly l.s.c. and have weakly compact sublevel sets in L1(X ) by Eggermont (1993, Lemma
2.1, 2.3) (see also Resmerita and Anderssen, 2007, Section 3). By Resmerita (2005, Lemma 4.1),
a sufficient condition for KL (resp. ϕe) to have a first variation in L∞ at µ is that there exists
κ0, κ1 > 0 such that κ0 ≤ dµ/dµ̄(x) ≤ κ1 almost everywhere over X (resp. ϕe for µ̄ = ρ). KL is
not Gâteaux-differentiable for non-finite X as recalled for instance in Butnariu and Resmerita (2006,
p12) and Santambrogio (Remark 7.13 2015, p239).

As a follow-up of Remark 2, we now give some known conditions for a sum of subdifferentials to be
the subdifferential of the sum.
Remark 6 (About the proof of convergence in Theorem 4). Our proof of Theorem 4 resembles the
one of Lu et al. (2018), which also relies on a three-point inequality as stated in Lemma 3. However,
the proof of the latter inequality in finite dimensions uses a formula of the form ∂(G + Dϕ) =
∂G + ∂Dϕ as in Chen and Teboulle (1993, Lemma 3.2), but which is harder to derive in infinite
dimensions. Such an equality between subdifferentials can be obtained typically under at least three
(non-equivalent) conditions for convex and l.s.c. G and ϕ over a Banach space M(X ): (i) having
∪λ≥0λ(dom(G)− dom(Dϕ)) to be a closed vector space of M(X ) (Attouch and Brezis, 1986); (ii)
having a non-empty (quasi) relative interior of (dom(G)− dom(Dϕ)) (Borwein and Goebel, 2003);
(iii) continuity of Dϕ or G at least at some µ ∈ dom(G) ∩ dom(Dϕ) (Peypouquet, 2015, Theorem
3.30). Condition (iii) does not hold when F and Dϕ are chosen as the KL divergence (defined below
in Example 2) in none of the spaces we consider since KL is not continuous, its domain being of
empty interior. The other conditions are difficult to verify for given functionals. For instance, dom(ϕ)
is not explicit for the negative entropy (see Example 2). On the contrary, by favoring directional
derivatives and first variations, we circumvent most of the difficulties related to (sub)differentiability.

C Additional technical results

Lemma 12. Let f be a proper function over a vector space Y with values in R ∪ {+∞}. The
following conditions are equivalent:

i) f is convex;

ii) dom(f) is convex, and, for all x, y ∈ dom(f), d+f(x)(y − x) exists, with value in R ∪
{−∞}, and we have f(x) + d+f(x)(y − x) ≤ f(y), i.e. Df (y|x) ≥ 0;

iii) dom(f) is convex, and, for all x, y ∈ dom(f), d+f(x)(y − x) exists, with value in R ∪
{−∞}, and we have d+f(x)(y − x) + d+f(y)(x− y) ≤ 0.

The lemma immediately extends to strictly convex functions by taking strict inequalities.

Proof. Given x, y ∈ dom(f), define for any λ ∈ [0, 1] uλ = x+ λ(y − x). Assuming (i), then

f(uλ) ≤ λf(y) + (1− λ)f(x)

f(x) +
f(uλ)− f(x)

λ
≤ f(y),

which yields (ii) by the decreasingness of differential quotients discussed in Remark 1.

Assuming (ii), we just sum the two inequalities (f(x) + d+f(x)(y − x) ≤ f(y)) and (f(x) +
d+f(x)(y − x) ≤ f(y)), to derive (iii).

The last implication to show is (iii)⇒ (i) which requires to perform an integration. Assume that (iii)
holds, we want to show that f(uλ) ≤ λf(y)+ (1−λ)f(x). Set g(λ) := f(uλ) and denote by g′+(λ)
(resp. g′−(λ)) its right (resp. left) derivative, both derivatives exist with value in R ∪ {−∞} for any
λ ∈ (0, 1) since

d+f(uλ)(y − x) = lim
h→0+

f(uλ + h(y − x))− f(x)

h
= g′+(λ)

similarly d+f(uλ)(x− y) = −g′−(λ). Consequently, for all 0 < λ1 < λ2 < 1, applying (iii) to uλ1

and uλ2
, we have that g′+(λ1) ≤ g′−(λ2). We now show that λ 7→ g′−(λ) is increasing over (0, 1).
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We just have to show that g′−(λ1) ≤ supλ∈(0,λ2) g
′
+(λ). By contradiction, we could fix λ1 ∈ (0, λ2)

and ϵ > 0 such that, for all λ ∈ (0, λ2), g′−(λ1) ≥ g′+(λ) + ϵ. By definition of the directional
derivatives, we can then fix δ1 ∈ (0, λ1) and λ ∈ (λ1 − δ1, λ1) such that for all h0 ∈ (0, δ1)

|g′−(λ1) +
g(λ1 − h0)− g(λ1)

h0
| ≤ ϵ/4 ; |g′+(λ)−

g(λ1)− g(λ)

λ1 − λ
| ≤ ϵ/4

whence

g(λ1)− g(λ1 − h0)

h0
≥ g(λ1)− g(λ)

λ1 − λ
+ ϵ/2

which leads to a contradiction for h0 = λ1−λ. Therefore λ→ g′−(λ) is increasing over (0, 1), upper
bounded by g′−(y) = d+f(u1)(x− y). Since g has both left and right derivatives, it is continuous
over [0, 1]. We can now apply (iii) to x and uλ, use the positive homogeneity of the directional
derivative (which always holds by definition), and integrate over (0, 1) since the function g′− is
Riemann-integrable,

0 ≥ d+f(x)(uλ − x) + d+f(uλ)(x− uλ)

= λd+f(x)(y − x) + λd+f(uλ)(x− y)

0 ≥ d+f(x)(y − x)−
∫ 1

0

g′−(λ)dλ

= d+f(x)(y − x) + g(0)− g(1)

= d+f(x)(y − x) + f(x)− f(y),

which concludes the proof.

Below, we derive some useful characterizations of relative smoothness, by analogy with Bauschke
et al. (2017, Proposition 1) for differentiable functions in finite dimensions. Similar results hold for
relative convexity by the same arguments.
Lemma 13. The following conditions are equivalent:

(i) F is L-smooth relative to ϕ over C;
(ii) Lϕ−F is convex on C ∩ dom(ϕ) ∩ dom(F);

and, if the first variations of F and ϕ over C evaluated at µ, ν ∈ C ∩ dom(ϕ) ∩ dom(F) exist,

(iii) ⟨∇CF(µ)−∇CF(ν), µ− ν⟩ ≤ L⟨∇Cϕ(µ)−∇Cϕ(ν), µ− ν⟩

Proof. This is a consequence of Lemma 12 applied to ψ(µ) = Lϕ(µ) − F(µ). More precisely,
condition (i) can be written as d+ψ(µ)(ν − µ) ≤ ψ(ν)− ψ(µ) which is equivalent to the convexity
of ψ by Lemma 12, hence (i)⇔(ii). Provided the first variations of F and ϕ over C exist, assuming
(i) and (iii) boils down to Lemma 12-iii). Conversely, assuming (iii), we use Lemma 12-iii) and the
linearity of the first variation (3).

D Smoothness of the Maximum Mean Discrepancy relatively to the KL
divergence

Let k : X × X → R be a positive semi-definite kernel, Hk its corresponding Reproducing Kernel
Hilbert Space (Steinwart and Christmann, 2008). The space Hk is a Hilbert space with inner
product and norm ∥ · ∥Hk

satisfiying the reproducing property: for all f ∈ Hk and x ∈ X , f(x) =
⟨f, k(x, ·)⟩Hk

. For any µ ∈ P(X ) such that
∫ √

k(x, x)dµ(x) <∞, the kernel mean embedding of
µ, mµ =

∫
k(x, ·)dµ(x), is well-defined, belongs to Hk, and Eµ[f(X)] = ⟨f,mµ⟩Hk

(Smola et al.,
2007). The kernel k is said to be characteristic when such mean embedding is injective, that is, when
any probability distribution is associated to a unique mean embedding. In this case, the kernel defines
a distance between probability distributions referred to as the Maximum Mean Discrepancy (MMD),
defined through the square norm of the difference between mean embeddings:

MMD2(µ, µ̄) = ∥mµ −mµ̄∥2Hk
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Interestingly, as soon as the kernel is bounded, the MMD is relatively smooth with respect to ϕe,
see Proposition 14 below. Notice that, thanks to the reproducing property, µ 7→ MMD(µ, µ̄) is
strictly convex whenever the kernel k is characteristic, as it is the case for the Gaussian kernel.
Similarly to KL, the MMD can be written as a Bregman divergence of ϕk(µ) = ∥mµ∥2Hk

=∫
k(x, x′)dµ(x)dµ(x′).

Proposition 14. Let ϕe : µ 7→
∫
log(µ)dµ and fix ν ∈ P(X ). Take k : X × X → R to be a

bounded semipositive definite kernel, i.e. ck = supx∈X k(x, x) <∞. The squared Maximum Mean
Discrepancy MMD2(·, ν) is 4ck-smooth relative to ϕe.

Proof. Let µ, ν ∈ P(X ) and fµ,µ̄ =
∫
k(x, ·)dµ(x) −

∫
k(x, ·)dµ̄(x) = 1

2∇MMD2(µ, µ̄). We
have:

⟨∇MMD2(µ, µ̄)−∇MMD2(ν, µ̄), µ− ν⟩ ≤ ∥∇MMD2(µ, µ̄)−∇MMD2(ν, µ̄)∥∞∥µ− ν∥TV
≤ 2∥fµ,µ̄ − fν,µ̄∥∞∥µ− ν∥TV

≤ 2 sup
y∈X

|
∫
k(x, y)dµ(x)−

∫
k(x, y)dν(x)|∥µ− ν∥TV

since by the reproducing property and Cauchy-Schwarz inequality, k(x, y) = ⟨k(x, ·), k(y, ·)⟩ ≤
∥k(x, ·)∥k∥k(y, ·)∥k =

√
k(x, x)k(y, y) ≤ ck, and y 7→ k(x, y) is measurable,

≤ 2ck sup
f :X→[−1,1]
fmesurable

|
∫
f(x)dµ(x)−

∫
f(x)dν(x)|∥µ− ν∥TV

≤ 2ck∥µ− ν∥2TV ≤ 4ck(KL(µ|ν) + KL(ν|µ)) = 4ck⟨∇ϕe(µ)−∇ϕe(ν), µ− ν⟩,

where the last inequality results from Pinsker’s inequality. We conclude by using Lemma 13.

Remark 7. (Case of neural network optimization). It is interesting to quantify the constant ck for
some kernels of interest, for instance when optimizing an infinite-width one hidden layer neural
network as in Arbel et al. (2019). Consider a regression task where the labelled data (z, y) ∼ P
where P denotes some fixed data distribution. For any input z, the output of a single hidden layer
neural network parametrized by w ∈ X can be written:

fw(z) =
1

N

N∑
j=1

ajσ(⟨bj , z⟩) =
∫
X
ϕ(z, w)dµ(w),

where aj and bj denote output and input weights of neuron j = 1, . . . , N respectively, wj = (aj , bj)

and µ = 1/N
∑N
j=1 δwj

. In the infinite-width setting, the limiting risk in this regression setting is
written for any distribution µ ∈ P(X ) on the weights as E(z,y)∼P [∥y −

∫
ϕ(z, w)dµ(w)∥2]. When

the model is well-posed, i.e. there exists a distribution µ∗ over weights such that E[y|z = ·] =∫
ϕ(·, w)dµ∗(w), then the limiting risk writes as an MMD with k(w,w′) = Ez∼P [ϕ(z, w)Tϕ(z, w)]

(Arbel et al. (2019, Proposition 20)). Hence, bounding ck = supw∈X k(w,w) depends on the choice
of the activation function σ and on bounding the output weights. If σ is bounded (e.g. σ is the
sigmoid activation) then bounding ck corresponds to bounding the output weights. If σ is the RelU
activation, then bounding ck depends on bounding both input and output weights as well, and on the
data distribution P .

E Related work - Optimization over measures using the Wasserstein
geometry

In this section, we attempt to clarify the differences between the (Radon) vector space geometry
considered in this paper and the Wasserstein geometry, developed in particular in Otto (2001); Villani
(2003); Ambrosio et al. (2008).

Given an optimisation problem over P(X ) the set of probability distributions over X , one can
consider different geometries over P(X ). The one adopted in our paper casts P(X ) as a subset of a
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normed space of measures, such as L2(ρ) where ρ is a reference measure, or Radon measures. In
this space, the shortest distance paths between measures are given by their square-norm distance.
Moreover in this setting, one can consider the duality of measures with continuous functions and the
mirror descent algorithm, as we do in this work.

In contrast, another possibility is to restrict P(X ) to the probability distributions with bounded second
moments, denoted P2(X ), equipped with Wasserstein-2 (W2) distance. The space (P2(X ),W2),
called the Wasserstein space, is a metric space equipped with a rich Riemannian structure (often
referred to as "Otto calculus") where the shortest distance paths are given by the W2 distance and
associated geodesics. In this setting, one can leverage the Riemannian structure to discretize (W2)
gradient flows and consider algorithms such as (W2) gradient descent, in analogy with Riemannian
gradient descent.

While both frameworks yield optimisation algorithms on measure spaces, the geometries and al-
gorithms are very different. Both the notion of convexity (along L2 versus W2 geodesics) and of
gradients (first variation vs gradient of first variation) differ; and by extension so do many definitions.
Consequently, the conditions needed for the convergence of mirror descent and W2 gradient descent
over an objective functional F greatly differ since they rely on the chosen geometry through the
definitions of convexity, smoothness, or differentiability.

Wasserstein gradient descent should be thought of the analog of Riemannian gradient descent in
infinite dimensions. Consequently, mirror descent yields updates on measures allowing for change of
mass (see Lemma 2), while W2 gradient descent preserves the mass, since the updates on measures
write as pushforwards (i.e., displacement of particles supporting the measures). To summarize, the
mirror descent scheme we consider is very different in nature to the gradient descent schemes based
on the Wasserstein geometry (e.g. Chizat and Bach (2018); Mei et al. (2018); Rotskoff and Vanden-
Eijnden (2018); Wibisono (2018); Korba et al. (2020); Salim et al. (2020); Korba et al. (2021)), due
to the different geometry.

F Proofs

F.1 Proof of Theorem 4

Proof. Since F is L-smooth relative to ϕ over R and we assumed that (µn)n∈N ∈ RN, we have

F(µn+1) ≤ F(µn) + d+F(µn)(µn+1 − µn) + LDϕ(µn+1|µn). (36)

Applying Lemma 3 to the convex function Gn(ν) = 1
Ld

+F(µn)(ν−µn), with µ = µn and ν̄ = µn+1

yields

d+F(µn)(µn+1 − µn) + LDϕ(µn+1|µn) ≤ d+F(µn)(ν − µn) + LDϕ(ν|µn)− LDϕ(ν|µn+1).

Fix ν ∈ R, then (36) becomes:

F(µn+1) ≤ F(µn) + d+F(µn)(ν − µn) + LDϕ(ν|µn)− LDϕ(ν|µn+1). (37)

This shows in particular, by substituting ν = µn and sinceDϕ(ν|µn+1) ≥ 0, that F(µn+1) ≤ F(µn),
i.e. F is decreasing at each iteration. Since F is l-strongly convex relative to ϕ, we also have:

d+F(µn)(ν − µn) ≤ F(ν)−F(µn)− lDϕ(ν|µn) (38)

and (37) becomes:

F(µn+1) ≤ F(ν) + (L− l)Dϕ(ν|µn)− LDϕ(ν|µn+1). (39)

By induction, similarly to Lu et al. (2018), we sum (39) over n, obtaining
n∑
i=1

Å
L

L− l

ãi
F(µi) ≤

n∑
i=1

Å
L

L− l

ãi
F(ν) + LDϕ(ν|µ0)− L

Å
L

L− l

ãn
Dϕ(ν|µn)

Using the monotonicity of (F(µn))n≥0 and the positivity of Dϕ(ν|µn), we have
n∑
i=1

Å
L

L− l

ãi
(F(µn)−F(ν)) ≤ LDϕ(ν|µ0)− L

Å
L

L− l

ãn
Dϕ(ν|µn) ≤ LDϕ(ν|µ0).
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F.2 Proof of Proposition 5

Let π, π̄ ∈ P(X ×Y), h > 0 and ξ = π̄−π hence any integral with respect to ξ of constant functions
is null. We have:

FS(π + hξ)− FS(π) = KL(pX (π + hξ)|µ̄)−KL(pXπ|µ̄)

=

∫
log (pXπ + hpX ξ) dpX (π + hξ)−

∫
log(µ̄)dpX (π + hξ)−

∫
log

Å
pXπ

µ̄

ã
dpXπ

= h

∫
log

Å
pXπ

µ̄

ã
dpX ξ +

∫
log

Å
1 + h

pX ξ

pXπ

ã
dpXπ︸ ︷︷ ︸

≈h
∫ pX ξ

pXπ dpXπ+o(h)=0+o(h)

+h

∫
log

Å
1 + h

pX ξ

pXπ

ã
dpX ξ︸ ︷︷ ︸

≈h2
∫ pX ξ

pXπ dpX ξ+o(h
2)

= h

∫
log

Å
pXπ

µ̄

ã
dpX ξ + o(h).

Consequently,

lim
h→0+

FS(π + hξ)− FS(π)

h
=

∫
X
log

Å
pXπ

µ̄

ã
dξ =

∫
X×Y

log

Å
pXπ

µ̄

ã
dξ. (40)

Hence, when it exists, ∇CFS(π) = ln(dpXπ/dµ̄). Moreover, the sets Π(∗, ν̄) and Π(µ̄, ∗) are L∞-
weak-* closed.6 Besides, KL has weak-* compact sublevel sets and is weak-* l.s.c. Hence Attouch
et al. (2014, Theorem 3.2.2) applies, and the iterates (πn)n≥0 exist, as originally shown by Csiszar
(1975). As πn = e(f+g−c)/ϵµ̄⊗ ν̄ (Nutz, 2021, Section 6) with f ∈ L∞(X ) and g ∈ L∞(Y), we
have that x 7→ ln(dµn(x)/dµ̄(x)) ∈ L∞(X ,R); indeed as c ∈ L∞, the first marginal µn of πn is an
integral of functions bounded by strictly positive quantities.

Consider a coupling π ∈ P(X × Y) with π ≪ πn and denote by µ its first marginal. We have
that FS(πn) =

∫
X ln(µn/µ̄) dµn and ⟨∇CFS(πn), π − πn⟩ =

∫∫
ln(dµn(x)/dµ̄(x))(π(dx, dy) −

πn(dx, dy)). Simplifying and using (14) twice we obtain the identity:

FS(πn) + ⟨∇CFS(πn), π − πn⟩+KL(π|πn)

=

∫
ln(dµn/dµ̄(x))µn(dx) +

∫∫
ln(dµn/dµ̄(x))π(dx, dy)

−
∫∫

ln(dµn/dµ̄(x))πn(dx, dy) + KL(π|πn)

=

∫
ln(dµn/dµ̄(x))µ(dx) + KL(pXπ|µn) + KL(π|pXπ ⊗ πn/µn)

=

∫
ln(dµ/dµ̄(x))µ(dx) + KL(π|pXπ ⊗ πn/µn) = KL(π|µ̄⊗ πn/µn) = KL(π|πn+ 1

2
).

We conclude by taking the argmin over π ∈ C.

F.3 Proof of Proposition 7

The proof of Proposition 7 essentially relies on bounding the entropic potentials by the marginals, as
in Luise et al. (2019)[Theorem C.4]. For their purpose Luise et al. (2019) assume that X = Y and
that c(x, y) = c(y, x). These assumptions are not needed here so we revisit their proof and show that
their bound holds for general bounded costs. We define

Dc =
1

2
sup[c(x, y) + c(x′, y′)− c(x, y′)− c(x′, y)],

where the supremum runs over x, x′ ∈ X and y, y′ ∈ Y . When µ and ν are probability measures
on X and Y respectively we define the soft-c transform mappings Tµ : L∞(X ) → L∞(Y) and
Tν : L

∞(Y) → L∞(X ) by

Tµ(f)(y) = −ϵ ln
(∫

X
e(f(x)−c(x,y))/ϵµ(dx)

)
6Indeed, take (πn)n∈N ∈ Π(∗, ν̄) converging weakly to some π̄. As ⟨g, πn⟩X×Y = ⟨g, ν̄⟩Y for all

g ∈ L∞(Y,R), we obtain that ⟨g, π̄⟩X×Y = ⟨g, ν̄⟩Y which precisely means that pY π̄ = ν̄.
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and
Tν(g)(x) = −ϵ ln

(∫
Y
e(g(y)−c(x,y))/ϵν(dy)

)
.

These mappings arise naturally in the context of Sinkhorn’s algorithm since if π ∈ Πc has marginals
(µ, ν), we can write π(dx, dy) = e(f(x)+g(y)−c(x,y))/ϵµ(dx)ν(dy) and taking marginals implies

g = Tµ(f) and f = Tν(g). (41)

Luise et al. (2019) use the Hilbert metric to prove their result, a classical tool to analyze matrix
scaling problems (Franklin and Lorenz, 1989), which for our purpose here reduces to the following
semi-norm.
Definition 7. When f ∈ L∞(X ) we set ∥f∥var = (supX f)− (infX f). We similarly define ∥g∥var
for g ∈ L∞(Y).

We are now ready to state our version of Luise et al. (2019)[Theorem C.4].
Proposition 15. Let π, π̃ ∈ Πc with marginals (µ, ν) and (µ̃, ν̃) respectively. Write π =

e(f+g−c)/ϵµ⊗ ν and π̃ = e(f̃+g̃−c)/ϵµ̃⊗ ν̃. Then

∥f − f̃∥var + ∥g − g̃∥var ≤ 2ϵ e3Dc/ϵ
(
∥µ− µ̃∥TV + ∥ν − ν̃∥TV

)
.

The proof of this quantitative stability estimate mainly relies on the classical result that the soft
c-transform mappings are contractions in the Hilbert metric; this result is at the heart of the proof of
the classical linear convergence rate of Sinkhorn (see Franklin and Lorenz, 1989; Chen et al., 2016,
for a proof).

Proposition 16. ∥Tµ(f̃)− Tµ(f)∥var ≤ λ∥f̃ − f∥var with λ = eDc/ϵ−1
eDc/ϵ+1

< 1.

We will also need the following lemma which is essentially contained in Luise et al. (2019).
Lemma 17. Let f = Tν(g) for some g ∈ L∞(Y). Then

∥Tµ̃(f)− Tµ(f)∥var ≤ 2ϵ e2Dc/ϵ∥µ− µ̃∥TV.

Likewise if g = Tµ(f) for some f ∈ L∞(X ),

∥Tν̃(g)− Tν(g)∥var ≤ 2ϵ e2Dc/ϵ∥ν − ν̃∥TV.

Proof of Lemma 17. For any f ∈ L∞(X ) we have by definition

Tµ̃(f)(y)− Tµ(f)(y) = ϵ log
(∫

X
e(f(x)−c(x,y))/ϵµ(dx)

)
− ϵ log

(∫
X
e(f(x)−c(x,y))/ϵµ̃(dx)

)
.

To control this difference of logs, Luise et al. (2019)[Lemma C.2] use the bound |log(a)− log(b)| ≤
max{a−1, b−1}|a − b| (for any a, b > 0). We have

∫
X e

(f(x)−c(x,y))/ϵµ(dx) ≥ einfx[f(x)−c(x,y)]/ϵ

and the same lower bound holds for
∫
X e

(f(x)−c(x,y))/ϵµ̃(dx). Therefore

|Tµ̃(f)(y)− Tµ(f)(y)| ≤ ϵ e− infx[f(x)−c(x,y)]/ϵ
∫
X
e(f(x

′)−c(x′,y))/ϵ|µ− µ̃|(dx′)

≤ ϵ esupx[c(x,y)−f(x)]/ϵesupx′ [f(x′)−c(x′,y)]/ϵ∥µ− µ̃∥TV.

This implies when taking the supremum over y ∈ Y

∥Tµ̃(f)− Tµ(f)∥var ≤ 2∥Tµ̃(f)− Tµ(f)∥∞ ≤ 2ϵ esupx,x′,y [f(x
′)−f(x)+c(x,y)−c(x′,y)]/ϵ∥µ− µ̃∥TV.

This last inequality is valid for any f ∈ L∞(X ). If in addition we take f to be an image f = Tν(g),
then we have the standard estimate for any given x, x′ ∈ X and y ∈ Y

−f(x) = ϵ ln
(∫

Y
e(g(y

′)−c(x,y′))/ϵν(dy′)
)

= ϵ ln
(∫

Y
e(c(x,y)+c(x

′,y′)−c(x′,y)−c(x,y′))/ϵe(g(y
′)−c(x′,y′))/ϵν(dy′)

)
+ c(x′, y)− c(x, y)

≤ 2Dc + ϵ ln
(∫

Y
e(g(y

′)−c(x′,y′))/ϵν(dy′)
)
+ c(x′, y)− c(x, y)

= 2Dc − f(x′) + c(x′, y)− c(x, y).
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This shows that supx,x′,y[f(x
′)− f(x) + c(x, y)− c(x′, y)] ≤ 2Dc. As a consequence,

∥Tµ̃(f)− Tµ(f)∥var ≤ 2ϵ e2Dc/ϵ∥µ− µ̃∥TV.

By symmetry the corresponding bound can be derived for quantities on Y .

Proof of Proposition 15. Having in mind the fixed point equations (41) for (f, g) and the correspond-
ing ones for (f̃ , g̃) we write

∥f̃ − f∥var = ∥Tν̃(g̃)− Tν(g)∥var

≤ ∥Tν̃(g̃)− Tν̃(g)∥var + ∥Tν̃(g)− Tν(g)∥var,

and similarly, ∥g̃−g∥var ≤ ∥Tµ̃(f̃)−Tµ̃(f)∥var +∥Tµ̃(f)−Tµ(f)∥var. By Proposition 16, ∥Tµ̃(f̃)−
Tµ̃(f)∥var ≤ λ∥f̃ − f∥var and ∥Tν̃(g̃)− Tν̃(g)∥var ≤ λ∥g̃ − g∥var. Combining, we obtain

(1− λ)
(
∥f̃ − f∥var + ∥g̃ − g∥var

)
≤ ∥Tµ̃(f)− Tµ(f)∥var + ∥Tν̃(g)− Tν(g)∥var.

Lemma 17 takes care of the right-hand side, and this results in

(1− λ)
(
∥f̃ − f∥var + ∥g̃ − g∥var

)
≤ 2ϵ e2Dc/ϵ

(
∥µ− µ̃∥TV + ∥ν − ν̃∥TV

)
.

Finally we divide by 1− λ and bound (1− λ)−1 = (eDc/ϵ + 1)/2 ≤ eDc/ϵ.

Proof of Proposition 7. Let π, π̃ ∈ Πc with marginals (µ, ν̄) and (µ̃, ν̄) respectively. Write π =

e(f+g−c)/ϵµ ⊗ ν̄ and π̃ = e(f̃+g̃−c)/ϵµ̃ ⊗ ν̄. We emphasize that π and π̃ have the same second
marginal ν̄. Then

ϵKL(π̃|π) = ϵKL(π̃|π) + ϵKL(π|π̃)− ϵKL(π|π̃)

=

∫∫
(f̃ − f + g̃ − g + ϵ ln

(dµ̃
dµ

)
) dπ̃ +

∫∫
(f − f̃ + g − g̃ + ϵ ln

(dµ
dµ̃

)
)dπ − ϵKL(π|π̃)

=

∫∫
(f̃ − f + g̃ − g) (dπ̃ − dπ) + ϵKL(µ̃|µ) + ϵKL(µ|µ̃)− ϵKL(π|π̃).

Part of the first term vanishes since
∫∫

(g̃ − g) (dπ̃ − dπ) =
∫
Y(g̃ − g) (dν̄ − dν̄) = 0, and we can

get rid of the last two terms by using the data processing inequality KL(µ|µ̃) ≤ KL(π|π̃). Thus

ϵKL(π̃|π) ≤ ∥f̃ − f∥var∥µ̃− µ∥TV + ϵKL(µ̃|µ).

Applying Proposition 15 we obtain

ϵKL(π̃|π) ≤ 2ϵe3Dc/ϵ∥µ̃− µ∥2TV + ϵKL(µ̃|µ),

and after dividing by ϵ, Pinsker’s inequality yields

KL(π̃|π) ≤ (1 + 4e3Dc/ϵ)KL(µ̃|µ).

F.4 Proof of Proposition 9

Proposition 18 (EM as mirror descent). Let C = Π(∗, ν̄). Assume that for all π ∈ C there exists
a q∗(π) ∈ Q solving (28), that, for ph = pq∗((1−h)πn+hπ), dπn/dph converges pointwise to dπn/dpqn
for h → 0+ with | ln(dπn/dph)| ≤ Gn for some Gn ∈ L1(π + πn), that dπn/dpqn(·, ·) ∈ [an, bn] for
some an > 0 and bn > 0, and that supq∈Q | ln(dπn/dpq)| < ∞. Then the EM iterations (26)–(27)
can be written as a mirror descent iteration with objective function FEM, Bregman potential ϕe and
constraints C,

πn+1 = argmin
π∈C

⟨∇CFEM(πn), π − πn⟩+KL(π|πn), (42)

with ∇CFEM(πn) = ln(dπn/dpqn) ∈ L∞(X × Y).
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Remark 8. Note that our assumptions on the sequence (ph)h∈[0,1] in Proposition 18 are very similar to
what the fundamental theorem of Γ-convergence would provide (see Dal Maso (1987), Braides (2002,
Theorem 2.10)). It is indeed straightforward to prove Γ-convergence (see Braides, 2002, Theorem
2.1) of the sequence (fn,π(·, h))h∈[0,1] in h = 0+ with fn,π(p, h) := KL(πn+h(π−πn)|p), owing
to the convexity and joint weak-* lower semicontinuity of KL. However, to prove the convergence
of the sequence of minimizers (ph)h∈[0,1], one would need the equicoercivity of (KL(πh|p))h∈[0,1]

over p ∈ PQ Braides (2002, Definition 2.9)), which heavily depends on the properties of PQ, e.g.
considering a weak-* compact PQ would entail equicoercivity.

Proof. We will use here the envelope theorem to differentiate FEM and compute its first variation. We
are going to apply Milgrom and Segal (2002, Theorem 3) leveraging properties of KL. Milgrom and
Segal (2002, Theorem 3) is written for the set [0, 1]×X , where X is some set optimized over. Here
X = PQ := {pq | q ∈ Q} and the interval [0, 1] will be merely the scalar of the directional derivative
we consider.

Let n ≥ 0 and π ∈ P(X × Y). For h ∈ [0, 1], set fn,π(p, h) := KL(πn + h(π − πn)|p) and
Vn,π(h) = infp∈PQ

KL(πn + h(π − πn)|p) to match the notations of Milgrom and Segal (2002,
Theorem 3). We have to show some equidifferentiability over q ∈ PQ. Notice that the following
expression does not depend on p,

1

h

ï∫∫
ln

Å
πn + h(π − πn)

p

ã
d(πn + h(π − πn))−

∫∫
ln

Å
πn
p

ã
dπn

ò
−

∫∫
ln

Å
πn
p

ã
d(π − πn)

=
1

h

∫∫
ln

Å
1 + h

(π − πn)

πn

ã
dπn =

1

h
[h

∫∫
d(π − πn) +O(h2)] = 0 +O(h),

so that we do have equidifferentiability when h→ 0+. Our assumptions then allow to apply Milgrom
and Segal (2002, Theorem 3). We thus obtain that

d+FEM(πn)(π − πn) = d+Vn,π(0) = lim
h→0+

∫∫
ln

Å
dπn
dph

ã
dπn.

Since | ln(dπn/dph)| ≤ Gn ∈ L1(π + πn) and dπn/dph converges pointwise to dπn/dpqn for h → 0+

(recall that qn = q∗(πn) by definition), we can apply the dominated convergence theorem to
interchange the limit and the integral. Consequently d+FEM(πn)(π−πn) =

∫∫
ln(dπn/dpqn)d(π−πn)

proving that ∇FEM(πn) = ln(dπn/dpqn) ∈ L∞ since πn/pqn(·, ·) ∈ [an, bn] for some an > 0 and
bn > 0.

Then, for πn the EM iterate at time n, and for any coupling π, we have the identity:

FEM(πn) + ⟨∇CFEM(πn), π − πn⟩+KL(π|πn)

=

∫
ln(dπn/dpqn(x))πn(dx) +

∫
ln(dπn/dpqn(x)) (π − πn)(dx) +

∫
ln(dπ/dπn(x))π(dx)

=

∫
ln(dπ/dpqn(x))π(dx) = KL(π|pqn).

Note that qn is optimal in (28), whence (29) matches (27).
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F.5 Proof of Proposition 10

Proof. Let π, π̄ ∈ P(X × Y), h > 0 and ξ = π̄ − π, so
∫∫

X×Y ξ(dx, dy) = 0. We have:

FLEM(π + hξ)− FLEM(π) = KL(π + hξ|pX (π + hξ)⊗K)−KL(π|pXπ ⊗K)

=

∫
log

Å
π + hξ

pX (π + hξ)⊗K

ã
d(π + hξ)−

∫
log

Å
π

pXπ ⊗K

ã
dπ

=

∫
log (π + hξ) d(π + hξ)−

∫
log (pX (π + hξ)⊗K) d(π + hξ)−

∫
log (π) dπ +

∫
log (pXπ ⊗K) dπ

= h

∫
log πdξ +

∫
log

Å
1 + h

ξ

π

ã
dπ︸ ︷︷ ︸

≈h
∫ ξ

π dπ+o(h)=0+o(h)

+h

∫
log

Å
1 + h

ξ

π

ã
dξ︸ ︷︷ ︸

≈h2
∫ ξ

π dξ+o(h
2)

− h

∫
log(pXπ ⊗K)dξ −

∫
log

Å
1 + h

pX ξ ⊗K

pXπ ⊗K

ã
dπ︸ ︷︷ ︸

≈h
∫ pX ξ⊗K

pXπ⊗K dπ+o(h)=h
∫ pX ξ

pXπ dπ+o(h)=0+o(h)

−h

∫
log

Å
1 + h

pX ξ ⊗K

pXπ ⊗K

ã
dξ︸ ︷︷ ︸

h2
∫ pX ξ⊗K

pXπ⊗K dξ+o(h2)

= h

∫
log

Å
π

pXπ ⊗K

ã
dξ + o(h).

Hence

lim
h→0+

FLEM(π + hξ)− FLEM(π)

h
=

∫
log

Å
π

pXπ ⊗K

ã
dξ.

To show that ∇FLEM(πn) belongs to L∞, we proceed by induction. Let n ≥ 0 and assume that
TKµn ≫ ν̄ and µn = efn(x)µ̄ with fn bounded (which we explicitly assumed for µ0) then the
multiplicative update (32) shows that fn+1 has the same property. Furthermore (32) gives

πn+1

µn+1 ⊗K
(·) =

µn(·) K(·,dy)ν̄(dy)∫
X K(x,dy)µn(dx)

µn(·)⊗K(·, dy)
∫
Y

K(·,dy′)ν̄(dy′)∫
X K(x,dy′)µn(dx)

=
ν̄(dy)∫

X K(x, dy)µn(dx)×
∫
Y

K(·,dy′)ν̄(dy′)∫
X K(x,dy′)µn(dx)

Since K(x, dy) = e−c(x,y)ν̄ with c uniformly bounded, πn+1

µn+1⊗K (·) is also bounded above and below
by positive constants (depending on n).

F.6 Proof of Proposition 11

Proof. By the disintegration formula (14),

FLEM(π) = KL(ν̄|pY(pXπ ⊗K)) +

∫
KL(π/ν̄|(pXπ ⊗K)/pY(pXπ ⊗K))dν̄ (43)

Let π∗ = µ∗(dx)k(x, dy)ν̄(dy)/(TKµ∗)(dy). First, for any π ∈ P(X × Y), we have pY(pXπ ⊗
K) =

∫
pXπ(dx)k(x, ·) = TK(pXπ), hence by definition of µ∗ ∈ argminµKL(ν̄|Tkµ), π∗ min-

imizes the first term in (43). Second, this choice leads to π∗/ν̄ = µ∗ ⊗K/TKµ
∗, cancelling the

nonnegative second term in (43). Hence π∗ is a minimizer of FLEM and FLEM(π∗) = KL(ν̄|TKµ∗).
Moreover, KL(·|·) is convex in both arguments, and π 7→ pXπ ⊗ K is linear. Consequently the
composition FLEM is convex in π and so is FS by the same arguments (see also Lemma 6). By
(14) and linearity of the Bregman divergence, KL(π|π̃) = DFS(π|π̃) +DFLEM(π|π̃), hence FLEM is
1-relatively smooth w.r.t. ϕe. Hence, Theorem 4 yields:

FLEM(πn) ≤ FLEM(π∗) +
KL(π∗|π0)

n
.

Since π0 ∈ Π(∗, ν̄), π0 = µ0(dx)k(x, dy)ν̄(dy)/(TKµ∗)(dy),

KL(π∗|π0) = KL(µ∗|µ0) +

∫∫
ln

Å
k(x, dy)ν̄(dy)/(TKµ∗)(dy)

k(x, dy)ν̄(dy)/(TKµ0)(dy)

ã
π∗(dx, dy)

= KL(µ∗|µ0) +

∫
Y
ln

Å
ν̄(dy)/(TKµ∗)(dy)

ν̄(dy)/(TKµ0)(dy)

ã
ν̄(dy) = KL(µ∗|µ0) + KL(ν̄|TKµ∗)−KL(ν̄|TKµ0).
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Finally, we use the inequality

KL(ν̄|TKµn) = KL(πn|pY(pXπn ⊗K)) ≤ KL(pYπn|pXπn ⊗K) = FLEM(πn).
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