
A Implementation Details483

A.1 Diffusion policy484

Diffusion probabilistic models [84, 65] are a type of generative model that learns the data distribution485

q(x) from a dataset D := {xi}0i<M . It represents the process of generating data as an iterative486

denoising procedure, denoted by p✓(xi�1|xi) where i is an indicator of the diffusion timestep. The487

denoising process is the reverse of a forward diffusion process that corrupts input data by gradually488

adding noise and is typically denoted by q(xi|xi�1). The reverse process can be parameterized489

as Gaussian under the condition that the forward process obeys the normal distribution and the490

variance is small enough: p✓(xi�1|xi) = N (xi�1|µ✓(xi, i),⌃i), where µ✓ and ⌃ are the mean and491

covariance of the Gaussian distribution, respectively. The parameters ✓ of the diffusion model are492

optimized by minimizing the evidence lower bound of negative log-likelihood of p✓(x0), similar to493

the techniques used in variational Bayesian methods: ✓⇤ = argmin✓ �Ex0 [log p✓(x0)]. For model494

training, a simplified surrogate loss [65] is proposed based on the mean µ✓ of p✓(xi�1|xi), where the495

mean is predicted by minimizing the Euclidean distance between the target noise and the generated496

noise: Ldenoise(✓) = Ei,x0⇠q,✏⇠N [|✏� ✏✓(xi, i)|2], where ✏ ⇠ N (0, I).497

Specifically, our diffusion policy is represented as Equation (4) via the reverse process of a condi-498

tional diffusion model, but the reverse sampling, which requires iteratively computing ✏� networks499

N times, can become a bottleneck for the running time. To limit N to a relatively small value, with500

�min = 0.1 and �max = 10.0, we follow [85] to define:501

�i = 1� ↵i = 1� e��min( 1
N )�0.5(�max��min)

2i�1
N2 , (12)

which is a noise schedule obtained under the variance preserving SDE of [86].502

A.2 Goal distributions503

We train our state-goal value function and high-level policy respectively with Equation (3) and (7),504

using different goal-sampling distributions. For the state-goal value function (Equation (3)), we505

sample the goals from either random states, futures states, or the current state with probabilities506

of 0.3, 0.5, and 0.2, respectively, following [28]. We use Geom(1 � �) for the future state dis-507

tribution and the uniform distribution over the offline dataset for sampling random states. For the508

high-level policy, we mostly follow the sampling strategy of [87]. We first sample a trajectory509

(s0, s1, . . . , st, . . . , sT ) from the dataset DO and a state st from the trajectory. we either (i) sample510

g uniformly from the future states stg (tg > t) in the trajectory and set the target subgoal gsub to511

smin(t+k,tg) or (ii) sample g uniformly from the dataset and set the target subgoal to smin(t+k,T ).512

A.3 Advantage estimates513

Following [14], the advantage estimates for Equation (6) is given as:514

Ã(st, st+k̃
, g) = �k̃V✓(st+k̃

, g) +
k̃�1X

t0=t

r(st0 , g)� V✓(st, g), (13)

where we use the notations k̃ and s̃t+k to incorporate the edge cases discussed in the previous para-515

graph (i.e., k̃ = min(k, tg � t) when we sample g from future states, k̃ = min(k, T � t) when we516

sample g from random states, and s̃t+k = smin(t+k,T )). Here, st0 6= g and st 6= s̃t+k always hold517

except for those edge cases. Thus, the reward terms in Equation (13) are mostly constants (under518

our reward function r(s, g) = 0 (if s = g), �1 (otherwise)), as are the third terms (with respect to519

the policy inputs). As such, we practically ignore these terms for simplicity, and this simplification520

further enables us to subsume the discount factors in the first terms into the temperature hyperpa-521

rameter �. We hence use the following simplified advantage estimates, which we empirically found522

to lead to almost identical performances in our experiments:523

Ã(s, gsub, g) = V✓(gsub, g)� V✓(s, g), (14)
where we use gsub to represent s

t+k̃
under various conditions.524
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Table 1: Hyperparameters.
Hyperparameter Value
Batch Size 1024
High-level Policy MLP Dimensions (256, 256)
State-Goal Value MLP Dimensions (512,512,512)
Representation MLP Dimensions (512,512,512)
Nonlinearity GELU [88]
Optimizer Adam [89]
Learning Rate 0.0003
Target Network Smoothing Coefficient 0.005
AWR Temperature Parameter 1.0
IQL Expectile ⌧ 0.7
Discount Factor � 0.99
Diversity of Subgoals ↵ 0.5

B Hyperparameters525

We present the hyperparameters used in our experiments in Table 1, where we mostly follow the526

network architectures and hyperparameters used by [28, 14]. We use layer normalization [90] for all527

MLP layers and we use normalized 10-dimensional output features for the goal encoder of state-goal528

value function to make them easily predictable by the high-level policy, as discussed in Appendix A.529

For the subgoal steps k, we use k = 50 (AntMaze-Ultra), k = 15 (FetchReach, FetchPickAndPlace,530

and SawyerReach), or k = 25 (others). We sample goals for high-level or flat policies from either531

the future states in the same trajectory (with probability 0.7) or the random states in the dataset (with532

probability 0.3). During training, we periodically evaluate the performance of the learned policy at533

every 20 episode using 50 rollouts.534

C Ablation Study Results535

Subgoal Steps. In order to examine the impact of subgoal step values (k) on performance, we536

conduct an evaluation of our method on AntMaze tasks. We employ six distinct values for k 2537

{1, 5, 15, 25, 50, 100}. The results, depicted in Figure 9, shed light on the relationship between k and538

performance outcomes. Remarkably, our method consistently demonstrates superior performance539

when k falls within the range of 25 to 50, which can be identified as the optimal range. Our method540

exhibits commendable performance even when k deviates from this range, except in cases where541

k is excessively small. These findings underscore the resilience and efficacy of our method across542

various subgoal step values.543

Ablation on Subgoals and Exploration Guidance. To demonstrate how subgoals and exploration544

guidance contribute to efficient policy learning for goal-reaching tasks, we conduct ablation ex-545

periments where we remove each component separately. The results, as shown in the Figure 10,546

highlight the crucial importance of subgoal setting, as the absence of subgoals hinders the resolu-547

Figure 9: Ablation study of the subgoal steps k. Our method generally achieves the best perfor-
mances when k is between 25 and 50. Even when k is not within this range, ours mostly maintains
reasonably good performance unless k is too small (i.e.,  5).
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Figure 10: Ablation study on Subgoals and Exploration Guidance. The result shows that the crucial
importance of subgoal setting. Additionally, incorporating exploration guidance facilitates the policy
in efficiently reaching subgoals, resulting in further improvements in learning efficiency. Shaded
regions denote the 95%confidence intervals across 5 random seeds.

tion of long-horizon tasks. Additionally, incorporating exploration guidance facilitates the policy in548

efficiently reaching subgoals, resulting in further improvements in learning efficiency. Overall, our549

findings indicate that including both subgoal setting and exploration guidance enables our approach550

to leverage the benefits of both, leading to efficient learning efficiency.551

D Environments552

SawyerReach environment, derived from multi-world, involves the Sawyer robot reaching a target553

position with its end-effector. The observation and goal spaces are both 3-dimensional Cartesian554

coordinates, representing the positions. The state-to-goal mapping is a simple identity function,555

�(s) = s, and the action space is 3-dimensional, determining the next end-effector position.556

FetchReach and FetchPickAndPlace environments in OpenAI Gym feature a 7-DoF robotic arm557

with a two-finger gripper. In FetchReach, the goal is to touch a specified location, while Fetch-558

PickAndPlace involves picking up a box and transporting it to a designated spot. The state space559

comprises 10 dimensions, representing the gripper’s position and velocities, while the action space560

is 4-dimensional, indicating gripper movements and open/close status. Goals are expressed as 3D561

vectors for target locations.562

Maze2D is a goal-conditioned planning task, which involves guiding a 2-DoF ball that can be force-563

actuated in the cartesian directions of x and y. Given the starting location and the target location,564

the policy is expected to find a feasible trajectory that reaches the target from the starting location565

avoiding all the obstacles.566

AntMaze is a class of challenging long-horizon navigation tasks where the objective is to guide an567

8-DoF Ant robot from its initial position to a specified goal location. We evaluate the performance568

in four different difficulty settings, including the “umaze”, “medium” and “large” maze datasets569

from the original D4RL benchmark. While the large mazes already pose a significant challenge for570

long-horizon planning, we also introduce an even larger maze “ultra” proposed by [91]. The maze571

in the AntMaze-Ultra task is twice the size of the largest maze in the original D4RL dataset. Each572

dataset consists of 999 length-1000 trajectories, in which the Ant agent navigates from an arbitrary573

start location to another goal location, which does not necessarily correspond to the target evaluation574

goal. At test time, to specify a goal g for the policy, we set the first two state dimensions (which575

correspond to the x-y coordinates) to the target goal given by the environment and the remaining576

proprioceptive state dimensions to those of the first observation in the dataset. At evaluation, the577

agent gets a reward of 1 when it reaches the goal.578

CALVIN is another long-horizon manipulation environment features four target subtasks. We use579

the offline dataset provided by [92], which is based on the teleoperated demonstrations from [79].580

The dataset consists of 1204 length-499 trajectories. In each trajectory, the agent achieves some581

of the 34 subtasks in an arbitrary order, which makes the dataset highly task-agnostic [92]. At test582

time, to specify a goal g for the policy, we set the proprioceptive state dimensions to those of the583

first observation in the dataset and the other dimensions to the target configuration. At evaluation,584

the agent gets a reward of1 whenever it achieves a subtask.585
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E More Related Work586

Learning Efficiency. Introducing relabeling can enhance learning efficiency. HER [81] relabels587

the desired goals in the buffer with achieved goals in the same trajectories. CHER [93] goes a step588

further by integrating curriculum learning with the curriculum relabeling method, which adaptively589

selects the relabeled goals from failed experiences. Drawing from the concept that any trajectory590

represents a successful attempt towards achieving its final state, GCSL [82], inspired by supervised591

imitation learning, iteratively relabels and imitates its own collected experiences. [94] filters the592

actions from demonstrations by Q values and adds a supervised auxiliary loss to the RL objective593

to improve learning efficiency. RIS [83] uses imagined subgoals to guide the policy search process.594

However, such methods are only useful if the data distribution is diverse enough to cover the space595

of desired behaviors and goals and may still face challenges in hard exploration environments.596

F Baseline Introduction597

F.1 Online learning baselines598

Online: A standard off-policy actor-critic algorithm [69] which trains an actor network and a critic599

network simultaneously from scratch that does not make use of the prior data at all.600

RND: Extends the Online method by incorporating Random Network Distillation [4] as a novelty601

bonus for exploration. given an online transition (s, a, r, s0), and RND feature networks f�(s, a),602

f̄(s, a), we set603

r̂(s, a) r +
1

L
||f�(s, a)� f̄(s, a)||22 (15)

and use the transition (s, a, r̂, s0) in the online update. The RND training is done the same way as in604

our method where a gradient step is taken on every new transition collected.605

HER: Combines Online method with Hindsight Experience Replay [81] to improve data efficiency606

by re-labeling past data with different goals.607

GCSL: Trains the policy using supervised learning, leading to stable learning progress.608

RIS: This method [83] incorporates a separate high-level policy that predicts intermediate states609

halfway to the goal. By aligning the subgoal reaching policy with the final policy, RIS effectively610

regularizes the learning process and improves performance in complex tasks.611

ExPLORe: This approach learns a reward model from online experience, labels the unlabeled prior612

data [6] with optimistic rewards, and then uses it concurrently alongside the online data for down-613

stream policy and critic optimization.614

F.2 offline-online baselines615

AWAC: AWAC combines sample-efficient dynamic programming with maximum likelihood policy616

updates, providing a simple and effective framework that is able to leverage large amounts of offline617

data and then quickly perform online fine-tuning of reinforcement learning policies.618

IQL: Avoiding querying out-of-sample actions by converting the max operator in the Bellman opti-619

mal equation into expectile regression,and thus learn a better Q Estimation.620

CQL: CQL imposes an additional regularizer that penalizes the learned Q-function on out-of-621

distribution (OOD) actions while compensating for this pessimism on actions seen within the train-622

ing dataset. Assuming that the value function is represented by a function, Q✓ , the training objective623

of CQL is given by624

min
✓

↵ (Es⇠D,a⇠⇡ [Q✓(s, a)]� Es,a⇠D [Q✓(s, a)])| {z }
Conservative regularizer R(✓)

+
1

2
Es,a,s0sD

h�
Q✓(s, a)� B⇡Q̄(s, a)

�2i
,

(16)
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where B⇡Q̄(s, a) is the backup operator applied to a delayed target Q-network, Q̄: B⇡Q̄(s, a) :=625

r(s, a) + �Ea0⇠⇡(a0|s0)[Q̄(s0, a0)]. The second term is the standard TD error. The first term R(✓) is626

a conservative regularizer that aims to prevent overestimation in the Q-values for OOD actions by627

minimizing the Q-values under the policy ⇡(a|s), and counterbalances by maximizing the Q-values628

of the actions in the dataset following the behavior policy ⇡� .629

Cal-QL: This method learns a conservative value function initialization can speed up online fine-630

tuning and harness the benefits of offline data by underestimating learned policy values while en-631

suring calibration. Specifically, Calibrating CQL constrain the learned Q-function Q⇡

✓
to be larger632

than value function V via a simple change to the CQL training objective. Cal-QL modifies the CQL633

regularizer, R(✓) in this manner:634

EssD,as⇡ [max (Q✓(s, a), V (s))]� Es,asD [Q✓(s, a)] , (17)

where the changes from standard CQL are depicted in red.635

SPOT: This work constrains the policy network in offline reinforcement learning (RL) to not only636

be within the support set but also avoid the out-of-distribution actions effectively unlike the standard637

behavior policy through behavior regularization.638

PEX: This work introduces a policy expansion scheme. After learning the offline policy, it is in-639

cluded as a candidate policy in the policy set, which further assists in learning the online policy. This640

method avoids fine-tuning the offline policy, which could disrupt the learned policies, and instead641

allows the offline policy to participate in online exploration adaptively.642
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