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1 OVERVIEW

In this document, we describe the architecture and training details
of the proposed JoReS-Diff in Section 2. We provide additional ab-
lation study in Section 4. We present additional visual comparisons
with existing SOTA methods on real-world datasets, including LOL,
LOL-v2-real, LOL-v2-synthetic, UHD-LL, MIT-Adobe-FiveK, and
ISTD in Section 3. Finally, we present limitations and future works
in Section 5.

2 ADDITIONAL IMPLEMENTATION DETAILS

2.1 Pre-Trained Decomposition Net

DNet adopts a lightweight UNet-like network to learn the decompo-
sition mapping based on the assumption of Retinex theory. It first
takes both the low/normal-light images I, | € R" >3 a5 input and
extract the features I, ff € RWXHXC Then Iy, ff are processed
through convolutional encoder and decoder, and two output heads
are followed to map the features to reflectance R, R and illumina-
tion I, I. The assumption of Retinex theory indicates the similarity
between R and I? the smoothness of I, T and the mutual reconstruc-
tion ability of reflectance with various illumination. Inspired by
the training strategy in [2], we reasonably utilize the constant re-
flectance loss, smooth illumination loss and reconstruction loss to
pre-train DNet. The assumption of Retinex theory indicates the
similarity between R and ﬁ, the smoothness of I,f and the mutual
reconstruction ability of reflectance with various illumination [2].
Therefore, we first introduce the constant reflectance loss £ and
constrain the similarity of R and R as:

Lr=lR-R]l1, (1)

Then we adopt the smooth illumination loss £} to minimize the
gradient and reserve the textures as:

Lr=|IVL - exp(=wVD) [l + | VL - exp(=wV1) |I1, @

where V denotes the derivative operator and w is the weight term
controlling the magnitude trade-off between gradient suppression
and texture preservation. Furthermore, we conduct the reconstruc-
tion loss L, as:

L= Y Mr-L=Tll+llr-L=Tlh, 3)
r=RR

Thus, we pre-train DNet by the overall loss:
LpNet = ARLR +ALLL + Ay Linr . (4)

The proposed JoReS-Diff uses the pre-trained DNet to obtain
Retinex-based priors. The advantage of only extracting Retinex
components is that, while the architecture of DNet is simple and
lightweight, the quality of the produced components could be fa-
vorable. To conduct the experiments on benchmark datasets, the
DNet is pre-trained on corresponding datasets with the patch and
batch size of 128 and 16 for 500 epochs. Furthermore, the weights of

the DNet are fixed during the training stage to exploit the prepared
Retinex-based priors.

2.2 Details of Adjustment Net

ANet is trainable with the whole JoReS-Diff. The network architec-
ture of ANet is similar to DNet, while exists some modifications
for better adaptation of the adjustment task. For maintaining the
feature distribution of Retinex components, ANet adopts skip con-
nections between the encoder and the decoder. Furthermore, each
layer in ANet outputs the feature map with the same number of em-
bedding channels, which reduces the parameters of the network and
the extra computational cost. The specific implementation details
can be found in the codes.

The original purpose of ANet is to provide adjusted Retinex com-
ponents. However, we find that it could produce under-optimized
components if the inputs are low-light and noisy images in early
steps, which compromises the reliability of the prior and finally
causes unexpected outputs. Moreover, the intermediate features
also contain the learned adjustment mapping and are included in the
Retinex-based conditions as ¢; = [R/, L/, F;], which is described
in Section 3.2.1 in main paper. The decoder of ANet contains three
layers with different resolutions and the same number of channels.
The resolutions of the streams are 1, 1/2, and 1/4, which gener-
ate three features with corresponding resolutions(Fy € RE XWXC,
Fi e R7X%XC and F, € RT*%XC, where C = 64) respectively.
The final output layer of ANet mixes the three features by upsam-
pling and concatenating and produces the reflectance and illumi-
nation maps with the sizes of R/ € RFF*WX3 and L/ € REXWX1,
Finally, we take three multi-scale features and the predicted maps as
Retinex-based priors to guide the enhancement process, the former
is utilized to optimize the image feature by the FRCM module and
the latter provides image-level refinement by the IRCM module.
More details are shown in the code.

2.3 Supplementary Derivation of Eq. (16) in
main paper

In Section 3.2.2 in main paper in the main paper, we reformulate Eq.
(6) in main paper into a residual refinement manner based on the
analysis in Section 3.2 in main paper and propose IRCM for refining
the estimated Xo. To briefly revisit the analysis, we first present the
Retinex theory and describe the details and shortcomings of the
idea model, which indicates that the decomposed maps are more
suitable for acting as guidance. Then we propose to preserve the
original information by introducing the low-light input and regard-
ing the reflectance R as auxiliary guidance. Finally, we supplement
the illumination L and obtain the adjusted term & = ¥ (R, L) for
sufficient guidance.
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Eq. (6) in main paper describes the original Retinex model as

follows:

R =log(I) - log(L),
. . (5)
I=T (exp(R)),

where G(-) and 7 (-) denote the convolution with the Gaussian
surround function and the linear transformation function. Inspired
by the analysis, we reformulate the Retinex model by treating the R
and [ as residual terms and substitute the physical operators with
convolutional layers W (-) as follows:

AR=wW() - W(L),

AI = W(R+ AR), (6)

I=1+Al

where [’ is the final result. To fully exploit the residual terms, we

adopt scaling and shifting operations #7(-|-) instead of the simple
addition and subtraction as follows:

AR = F7(W (L)W (D),
AL=F7(W (R)|W (AR)), Yl
I'=77(W(DIW(AD).
As described in Section 3.2.2 in main paper, we obtain the %o, R/
and L/ from the UNet and ANet, which correspond to the I, Rand
L, respectively. Furthermore, we also integrate the output of FRCM
F){O to ensure the preservation of multi-scale information of the

ANet for better contents and details. Therefore, we achieve the
refinement of the estimated %X as follows:

AR/ = F7(W(L{)|W (%)),
Ako = Fr(W(R{)|W(AR)), (8)
%) = F7(W (%0) W (A%o)) + W (Fy ),

3 MORE VISUAL COMPARISONS

Visual Comparison With Other LLIE Methods. As shown in Figs.

to 8, we give more visual results of our JoReS-Diff and other baseline
methods on LOL, LOL-v2 and UHD-LL datasets as the supplement
of the visualization in the main paper. We also presents the vi-
sual results on MIT-Adobe-FiveK and ISTD datasets to support the
quantitative comparison in the main paper. Consequently, we can
see that our method consistently produces more natural results
and achieves superior performance over the baseline methods in
various scenes, especially compared with other diffusion-based
methods [1, 4], sufficiently demonstrating the effectiveness of the
novel Retinex-based condition strategy. Notably, you may zoom
in the figures for better visibility since the images in the UHD-LL
dataset have high resolutions.

Visual Comparison Between Ablated Settings. As shown
in Figs. 10 and 11, we provide more visual comparisons for investi-
gating the contribution of the proposed ANet. The “w/o ANet" and
“w/ ANet" denote whether the reflectance and illumination maps
are adjusted by the ANet, respectively. We show a series of decom-
posed maps to illustrate the effects of the ANet at different steps.
It is clear that the reflectance maps derived without ANet contain
more artifacts and noise, and the illumination maps adjusted by
the ANet exhibit more pleasing brightness. The visual comparisons

Anonymous Authors

sufficiently demonstrate the effectiveness of the ANet. Notably, the
reflectance maps in Step 8 contain visually unsatisfactory parts.
Although the severe noise in the original reflectance maps led to
the failed situations, the quality of the maps in the following steps
is still favorable (at steps 6,4,2). Therefore, the diffusion model still
performs well since the final results only depend on the previous
step. Furthermore, we provide the visual comparison on MIT-Adobe-
FiveK for investigating the effectiveness of the semantic prior. As
shown in Fig. 9, the images output by the model without semantic
prior exhibits conspicuous color shift and unclear boundaries.

4 SUPPLEMENTARY EXPERIMENTS

According to the analysis in Section 3.2.1 in main paper, the multi-
scale features are crucial for fully exploiting the learned mapping
and we propose FRCM to incorporate the beneficial features. There-
fore, as illustrated in Section 3.2.2 in main paper, the RNet consists
of the FRCM and IRCM. We set the number of the FRCM and IRCM
to 1 respectively as our baseline and produce the results on the
benchmark datasets and other ablation studies. To further investi-
gate the effects of different numbers of the FRCMs and IRCMs in
RNet, we conduct experiments on the LOL dataset with different
settings. As shown in Table 1, we set the number of FRCMs and
IRCMs to 0,1,2 respectively to illustrate the effects of the different
architectures of RNet. The comparison between without any RCM
and the baseline shows the effectiveness of our design. Furthermore,
both without the FRCM and the IRCM obtain the performance de-
crease compared with the baseline, which is also exhibited in Table
5 in the main paper. Notably, in the bottom half of the table, we
add more modules to the baseline, while the metrics are worse
than the baseline instead of becoming more promising. The per-
formance decrease is especially severe when adding extra FRCMs,
which shows that reusing the multi-scale features is harmful to the
iterative enhancement. Thus, we utilize one FRCM and one IRCM
in RNet to achieve the best performance.

Table 1: Ablation study on the LOL dataset for investigating
the different numbers of the FRCMs and IRCMs.

Settings H ‘ ‘
—————— PSNRT SSIMT LPIPS|
FRCM | IRCM || \ \
0 0 26891 | 0871 | 0117
0 1 27.344 0.875 0.112
1 0 27262 | 0872 | 0.119
1 1 27.626 | 0884 | 0.090
2 1 26.371 0.861 0.124
1 2 27.232 0.878 0.102
2 2 26.334 0.859 0.127

5 LIMITATIONS AND FUTURE WORKS

In this section, we discuss the limitations of our work and suggest
the potential future research directions of diffusion-based methods
for low-light enhancement and other low-level vision tasks.

Limitations. First, while our JoReS-Diff possesses superior en-
hancement capability thanks to the Retinex-based condition strat-
egy, the entire framework is heavily reliant on the quality of Retinex-
based priors provided by DNet. The CNN-based DNet with limited
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parameters may cause the loss of content information during the
decomposition process. If we obtain the pre-processed conditions
with bad quality, the final results will be unsatisfactory. Further-
more, we have to pre-train DNet on the corresponding dataset
before we train our JoReS-Diff, which is more complex than the
totally end-to-end methods. Thus, the way of obtaining Retinex-
based conditions can be improved in an end-to-end manner, and
the architectures and the training settings can be well-designed for
better decomposition.

Second, the proposed components of our JoReS-Diff (i.e., DNet,
ANet, RNet) are preliminary techniques for introducing Retinex-
based priors into the diffusion process, which may limit the poten-
tial of our method. The architecture of DNet and ANet are simple
UNet-like networks without special designs and still have the po-
tential to be optimized. The FRCM and IRCM in RNet only contain
several layers to conduct the feature transformation for the consid-
eration of testing speed. Then, the simple manner of integrating
multi-scale features in the FRCM may undermine the benefits of
feature-level interaction. However, we have tried the Transformer
block for feature fusion, which makes the model training and infer-
ence times significantly slower. Hence, we can explore both efficient
and powerful networks for producing the Retinex-based conditions
and more suitable interaction manners to achieve effective feature
fusion.

Third, the training cost of the diffusion model is much more than

the traditional deep-learning methods. For instance, before 2023,
most of the methods without the diffusion model only required
less than 10k iterations for training and generally completed the
training stage within one day , while the diffusion-based methods
need orders of magnitude more iterations (100k for DiffLL [1], 800k
for Diff-Retinex [3], 500k for PyDiff [4], 600k for our JoReS-Diff).
Furthermore, in the inference stage, the diffusion-based method
generally costs more time as well. With the advancement of cam-
eras, image resolution will become increasingly higher, posing new
challenges for the exploration of efficient methods, particularly for
diffusion-based models. Therefore, we have to rethink the feasibility
and efficiency of the diffusion-based method for low-level vision
tasks.
Future works. According to the limitations of our JoReS-Diff, our
future works can be organized as follows. (a) We tend to explore
a pre-training strategy to improve the capability of generalizing
on various datasets and scenarios and integrate the DNet into the
whole JoReS-Diff for an end-to-end training manner. (b) For DNet
and ANet, we plan to refine the network by reasonably introduc-
ing an attention mechanism while maintaining the lightweight
architecture and improving the capability of decomposition and ad-
justment. For FRCM in RNet, we will try more sufficient interaction
manners of the multi-scale features for better refinement. (c) The
long convergence time and the iterative inference of the diffusion
model make it impractical. We hope to explore the possibilities of
applying the diffusion model to the sub-tasks that consume less
time instead of the overall image enhancement task.
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Figure 1: Visual comparison of our JoReS-Diff and the compared LLIE methods on the LOL dataset.
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Figure 2: Visual comparison of our JoReS-Diff and the compared LLIE methods on the LOL dataset.
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Figure 3: Visual comparison of our JoReS-Diff and the compared LLIE methods on the LOLv2 dataset.
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Figure 4: Visual comparison of our JoReS-Diff and the compared LLIE methods on the UHD-LL dataset.
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Figure 5: Visual comparison of our JoReS-Diff and the compared LLIE methods on the UHD-LL dataset.
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Figure 6: Visual comparison of our JoReS-Diff and the compared LLIE methods on the UHD-LL dataset.
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Figure 7: Visual comparison of our JoReS-Diff and the compared methods on the MIT-Adobe-FiveK dataset.
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Figure 9: Ablation study on MIT-Adobe-FiveK dataset for investigating the effects of semantic prior.
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Figure 10: Ablation study on LOLv2 dataset for investigating the effects of ANet. The reflectance (rows 1,2,5,6) and illumination
(rows 3,4,7,8) at selected steps are shown from top to bottom. GT denotes the decomposed results of the normal-light image.
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Figure 11: Ablation study on LOLv2 dataset for investigating the effects of ANet. The reflectance (rows 1,2,5,6) and illumination
(rows 3,4,7,8) at selected steps are shown from top to bottom. GT denotes the decomposed results of the normal-light image.
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