
A Implementation details516

Self-Paced Learning517

The Self-Paced Learning (SPL) [42] method sets a threshold � value for the loss and all examples with518

loss larger than � are skipped, since they are treated as hard to learn (because they are possibly noisy).519

After each training epoch, the threshold is increased by some constant multiplier. For simplification,520

we adjusted SPL in the following manner.521

We set a parameter ⌧SPL, which controls the percentage of samples with the highest loss within a522

batch that are excluded. The value of ⌧SPL should be equal to the noise level present in the training523

dataset. As such, at each step, we exclude a set percentage of potentially noisy examples, thus524

reducing the impact of label noise on the training process. We keep the value of ⌧SPL constant525

throughout the training.526

Provably Robust Learning527

The Provably Robust Learning (PRL) [43] algorithm works in a similar manner to SPL. We follow528

the authors by introducing the ⌧PRL parameter, which controls the percentage of samples excluded529

from each training batch on the basis of their gradient norm. Specifically, ⌧PRL% of samples with530

highest gradient norm are omitted, while the rest is used to update model parameters. The value of531

⌧PRL should be equal to the noise level in the training dataset.532

Clipped Cross-Entropy533

Since our implementation of SPL doesn’t have a hard loss threshold, we introduce a simple Clipped534

Cross-Entropy (CCE) baseline to check the effectiveness of such an approach. The CCE method535

checks if the loss is greater than some threshold �CCE . If so, the loss is clipped to that value.536

Otherwise, it is left unchanged. Thus, we always use all training samples, but the impact of label537

noise is alleviated by clipping the loss.538

Early Learning Regularization539

For Early Learning Regularization (ELR) [41], we followed the implementation published by the540

authors. We compute the softmax probabilities for each sample in a batch and clamp them, then541

compute the soft targets via temporal ensembling and use these targets in the loss function calculation.542

Our implementation includes one step not present in the publication text - softmax probability543

clamping in range [✏, 1 � ✏], where ✏ is a clamp margin parameter. Aside from this, we use the �544

target momentum and �ELR regularization parameters just as they were presented by the authors.545

Generalized Jensen-Shannon Divergence Loss546

The Generalized Jensen-Shannon Divergence (GJSD) [44] loss function is a generalization of Cross-547

Entropy (CE) and Mean Absolute Error (MAE) losses. We follow the implementation provided548

by the authors, in which we use the M parameter to set the number of averaged distributions and549

the ⇡ parameter to adjust the weight between CE and MAE. While the authors share separate550

implementations for GJSD with and without consistency regularization, we implement it as a toggle551

to make the code more uniform. Since consistency regularization requires data augmentation and552

the GJSD authors described only augmentations for the image domain, we implemented several553

textual augmentations of our own: random token dropping, consecutive token dropping, random554

token swapping. However, in our experiments, we have kept consistency regularization turned off555

due to its detrimental effect on model convergence and test accuracy.556

15



Co-teaching557

While the methods described above modified the loss function in various ways, Co-teaching (CT) [45]558

works in a different manner. It requires optimizing two sets of model parameters at the same time.559

As such, following the algorithm described by the authors, we implemented a custom model class,560

which manages the update of these two sets of weights and the exchange of low-loss examples at561

each optimization step. We keep the parameters k and ⌧CT , to control the starting epoch for CT562

and the noise level (i.e. the percentage of low-loss examples that are exchanged between networks),563

respectively.564

Co-teaching+565

For Co-teaching+ (CT+) [46], we again adhere to the algorithm described by the authors. We use the566

same implementation framework as for CT, adjusting only the sample selection mechanism to look567

within examples for which there is disagreement between the two networks. Following the advice in568

the publication text, we use the recommended update strategy for the fraction of instances to select,569

which is calculated based on the epoch number, as well as parameters k and ⌧CT+.570

Mixup571

The Mixup (MU) [47] technique keeps the loss function (CE) and the hyperparameters of the baseline572

model unchanged, only augmenting the training data during the training procedure. We use in-batch573

augmentation, fixed per-batch mixing magnitude sampled from Beta(↵,↵) (where ↵ is provided574

as input), and the mixed pairs are sampled without replacement from that distribution. Since we575

cannot mix input in the same way as for images, we implemented in-batch augmentation for logits.576

In addition, we also keep the rMU ratio parameter, to adjust the percentage of the batch size which is577

taken for augmentation in MU. Note: our hyperparameter tuning procedure resulted in setting both ↵578

and rMU to low values (Tab. S1), contrary to what is recommended by the authors.579

Method Hyperparameters Selected values

SPL ⌧SPL equal to noise level
PRL ⌧PRL equal to noise level
ELR ✏,�,�ELR 1e-5, 0.6, 2
CCE �CCE 9.5
MU ↵, rMU 0.1, 0.1

GJSD M,⇡ 2, 5e-3
CT k, ⌧CT 8, equal to noise level

CT+ k, ⌧CT+ 8, equal to noise level

Table S1: Hyperparameter values for all benchmarked methods, selected through a tuning procedure.

B Results of experiments with higher noise level580

For completeness, we evaluate the accuracy for all methods on datasets with 40% synthetic noise581

(Tab. S2). The best methods for this noise level are the same as for the case of 15% noise: for582

symmetric noise, GJSD is the best method, while for asymmetric noise types it is ELR. However, it is583

clear that some methods show more noticeable effect when compared to the baseline for the 40%584

noise level than for the 15%. While MU and CCU stay close to the baseline results for all noise types585

and SPL underperforms in all cases, CT consistently gives an improvement over the baseline and586

CT+ decreases the result for the symmetric noise, but is better than the baseline for asymmetric noise587

types.588

16



We also plot memorizednoisyval for those datasets (Fig. S1). For symmetric and pair-flip noise types the589

memorization for all methods is very low. For nested-flip and matrix-flip it is a bit higher, indicating590

that these two noise types are more challenging, and thus induce more memorization in the model.591

Figure S1: Value of memorizedval for different noise types, measured at each training step for all
evaluated methods. In all cases the noise level was set at 40%.

Clean set Symmetric Pair-flip Nested-flip Matrix-flip

CE 74.85 ± 0.15 67.29 ± 0.12 55.18 ± 0.26 52.87 ± 0.19 54.04 ± 0.23

ELR 74.81 ± 0.11 67.23 ± 0.18 66.12 ± 0.15 62.27 ± 0.19 61.72 ± 0.23

MU 74.73 ± 0.09 67.14 ± 0.14 55.28 ± 0.26 52.38 ± 0.24 54.26 ± 0.25
CCE 74.80 ± 0.09 68.92 ± 0.14 55.13 ± 0.28 52.07 ± 0.58 54.02 ± 0.18
CT *74.85 ± 0.15 68.60 ± 0.14 60.49 ± 0.24 58.48 ± 0.28 57.69 ± 0.47
CT+ *74.85 ± 0.15 #64.67 ± 0.32 59.03 ± 0.42 56.16 ± 0.42 57.06 ± 0.29
PRL *74.85 ± 0.15 #65.01 ± 0.30 62.22 ± 0.45 56.39 ± 0.40 51.59 ± 0.97
SPL *74.85 ± 0.15 65.27 ± 0.35 #44.92 ± 1.52 #42.29 ± 1.06 #40.89 ± 0.70
GJSD 74.63 ± 0.10 69.80 ± 0.12 54.78 ± 0.30 51.92 ± 0.46 53.84 ± 0.10

Table S2: Accuracy of the evaluated methods on the clean dataset compared to various noisy datasets
with 40% noise level. The noisy datasets include symmetric synthetic noise and asymmetric synthetic
noise types: pair-flip, nested-flip, and matrix-flip. * marks cases equivalent to the baseline CE. #
marks results significantly worse than the baseline CE. Best results for each noise type are bolded.

17


	Introduction
	Related work
	AlleNoise Dataset Construction
	Real-world noise
	Clean data sampling
	Post-processing

	Methods
	Problem statement
	Synthetic noise generation
	Model architecture
	Evaluation metrics
	Benchmarked methods

	Results
	Synthetic noise vs AlleNoise
	Noise type impacts memorization
	Noise distribution

	Discussion
	Conclusions and future work
	Implementation details
	Results of experiments with higher noise level

