
Supplementary material: Enhanced Meta
Reinforcement Learning using Demonstrations in

Sparse Reward Environments

A Proof of Theorem 3.2

We will use the well known Performance Difference Lemma [16] in our analysis.

Lemma A.1 (Performance difference lemma, [16]). For policies any two policies π1 and π2,

J(π1)− J(π2) =
1

1− γ
Es∼dπ1 ,a∼π1(s,·) [A

π2 (s, a)] , (1)

where J(πj) = Es0∼ρ [V
πj (s0)] =

1
(1−γ)Es∼dπj ,a∼πj(s,·) [R(s, a)], for j = 1, 2.

Proof of Theorem 3.2. Recall the following notations: πk is the meta-policy used at iteration k of
our algorithm, πk,i is the policy obtained after task-specific adaptation for task i, dπk,i

i is the state-
visitation frequency of policy πk,i for task i, and Ji(πk,i) is the value of the policy for the MDP
corresponding to task i. The value of the meta-policy πk is defined as Jmeta(πk) = Ei∼p(T)[Ji(πk,i)].

We can obtain a performance difference lemma for the meta-policies as follows.

(1− γ) (Jmeta(πk+1)− Jmeta(πk)) = (1− γ)
(
Ei∼p(T) [Ji(πk+1,i)]− Ei∼p(T) [Ji(πk,i)]

)
= (1− γ)Ei∼p [Ji(πk+1,i)− Ji(πk,i)]

= Ei∼p(T)

[
E
s∼d

πk+1,i
i ,a∼πk+1,i(s,·)

[
A

πk,i

i (s, a)
]]

= E
i∼p(T),s∼d

πk+1,i
i ,a∼π1,i(s,·)

[
A

πk,i

i (s, a)
]
, (2)

where the third equality follows from Lemma A.1. Staring from (2), we get

(1− γ) (Jmeta(πk+1)− Jmeta(πk)) = E
i∼p(T),s∼d

πk+1,i
i ,a∼πk+1,i(s,·)

[
A

πk,i

i (s, a)
]

− E
i∼p(T),s∼d

πk,i
i ,a∼πk+1,i(s,·)

[
A

πk,i

i (s, a)
]
+ E

i∼p(T),s∼d
πk,i
i ,a∼πk+1,i(s,·)

[
A

πk,i

i (s, a)
]

=
∑
i

p(i)
∑
s

d
πk,i

i (s)
∑
a

πk+1,i(s, a)A
πk,i

i (s, a)

+
∑
i

p(i)
∑
s

(
d
πk+1,i

i (s)− d
πk,i

i (s)
)∑

a

πk+1,i(s, a)A
πk,i

i (s, a) (3)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

We with now consider the second term of equation 3:∑
i

p(i)
∑
s

(
d
πk+1,i

i (s)− d
πk,i

i (s)
)∑

a

πk+1,i(s, a)A
πk,i

i (s, a)

=
∑
i

p(i)
∑
s

d
πk+1,i

i (s)
∑
a

πdem
i (s, a)A

π2,i

i (s, a)

+
∑
i

p(i)
∑
s

d
πk+1,i

i (s)
∑
a

(
πk+1,i(s, a)− πdem

i (s, a)
)
A

πk,i

i (s, a)

−
∑
i

p(i)
∑
s

d
πk,i

i (s)
∑
a

(πk+1,i(s, a)− πk,i(s, a))A
πk,i

i (s, a)

−
∑
i

p(i)
∑
s

d
πk,i

i (s)
∑
a

πk,i(s, a)A
πk,i

i (s, a)

(a)

≥ ∆−
∑
i

p(i)
∑
s

d
πk+1,i

i (s)
∑
a

∣∣πk+1,i(s, a)− πdem
i (s, a)

∣∣ ∣∣Aπk,i

i (s, a)
∣∣

−
∑
i

p(i)
∑
s

d
πk,i

i (s)
∑
a

|πk+1,i(s, a)− πk,i(s, a)|
∣∣Aπk,i

i (s, a)
∣∣

(b)
= ∆− 2C1Ei∼p(T)

[
D

πk+1,i

TV

(
πk+1,i, π

dem
i

)]
− 2C1Ei∼p(T)

[
D

πk,i

TV (πk+1,i, πk,i)
]

(4)

Here, we get (a) is from Assumption 3.1 from which we have
∑

a π
dem
i (s, a)A

πk,i

i (s, a) ≥ ∆, ∀s, i,
and noting that

∑
a πk,i(s, a)A

πk,i (s, a) = 0 by definition of advantage function. We get (b) by
denoting C1 = maxi maxs,a

∣∣Aπk,i

i (s, a)
∣∣. Using (4) in 3, we get

Jmeta(πk+1)− Jmeta(πk) ≥
(

1

1− γ
E
i∼p(T),(s,a)∼d

πk,i
i

[
πk+1,i(s, a)

πk,i(s, a)
A

πk,i

i (s, a)

]
− 2C1

1− γ
Ei∼p(T)

[
D

πk,i

TV (πk+1,i, πk,i)
])

+

(
∆

1− γ
− 2C1

1− γ
Ei∼p(T)

[
D

πk+1,i

TV

(
πk+1,i, π

dem
i

)])
,

which completes the proof.

B Environments

In this section, we describe all the simulation and real-world environments in detail.

B.1 Simulation Environments

Point 2D Navigation: Point 2D Navigation [9] is a 2 dimensional goal reaching environment with
S ⊂ R2, A ⊂ R2, and the following dynamics,

xt+1 = xt + dxt, yt+1 = xt + dyt, such that dx2
t + dy2t ≤ 0.12

Where xt and yt are the x and y location of the agent, dxt and dyt are the actions taken which
correspond to the displacement in the x and y direction respectively, all taken at time step t. The
goals are located on a semi circle of radius 2, and the episode terminates when the agent reaches the
goal or spends more than 100 time steps in the environment. The sparse reward function for the agent
is defined as follows,

Rt =


1−

√
(xt+1 − xg)2 + (yt+1 − yg)2 if

√
(xt+1 − xg)2 + (yt+1 − yg)2 ≤ 0.2

100− t− 1 if
√
(xt+1 − xg)2 + (yt+1 − yg)2 ≤ 0.02,

0 otherwise,

where xg and yg are the x, y location of the goal. The agent is given a zero reward everywhere except
when it is a certain distance D1 = 0.2 near the goal location. Within the distance D1, the agent is
given two kinds of rewards. If the agent is very close to the goal, say a distance D2 = 0.02, then it
rewarded with a positive bonus of 1×Number_of_times_steps_remaining_in_episode. This

2

is done to create a sink near goal location to trap the agent inside it, rather than letting it wander in
the D1 region to keep collecting misleading positive reward. For distances between 0.02 and 0.2, the
agent is given a positive reward of 1-dist(agent,goal).

TwoWheeled Locomotion: The TwoWheeled Locomotion environment [12] is designed based on
the two wheeled differential drive model with S ⊂ R2, A ⊂ R2, and the following dynamics,

xt+1 = xt + vt cos(θt)dT, yt+1 = yt + vt sin(θt)dT, θt+1 = θt + ωtdT,

with vt ∈ [0, 0.22], ωt ∈ [−2.84, 2.84], where xt, yt correspond to the x and y coordinate of the
agent, vt and ωt are the actions corresponding to the linear and angular velocity of the agent all at
time t, and dT = 0.5 is the time discretization factor. Goals are located on a semi-circle of radius 2,
and the episode terminates if the agent reaches the goal, or spends more than 100 time steps in the
environment, or moves out of region, which is a square box of side 2.5. The sparse reward function
for the agent is defined as follows,

Rt =


1−

√
(xt+1 − xg)2 + (yt+1 − yg)2 if

√
(xt+1 − xg)2 + (yt+1 − yg)2 ≤ 0.5

100− t− 1 if |xt+1 − xg| ≤ 0.2 and |yt+1 − yg| ≤ 0.2,

0 otherwise,

where xg and yg are the x, y location of the goal.

Half Cheetah Forward-Backward: The Half Cheetah Forward-Backward environment [9], is a
modified version of the standard MuJoCo[35] HalfCheetah environment with S ⊂ R20 and A ⊂ R6,
where the agent is tasked with moving forward or backward, with the episode terminating if the agent
spends more than 100 time steps in the environment. The sparse reward function is as follows,

Rt =

dg ·
(xt+1 − xt)

dT
− ct if |xt+1 − x0| > 2.

0 otherwise,

where xt corresponds to the x position of the agent, ct is the control cost, all at time step t, dT is the
time discretization factor, and dg is the goal direction, which is +1 for the forward task and −1 for
the backward task.

TwoWheeled Locomotion - Changing Dynamics: We modify the TwoWheeled locomotion envi-
ronment by fixing the goal to (2, 1), and adding a residual angular velocity,

xt+1 = xt + vt cos(θt)dT, yt+1 = yt + vt sin(θt)dT, θt+1 = θt + ωg + ωtdT

with vt ∈ [0, 0.15], ωt ∈ [−1.5, 1.5], where ωg is the residual angular velocity, which corresponds to
different task, and mimics drift in the environment. The sparse reward function is similar to the one
described in section B.1.

Rt =


1−

√
(xt+1 − 2)2 + (yt+1 − 1)2 if

√
(xt+1 − xg)2 + (yt+1 − yg)2 ≤ 0.5

100− t− 1 if |xt+1 − 2| ≤ 0.1 and |yt+1 − 1| ≤ 0.1,

0 otherwise,

B.2 Real-World TurtleBot Platform and Experiments

We deploy the policy trained on the environment described in section B.1 on a TurtleBot 3 [2], a real
world open source differential drive robot. We use ROS as a middleware to set up communication
between the bot and a custom built OpenAI Gym environment. The OpenAI Gym environment
acts as an interface between the policy being deployed and the bot. The custom built environment,
subscribes to ROS topics (/odom for xt, yt, θt), which are used to communicate the state of the bot,
and publish (/cmd_vel for vt, ωt) actions. This is done asynchronously through a callback driven
mechanism. The bot transmits its state information over a wireless network to an Intel NUC, which
transmits back the corresponding action according to the policy being deployed. The trajectories
executed by the adapted policies are plotted in figure 1 (note that figure 1 is the same as figure 6,
re-plotted here for clarity). During policy execution on the TurtleBot, we set the residual angular
velocity that mimics drift to ωg = −0.65, we note that our algorithms (EMRLD and EMRLD-WS)
are able to adapt to the drift in the environment and reach the goal. We further note that MAML,
takes a longer sub-optimal route to reach the reward region, but misses the goal.

3

0.0 0.5 1.0 1.5 2.0 2.5
X

1.0

0.5

0.0

0.5

1.0

1.5

Y

EMRLD
EMRLD-WS
MAML
Meta-BC
GMPS

Figure 1: Trajectories in the real world for all algo-
rithms with residual angular velocity ωg = −0.65

We have provided a link to real-world demon-
stration with our code1. For EMRLD, we show
the execution of the meta policy used to collect
data, and the adapted policy. It can be clearly
seen that the the meta policy collects rewards
in the vicinity of the goal region, which is then
used for adaptation. The adapted policy then
reaches the goal. We further show the execution
of the adapted policies for the baseline algo-
rithms on the TurtleBot, and we can observe
that EMRLD and EMRLD-WS outperform all
the baseline algorithms and reach the goal.

C Experimental Setup

Computing infrastructure and run time: The
experiments are run on computers with AMD
Ryzen Threadripper 3960X 24-Core Processor
with max CPU speed of 3800MHz. Our imple-
mentation does not make use of GPUs. Insead,
the implementation is CPU thread intensive. On
an average, EMRLD and EMRLD-WS take ∼3h
to run on smaller environments, and take ∼5h on
HalfCheetah. We train goal conditioned expert
policies using TRPO. Expert policy training takes ∼0.5h to run. Our code is based on learn2learn2

[3], a software library built using PyTorch [24] for Meta-RL research.

Neural Network and Hyperparameters: In our work, the meta policy πdem and the adapted policies
πk,i are stochastic Gaussian policies parameterized by neural networks. The input for each policy
network is the state vector s and the output is a Gaussian mean vector µ. The standard deviation σ is
kept fixed, and is not learnable. During training, an action is sampled from N (µ, σ).

For value baseline (used for advantage computation) of meta-learning algorithms, we
use a linear baseline function of the form B(s) = ζ⊤s,tG(s), where ζs,t =

concat
(
s, s⊙ s, 0.01t, (0.01t)2, (0.01t)3, 1

)
, and G(s) is discounted sum of rewards starting from

state s till the end of an episode. This was first proposed in [7] and is used in MAML [9]. This
is preferred as a learnable baseline can add additional gradient computation and backpropagation
overheads in meta-learning.

We use TRPO on goal conditioned policies to obtain optimal and sub-optimal experts for all the tasks
in an environment at once. For each environment, the task context variable, i.e., a vector that contains
differentiating information on a task, is appended to the input state vector of the policy network.
The rest of the policy mechanism is same as described above for meta-policies. A learnable value
network is used to cut variance in advantage estimation. Once the expert policy is trained to the
desired amount, just one trajectory per task is sampled to construct demonstration data.

All the models used in this work are multi-layer perceptrons (MLPs). The policy models for all the
meta-learning algorithms have two layers of 100 neurons each with Rectified Linear Unit (ReLU)
non-linearities. The data generating policy and value models use two layers of 128 neurons each.

Table 1 lists the set of hyperparameters used for EMRLD, EMRLD-WS and the baseline algorithms.
In addition to the ones listed in Table 1, meta batch size is dependant on the training environment:
it is 12 for Point2D Navigation, 24 for TwoWheeled Locomotion and 10 for HalfCheetah Forward-
Backward. In Table 1, Meta LR specified as ‘TRPO’ means that the learning rate is determined by
step-size rule coming from TRPO. The meta optimization steps in Meta-BC and GMPS use ADAM
[18] optimizer with a learning rate of 0.01. We use 20 CPU cores to parallelize policy rollouts for
adaptation. The hyperparameters wrl and wbc are kept fixed across environments for EMRLD and
EMRLD-WS. The parameter wbc is kept at 1 for both optimal and sub-optimal data, and across

1https://github.com/DesikRengarajan/EMRLD
2https://github.com/learnables/learn2learn

4

environments. The parameter wrl takes a lower value of 0.2 across environments for optimal data as in
practise optimal data is expected to be highly informative. Hence, we desire the gradient component
arising from optimal data to hold more value while adaptation. For sub-optimal data, the agent is
required to explore to obtain performance beyond data, and hence, wrl is kept at 1. We further show
in section D that our algorithm is robust to choice of wbc and wrl.

HYPERPARAMETER EMRLD EMRLD-WS MAML META-BC GMPS

ADAPTATION LR 0.01 0.01 0.01 0.01 0.01
META LR TRPO TRPO TRPO 0.01(ADAM) 0.01(ADAM)
ADAPT STEPS 1 1 1 1 1
ADAPT BATCH SIZE 20 20 20 20 20
GAE τ 1 1 1 1 1
γ 0.95 0.95 0.95 0.95 0.95
CPU THREAD NO. 20 20 20 20 20
wrl 0.2/1 0.2/1 N/A N/A N/A
wbc 1 1 N/A N/A N/A

Table 1: Hyperparameter values for EMRLD, EMRLD-WS, MAML, Meta-BC and GMPS. The
hyperparameters are kept fixed across algorithms, across environments, and across demonstration
data type.

D Sensitivity Analysis

0.04 0.02 0.00 0.02 0.04
0.05
0.00
0.05

0.2 0.4 0.6 0.8 1

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80

Re
wa

rd

EMRLD w_rl variation

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80

EMRLD w_bc variation

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80

EMRLD-WS w_rl variation

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80

EMRLD-WS w_bc variation

Figure 2: Sensitivity analysis for EMRLD and EMRLD-WS when the demonstration data is optimal.
(a) Keeping wbc = 1, wrl is varied from 0.2 to 1 in steps of 0.2 for EMRLD. (b) Keeping wrl = 1,
wbc is varied from 0.2 to 1 in steps of 0.2 for EMRLD. (c) Keeping wbc = 1, wrl is varied from 0.2
to 1 in steps of 0.2 for EMRLD-WS. (d) Keeping wrl = 1, wbc is varied from 0.2 to 1 in steps of 0.2
for EMRLD-WS.

We perform sensitivity analysis for parameters wrl and wbc on our algorithms EMRLD and EMRLD-
WS for optimal data on Point2D Navigation. The results for the same are included in Fig. 2. All
the plots are averaged over three random seed runs. To assess the sensitivity of our algorithms to
wrl, we fix wbc = 1 and vary wrl to take values from 0.2, 0.4, 0.6, 0.8 and 1. Similarly, to assess
how sensitive our algorithm’s performance to wbc is, we fix wrl = 1 and vary wbc to take values
from 0.2, 0.4, 0.6, 0.8 and 1. All the hyperparameters are kept fixed to the values listed in Table 1.
We observe that our algorithms are fairly robust to variations in wrl and wbc for three random seeds.
Since demonstration data is leveraged to extract useful information regarding the environment and
the reward structure, our algorithms are slightly more sensitive to wbc variation than wrl variation.

E Ablation experiments

We perform ablation experiments for EMRLD by setting wbc = 0 and wrl = 0 on the Point2D
Navigation environment with the optimal and the sub-optimal demonstration data. We observe from
figure 3, that setting wbc = 0 hampers the performance to a greater extant as the agent is unable to
extract useful information from the environment due to the sparse reward structure. We also observe
that setting wrl = 0 hampers the performance, as the agent is unable to exploit the RL structure of
the problem to achieve high rewards.

5

0.04 0.02 0.00 0.02 0.04
0.05
0.00
0.05

w_rl=0, w_bc=1 w_rl=1, w_bc=1 w_rl=1, w_bc=0

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80

Re
wa

rd

Point2D Navigation - optimal data

0 100 200 300 400 500
Iteration count

0
10
20
30
40
50
60
70
80 Point2D Navigation - sub-optimal data

Figure 3: Ablation experiments on EMRLD for Point2D Navigation environment by changing wbc

and wrl in the adaptation step with the optimal and the sub-optimal demonstration data.

F Related Work

Meta-Learning: Reinforcement learning (RL) has become popular as a tool to perform learning
from interaction in complex problem domains like autonomous navigation of stratospheric balloons
[5] and autonomously solving a game of Go [32]. In large scale complex environments, one requires
a large amount of data to learn any meaningful RL policy [6]. This is in stark contrast to how we as
humans behave and learn - by translating our prior knowledge of past exposure to same/similar tasks
into behavioural policies for a new task at hand. The initial work [30] took to addressing the above
mentioned gap and proposed the paradigm of meta-learning. The idea has been extended to obtain
gradient based algorithms in supervised learning, unsupervised learning, control, and reinforcement
learning [31, 15, 34, 37, 8]. More recently, model-agnostic meta-learning (MAML) [9] introduced a
gradient based two-step approach to meta-learning: an inner adaptation step to learn specific task
policies, and an outer meta-optimization loop that implicitly makes use of the inner policies. MAML
can be used both in the supervised learning and RL contexts. Reptile [22] introduced efficient first
order meta-learning algorithms. PEARL [26] takes a different approach to meta-RL, wherein task
specific contexts are learned during training, and interpreted from trajectories during testing to solve
the task. In its native form, the RL variant of MAML can suffer from issues of inefficient gradient
estimation, exploration, and dependence on a rich reward function. Among others, algorithms
like ProMP [28] and DiCE [11] address the issue of inefficient gradient estimation. Similarly, E-
MAML [1, 33] and MAESN [12] deal with the issue of exploration in meta-RL. Inadequate reward
information or sparse rewards is a particularly challenging problem setting for RL , and hence, for
meta-RL. Very recently, HTR [23] proposed to relabel the experience replay data of any off-policy
algorithm to overcome exploration difficulties in sparse reward goal reaching environments. Different
from this approach, we leverage the popular learning from demonstration idea to aid learning of
meta-policies on tasks including and beyond goal reaching ones.

RL with demonstration: ‘Learning from demonstrations’ (LfD) [29] first proposed the use of
demonstrations in RL to speed up learning. Since then, leveraging demonstrations has become an
attractive approach to aid learning [13, 36, 21]. Earlier work has incorporated data from both expert
and inexpert policies to assist with policy learning in sparse reward environments [21, 14, 36, 17, 27].
In particular, DQfD [14] utilizes demonstration data by adding it to the replay buffer for Q-learning.
DDPGfD[36] extend use of demonstration data to continuous action spaces, and is built upon DDPG
[19]. DAPG [25] proposes an online fine-tuning algorithm by combining policy gradient and behavior
cloning. POfD [17] propose an approach to use demonstration data through an appropriate loss
function into the RL policy optimization step to implicitly reshape sparse reward function. LOGO
[27] proposes a two-step guidance approach where demonstration data is used to guide the RL policy
in the initial phase of learning.

Meta-RL with demonstration: Use of demonstration data in meta-RL is new, and the works in this
area are rather few. Meta Imitation Learning [10] extends MAML [9] to imitation learning from expert
video demonstrations. WTL [39] uses demonstrations to generate an exploration algorithm, and uses
the exploration data along with demonstration data to solve the task. ODA [38] use demonstration
data to perform offline meta-RL for industrial insertion, and [4] propose generalized ‘upside down RL’
algorithms that use demonstration data to perform offline-meta-RL. GMPS [20] extends MAML [9]
to leverage expert demonstration data by performing meta-policy optimization via supervised learning.

6

Closest to our approach are GMPS [20] and Meta Imitation Learning [10], and we will focus on
comparisons with versions of these algorithms, along with the original MAML [9].

References
[1] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter

Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments.
arXiv preprint arXiv:1710.03641, 2017.

[2] Robin Amsters and Peter Slaets. Turtlebot 3 as a robotics education platform. In Robotics
in Education - Current Research and Innovations, Proceedings of the 10th RiE, Advances in
Intelligent Systems and Computing, pages 170–181, 2019.

[3] Sèbastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for Meta-Learning research. August 2020.

[4] Kai Arulkumaran, Dylan R Ashley, Jürgen Schmidhuber, and Rupesh K Srivastava. All you
need is supervised learning: From imitation learning to meta-rl with upside down rl. arXiv
preprint arXiv:2202.11960, 2022.

[5] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado,
Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

[6] Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis
Hassabis. Reinforcement learning, fast and slow. Trends in cognitive sciences, 23(5):408–422,
2019.

[7] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pages 1329–1338. PMLR, 2016.

[8] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[10] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. In Conference on robot learning, pages 357–368. PMLR,
2017.

[11] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and
Shimon Whiteson. Dice: The infinitely differentiable monte carlo estimator. In International
Conference on Machine Learning, pages 1529–1538. PMLR, 2018.

[12] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. arXiv preprint arXiv:1802.07245,
2018.

[13] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In AAAI Conference on
Artificial Intelligence, pages 3223–3230, 2018.

[14] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, An-
drew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, et al. Learning from
demonstrations for real world reinforcement learning. 2017.

[15] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer,
2001.

[16] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[17] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations. In
International Conference on Machine Learning, pages 2469–2478. PMLR, 2018.

7

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[20] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Guided meta-policy search. Advances in Neural Information Processing Systems, 32,
2019.

[21] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

[22] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[23] Charles Packer, Pieter Abbeel, and Joseph E Gonzalez. Hindsight task relabelling: Experience
replay for sparse reward meta-rl. Advances in Neural Information Processing Systems, 34, 2021.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[25] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[26] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient
off-policy meta-reinforcement learning via probabilistic context variables. In International
conference on machine learning, pages 5331–5340. PMLR, 2019.

[27] Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, and Srinivas Shakkottai.
Reinforcement learning with sparse rewards using guidance from offline demonstration. In
International Conference on Learning Representations, 2022.

[28] Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

[29] Stefan Schaal. Learning from demonstration. Advances in neural information processing
systems, 9, 1996.

[30] Jüergen Schmidhuber, Jieyu Zhao, and MA Wiering. Simple principles of metalearning.
Technical report IDSIA, 69:1–23, 1996.

[31] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural
Networks, 16(1):5–9, 2003.

[32] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[33] Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and
Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning.
arXiv preprint arXiv:1803.01118, 2018.

[34] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,
2012.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[36] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817, 2017.

8

[37] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[38] Tony Z Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz,
Stefan Schaal, and Sergey Levine. Offline meta-reinforcement learning for industrial insertion.
arXiv preprint arXiv:2110.04276, 2021.

[39] Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei
Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn: Meta-learning
from demonstrations and reward. arXiv preprint arXiv:1906.03352, 2019.

9

	Proof of Theorem 3.2
	Environments
	Simulation Environments
	Real-World TurtleBot Platform and Experiments

	Experimental Setup
	Sensitivity Analysis
	Ablation experiments
	Related Work

