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Abstract
How do language models “think”? This paper for-
mulates a probabilistic cognitive model called the
bounded pragmatic speaker, which can charac-
terize the operation of different variations of lan-
guage models. Specifically, we demonstrate that
large language models fine-tuned with reinforce-
ment learning from human feedback (Ouyang
et al., 2022) embody a model of thought that
conceptually resembles a fast-and-slow model
(Kahneman, 2011), which psychologists have at-
tributed to humans. We discuss the limitations of
reinforcement learning from human feedback as
a fast-and-slow model of thought and propose av-
enues for expanding this framework. In essence,
our research highlights the value of adopting a
cognitive probabilistic modeling approach to gain
insights into the comprehension, evaluation, and
advancement of language models.

1. Introduction
Large language models (Brown et al., 2020; Chowdhery
et al., 2022; Hoffmann et al., 2022; Zhang et al., 2022a;
Scao et al., 2022; Touvron et al., 2023) have emerged as a
powerful form of intelligence. These models demonstrate
numerous traits associated with both human and superhu-
man intelligence. They can engage in natural conversations
with humans (OpenAI, 2022), learn from limited exam-
ples (Dong et al., 2022), solve complex reasoning problems
(Wei et al., 2022b), generate programs (Chen et al., 2021),
and pass exams designed for human professionals (OpenAI,
2023). Although the capabilities of large language models
have been extensively documented, our understanding of the
underlying cognitive mechanisms that enable these capabili-
ties remains limited. By consuming a ginormous collection
of records of human behavior and knowledge, have these
models managed to think and reason like humans? Or are

1Department of Computer Science, Princeton Univer-
sity, New Jersey, USA. Correspondence to: Khanh Nguyen
<khanh.nguyen@princeton.edu>.

Proceedings of the First Workshop on Theory of Mind in Com-
municating Agents, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

they merely copycats? If neither is the case, what exactly is
their “model of thought”? Providing a scientific answer to
these questions is crucial for dispelling unfounded specula-
tions about large language models and guiding their future
development.

In this paper, we attempt to mathematically characterize the
cognitive process of large language models. Our work is
inspired by the work of Mahowald et al. (2023) who propose
a distinction between formal competence (knowledge about
linguistic rules and patterns) from functional competence
(knowledge enabling pragmatic usage of language) in eval-
uating large language models. To formalize this intuition,
we introduce a mathematical cognitive model called the
bounded pragmatic speaker, which is a generalized version
of the Rational Speech Act model (Frank & Goodman,
2012). The bounded pragmatic speaker represents an
agent that strives to communicate pragmatically but is
constrained by its computational capacity. Consequently,
it develops a base speaker model to effectively narrow
the space of utterances to consider, and a theory-of-mind
listener model to predict how a listener would interpret
each utterance. The base speaker encapsulates the formal
competency of the agent, whereas the theory-of-mind
listener embodies its functional competency. To efficiently
generate pragmatic utterances, the agent implements
an approximate inference algorithm (e.g., Monte Carlo
inference, variational inference, or a search algorithm). An
overview of our framework is illustrated in Figure 1.

Despite its apparent simplicity, the bounded pragmatic
speaker framework provides valuable insights and guiding
principles for comprehending and improving large language
models. Its potential lies in fostering interdisciplinary con-
nections between cognitive science, reinforcement learning,
and probabilistic programming to advance the development
of next-generation models. Our vision encompasses the
creation of modular probabilistic programs that draw inspi-
ration from human cognition and incorporate enhanced rein-
forcement learning techniques to achieve efficient inference.

The remaining of the paper is structured as follows. First,
we formally define the bounded pragmatic speaker frame-
work (§2). Next, we demonstrate that a language model can
be viewed as a straightforward bounded pragmatic speaker
that uses its own model to serve as both a base speaker and a
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generate a concise, 
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Tom wakes up at 6am. He eats 
breakfast and takes a shower. 
After that, he exercises, reads 
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Figure 1. An overview of our proposed framework. (a) a summarization task is illustrated as a communication game, where a speaker
generates an utterance (the summary) to convey an intention (generating a good summary) given a context (the text to be summarized).
The game is considered solved when the speaker presents an utterance that causes the listener to infer exactly the speaker’s target intention.
(b) a bounded pragmatic speaker efficiently finds a good utterance to output by implementing a base speaker to effectively restrict the
search space, and a theory-of-mind listener to anticipate the intention inferred by the (real) listener.

theory-of-mind listener (§3). This perspective on language
models facilitates the identification of three directions for
their improvement. In §4, we revisit two recent extensions of
large language models—pragmatic inference (Zhang et al.,
2022b) and reinforcement learning from human feedback
(Ouyang et al., 2022)—and show that they can be regarded
as methods for boosting the functional competency of a
bounded pragmatic speaker. In particular, reinforcement
learning can be framed as learning a variational approxima-
tion of a bounded pragmatic speaker’s distribution to allow
for efficient yet pragmatic inference. This approach bears
striking resemblance to the dual model of thought proposed
by Kahneman (2011), which is composed of a slow-thinking
system that performs deep reasoning and a fast-thinking sys-
tem that implements heuristics to react quickly to situations.
In the final section (§5), we argue that reinforcement learn-
ing from human feedback remains a rudimentary means
of implementing a dual model of thought. We explain the
limitations of the reward function as a slow-thinking system
and the inefficiency of using reinforcement learning to trans-
fer knowledge from the slow-thinking to the fast-thinking
system. Lastly, we discuss promising ideas for devising
superior alternatives.

2. Bounded pragmatic speakers
A language model can be viewed as a speaker S(u | z, c)
that outputs a distribution over utterances u to fulfill a task
represented by a context c and an intention z. For example,
to ask a language model to generate a summary of an article,
we input to the model a prompt specifying an article to be
summarized (the context c), and a list of the desiderata of
the output summary (the intention z).

Generating satisfactory utterances can be formulated as solv-
ing a communication game (Lewis, 1969), where a speaker
communicates with a listener Lreal(z | u, c) to deliver a tar-
get intention z⋆. The listener can use their judgment to infer
the underlying the intention of an utterance. The objective
of the speaker is to output an utterance u⋆ that maximizes
the probability of the listener inferring z⋆:

u⋆ = argmax
u

Lreal(z
⋆ | u, c) (1)

A communication game can be solved by an unbounded
pragmatic speaker, which has unlimited computing capacity
and defines its model as:

Sups(u | z⋆, c) ∝ Lreal(z
⋆ | u, c) (2)

This speaker is capable of finding the optimal utterance in a
reasonable amount of time, by iterating through all possible
utterances and evaluating the likelihood of each utterance
with its model.

Human and language models, however, have limited comput-
ing capacity and are better modeled as agents with bounded
rationality (Simon, 1957). A bounded pragmatic speaker
(BPS) is a speaker with bounded rationality, who possesses
two capabilities: the search capability and the pragmatic
capability. It leverages these capabilities to efficiently solve
communication games. The search capability refers to
the ability to effectively narrow the search space using
prior knowledge. This capability can be formalized as hav-
ing a low-support probability distribution over utterances
Sbase(u | z, c), which we call the base speaker. The prag-
matic capability allows for construction of an approximate
model of the listener LToM ≈ Lreal, which we call the theory-
of-mind listener. Humans are widely known to possess these
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two capabilities. We hypothesize others’ mental states to
predict their behavior (Premack & Woodruff, 1978; Wim-
mer & Perner, 1983; Baron-Cohen et al., 1985; Gopnik &
Astington, 1988). We are also capable of quickly propos-
ing effective candidate solutions of problems (Sanborn &
Chater, 2016; Vul et al., 2014) and crafting fluent, grammat-
ically correct sentences.

Given Sbase and LToM, a BPS is defined as

Sbps(u | z⋆, c) ∝ Sbase(u | z⋆, c)LToM(z⋆ | u, c) (3)

which is essentially a Bayesian belief update with Sbase as
the prior and LToM as the likelihood function. Perform-
ing exact Bayesian inference to select the best utterance
is still intractable for this speaker. However, the addition
of the base speaker enables it to perform efficient approxi-
mate inference via approaches like Monte-Carlo sampling
or variational inference. We will delve into these approaches
further in §4.

3. Language models are bounded pragmatic
speakers

In this section, we show that any language model can be
viewed as a BPS and discuss the implications arising from
this viewpoint.

3.1. Formulation

Let Sθ(u | z, c) be a language model parameterized by
θ. This model is equivalent to a BPS that uses Sθ as both
its base speaker and ToM listener. Formally, let the base
speaker Sbase(u | z⋆, c) = Sθ(u | z⋆, c) and ToM listener
LToM(z⋆ | u, c) ∝ Sθ(u | z⋆, c). For any task (z⋆, c), the
BPS constituted by Sbase and LToM, and the language model
Sθ agree on the optimal choice:

argmax
u

Sθ(u | z⋆, c) (4)

= argmax
u

Sθ(u | z⋆, c)Sθ(u | z⋆, c) (5)

= argmax
u

Sbase(u | z⋆, c)LToM(z⋆ | u, c) (6)

In other words, they exhibit identical behavior in every
communication game.

Studying this trivial equivalent BPS may not initially appear
interesting. However, the BPS perspective of language mod-
els holds conceptual value by transforming a monolithic
model into a modular one. The monolithic view provides
limited insight into improving a language model, as its inter-
nal operations remain largely nebulous. In contrast, the BPS
view establishes connections between language models and
a broader family of models, offering greater interpretability
as the operations can be decomposed into smaller modules.

This modular structure allows for independent dissection
and upgrading of the modules. Within the BPS family of
models, a (vanilla) language model can be seen as the sim-
plest instantiation, with its modules sharing the same model.
Recognizing this enables us to enhance a language model
by developing it into a more sophisticated BPS.

3.2. Directions for improving a language model

There are three potential ways in which a BPS can fail to
effectively solve a communication game:

1. Limited search capability: the base speaker Sbase does
not assign sufficiently large probability to the optimal
utterance u⋆;

2. Flawed pragmatic capability: the ToM listener LToM
does not accurately emulate the actual listener Lreal;

3. Inefficient or erroneous inference algorithm: In this
case, even if both Sbase and Lreal are perfect, the speaker
is unable to find the optimal utterance within a reason-
able timeframe.

As a result, the BPS perspective entails three directions
for improving a language model: (1) enhance its search
capability (the base speaker) (2) augment its pragmatic
capability (the ToM listener) and (3) devise a more efficient
and accurate inference algorithm. In fact, many recent
advancements in language models can be categorized
within these directions. For instance, training language
models on vast amounts of data (Brown et al., 2020) enables
them to generate more relevant utterances, aligning with
the objective of enhancing search capability. Incorporating
a re-ranker (Chiu & Chen, 2021; Cobbe et al., 2021; Zhang
et al., 2022b) or a reward function learned from human feed-
back (Stiennon et al., 2020; Ouyang et al., 2022) essentially
extends a model with a better ToM listener and embodies the
goal of improving pragmatic capability. We will elaborate
this claim in the subsequent section. Lastly, research that
introduces novel decoding algorithms (Holtzman et al.,
2019; Li et al., 2022; Lu et al., 2021) can be attributed to
the direction of refining the inference algorithm.

To effectively allocate research resources, developers may
want to prioritize specific directions instead of attempting all
of them simultaneously. For instance, if a language model’s
search capability is already sufficient, it would be more
beneficial to focus on enhancing its pragmatic capability
rather than the decoding algorithm. Zhao et al. (2023a)
propose a procedure to identify deficient capabilities of a
language model. Their idea is quite simple: to evaluate a
capability of a model, comparing the model’s performance
to that of an oracle model, which is equally proficient in
the evaluated capability but attains human-level proficiency
in other capabilities. For instance, to assess the pragmatic
capability, one can sample a set of candidates from the
model and have a human rank them, simulating an oracle
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model with equivalent search capability but human-level
pragmatic capability. The performance gap between the
evaluated model and the oracle model on a downstream
task is then computed, with a larger gain indicating a more
pronounced deficiency in the former’s pragmatic capability.

4. Improving the inference and pragmatic
capability of bounded pragmatic speakers

In this section, we discuss pragmatic inference (Andreas &
Klein, 2016; Fried et al., 2017; Zhang et al., 2022b) and
reinforcement learning from human feedback (Christiano
et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022),
two popular approaches for boosting the performance of
language models. We will show that under the BPS frame-
work, these two methods essentially follow the same recipe:
extending a base speaker with a ToM listener and employ-
ing a probabilistic inference algorithm to enable efficient
inference.

4.1. Pragmatic inference

In this approach, a score function Rϕ(u) is learned and
then used to evaluate a set of candidate outputs sampled
from a language model Sθ. The approach can be seen as
performing Monte-Carlo inference on a BPS whose base
speaker is the language model and ToM listener is the score
function. Concretely, let Sbase(u | z⋆, c) = Sθ(u | z⋆, c)
and LToM(z⋆ | u, c) = Rϕ(u), pragmatic inference selects
the output utterance û as follows

û = argmax
u∈Ucand∼Sθ

Rϕ(u) (7)

= argmax
u∈Ucand∼Sbase

LToM(z⋆ | u, c) (8)

≈ argmax
u∈U

Sbase(u | z⋆, c)LToM(z⋆ | u, c) (9)

where U is the space over all possible utterances and Ucand
is a small set of candidates sampled from Sbase.

4.2. Reinforcement learning from human feedback

Variational inference is an alternative approximate infer-
ence approach for BPS. The approach involves choosing
a variational distribution Sθ that is efficient to perform in-
ference with. The objective is to find a set of parameters θ
that minimizes the KL-divergence between the variational
distribution and the approximated BPS

min
θ

KL(Sθ || Sbps; z
⋆, c) (10)

where Sbps is a BPS’s distribution (Eq 9) and KL(p, q;x)
denotes the KL divergence between two conditional distri-
butions p(· | x) and q(· | x).

Reinforcement learning from human feedback (RLHF) is
a fine-tuning approach that has been shown to effectively

align large language models (LLMs) with human prefer-
ence. This method first learns a reward function Rϕ(u)
from human ratings. Starting with an LLM S0 that were
pre-trained on language modeling (and optionally on instruc-
tion following), the method continues training the model to
maximize the learned reward function. A popular variant of
the method penalizes the new model for deviating too far
from S0, yielding the following KL-regularized objective:

min
θ

−Eu∼Sθ
[Rϕ(u)] + βKL(Sθ;S0) (11)

Our key insight is that the reward function can be interpreted
as a ToM listener because it aims to capture how a human
evaluates an utterance with respect to a (latent) intention.
For example, in a summarization task, a human rater would
assign a higher score to a summary if they believed it is
more likely to be produced under the intention of generating
a satisfactory summary. On the other hand, the pre-trained
language model represents prior knowledge gained through
pre-training and can be considered as a base speaker.

Formally, RLHF is equivalent to applying variational
inference on a BPS founded by LToM(z⋆ | u, c) =
exp(Rϕ(u)/β) and Sbase(u | z, c) = S0(u | z, c)

− Eu∼Sθ
[Rϕ(u)] + βKL(Sθ;S0) (12)

= −Eu∼Sθ
[Rϕ(u)/β] + KL(Sθ;S0)

= −Eu∼Sθ
[logLToM(z⋆ | u, c)] + KL(Sθ;S0)

= Eu∼Sθ

[
logSθ(u | z⋆, c)

logLToM(z⋆ | u, c)Sbase(u | z⋆, c)

]
= KL(Sθ || Sbps; z

⋆, c)

The connection between RL and variational inference is
not a new discovery (e.g., see Korbak et al. (2022); Sumers
et al. (2022); White et al. (2020); Levine (2018)). But in
this context, the implication of this connection transcends
the equivalence between two machine learning algorithms.
Our finding implies a similarity between the thinking pro-
cesses of RLHF-tuned LLMs and humans, as the behaviors
of both can be explained reasonably well under the BPS
framework. This connection is fascinating because it is not
planned: RLHF-tuned LLMs were supposedly not inspired
by computational models of human cognition. Thus, the
connection can potentially bring new opportunities and per-
spectives to both RL researchers and cognitive scientists.
RL researchers can adopt the principles of human cognition
and communication into the design of new algorithms. Cog-
nitive scientists can borrow mathematical and algorithmic
tools from RL to simulate more complex human behaviors.

5. Towards bounded pragmatic speakers with
a dual model of thought

The variational inference approach is reminiscent of the
fast-and-slow dual model of thought (DMoT) (Kahneman,
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Figure 2. RLHF-tuned LLMs exhibit a resemblance to the human dual model of thought (a), which consists of a deliberate, methodical
thinking system for rigorous reasoning and a quick, intuitive system for rapid decision-making. The efficacy of the fast-thinking system is
continually enhanced by learning from the slow-thinking system. However, we argue that RLHF-tuned LLMs are still a rudimentary dual
model of thought (b). The reward function fails to capture the complete reasoning capabilities of the listener, and the slow-thinking system
communicates knowledge through a limited-capacity channel. We advocate for the development of a more comprehensive dual model
of thought, wherein the slow-thinking system possesses extensive knowledge and profound comprehension of the physical and social
world. This system would employ effective reasoning algorithms (LLMs, search algorithms, probabilistic programs, etc.) to leverage such
knowledge and understanding, while facilitating rich and pragmatic communication with the fast-thinking system.

2011)—a renowned theory in psychology that explains hu-
man cognition. A DMoT comprises of a slow-thinking
system for deep reasoning and a fast-thinking system for fast
inference. In the case of BPS, the speaker itself is essentially
a slow-thinking system because of the expensive cost of the
Bayesian inference operator. A DMoT effective tackles this
inference challenge by approximating the slow-thinking sys-
tem by a fast-thinking system through a learning algorithm
that transfers knowledge from the former to the latter. In the
more specific case of RLHF-tuned LLMs, the slow-thinking
system is constituted by the pre-trained model (the base
speaker) and the reward function (the ToM listener). This
system is a BPS that reasons pragmatically about the real
listener to make decisions. RL serves as the learning algo-
rithm, constructing a fast-thinking system (the fine-tuned
LLM) that agrees with the slow-thinking system on a set of
situations. If this fast-thinking system generalizes robustly
to new situations, it allows the LLM to communicate both
efficiently and pragmatically.

While it may not be necessary to construct an explicit
fast-thinking system1, implementing the system as an actual
machine learning model can be powerful. High-capacity
models like neural networks can potentially implement more
complex algorithm than any human can program. Moreover,
this algorithm can be continually improved by minimizing
disagreement with slow-thinking system and optimizing
for other pre-specified intrinsic motivations. Consequently,

1For example, a Monte Carlo approach only draws a set of
samples from the slow-thinking system and considers them as an
implicit fast-thinking system.

instead of having to manually design a complex inference
algorithm, one can implement a highly general model
and learning algorithm, and let the optimization process
automatically discover an effective inference algorithm.

DMoT is a highly abstract concept that can manifest in vari-
ous forms. A slow-thinking system can be implemented in
many different ways: a probabilistic model (Griffiths et al.,
2010), a modular neural network (Corona et al., 2020), a
tree search algorithm (Anthony et al., 2017; Zhao et al.,
2023b), a causal graph (Geiger et al., 2021), a program
(Wang et al., 2023), or a language model prompted to rea-
son and construct plans (Wei et al., 2022b; Ahn et al., 2022)
or engineered to represent mental states (Andreas, 2022). A
fast-thinking system can be a light-weight neural network
which is cheap to perform inference on. The learning algo-
rithm can be imitation learning, reinforcement learning, an
advanced decoding algorithm (Lu et al., 2021), or a learning
algorithm that enables learning from rich feedback (Nguyen
et al., 2021). While we could attempt all combinations, it is
more useful to think about general development directions.
In the remaining of the section, we discuss several potential
directions motivated by our analysis of the fundamental lim-
itations of RLHF as an approach to constructing a DMoT.
Our proposals are summarized in Figure 2.

5.1. Beyond reward function: slow-thinking system with
strong reasoning capability

As shown in § 4.2, an RLHF-tuned LLM defines a slow-
thinking system based on a reward function Rϕ(u), which
is essentially a ToM listener LToM(z⋆ | u, c). We argue
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that this function offers very limited capability of reasoning
about the listener.

First of all, the function lacks the capability of reasoning
counterfactually, because it does not model the full distri-
bution of the true listener. Imagine the true listener’s model
Lreal(z | u, c) as a matrix with rows corresponding to inten-
tions and columns corresponding to utterances. The RLHF’s
ToM listener LToM(z⋆ | u, c) captures only a single row of
this matrix where z = z⋆. In other words, it can only predict
the likelihood of an utterance û under the target intention
z⋆, but cannot describe exactly what intentions the listener
would possibly infer from û. Being able to reason counter-
factually is important for a model to develop a deep under-
standing of the consequences of its behavior, which helps
it effectively adjust its behavior to achieve goals. For ex-
ample, in a summarization task, suppose a language model
implements a ToM listener and employs the listener as an
imaginary human judge to iteratively revise its summary
before outputting a final one. If the model simply reasons
about how a human would numerically grade its summary, it
provides itself with very vague clues about how to improve
the summary. Does a score of 6 out of 10 imply a summary
needs to be more concise or faithful, or both? In contrast,
if the model can imagine a human judging its summary on
more elaborate criteria (e.g., faithfulness, conciseness, toxi-
city), it can modify its summary more effectually to satisfy
real human users. It is important to emphasize that we do
not claim that RLHF-tuned LLMs cannot perform counter-
factual reasoning. In fact, they can learn to do it reasonably
well by imitating textual records of human thoughts. What
we argue is that modeling a human listener simplistically
as a reward function does not facilitate learning through
reasoning counterfactually about their intentions.

Second, a reward function does not capture the long-term
effect of an utterance in the world because it is only trained
to predict the immediate judgement of a human on the ut-
terance. In reality, an utterance does not simply influence
human thoughts, but those thoughts would eventually be
translated into actions that alter the world. A safe AI agent
should implement a slow-thinking system that is capable of
reasoning about the long-term impact of its actions. When
offering life advice, the agent must anticipate the potential
biases that could influence users’ decisions, in order to avoid
recommending harmful actions. Similarly, when providing
cooking recipes, it is crucial for the agent to envision the end
results and consider their impact on human health, ensuring
that no unintentional poison recipes are created. These ca-
pabilities necessitates rich knowledge about the world and
how humans interact in it, which is currently severely lack-
ing in reward functions trained purely on text and human
judgement. Therefore, a natural subsequent development
for LLMs is to acquire the capability of simulating social
and physical interactions in environments (Ni et al., 2023;

Hafner et al., 2023; Park et al., 2023; Yao et al., 2023; Wong
et al., 2023).

5.2. Beyond learning from rewards: transferring
knowledge through rich communication

A slow-thinking system should not only possess strong
reasoning capability, but also implement an algorithm for
transferring its capability quickly and accurately to a fast-
thinking system. As previously shown, RLHF-tuned LLMs
employ variational inference as this knowledge-transferring
algorithm. This method optimizes the KL-divergence:
KL(q || p) = Eu∼q[log

q(u)
p(u) ] between a variational distribu-

tion q and an approximated distribution p. To augment this
method, it is important to understand its basic assumptions.
Specifically, the method assumes an efficient evaluation
capability of p, i.e. it can swiftly and cheaply compute
a score p(u) for any u. In RLHF, this assumption is met
because p is a product of a pre-trained language model
S0(u | z⋆, c) and a reward function Rϕ(u), both of which
can typically assign a score to an utterance u efficiently.
Imposing this minimal assumption on the approximated
distribution makes variational inference applicable to a
wide range of distributions, but also makes it inefficient.
The method introduces a communication bottleneck that
hinders the alignment of p and q. Because p communicates
with q through only scores, q has to propose a lot of
samples to “guess” the shape of p. This results in a tedious
a trial-and-error process, which is not surprising because
variational inference is effectively reinforcement learning.

To construct more efficient knowledge-transfer algorithms,
we need to untie the communication bottleneck by assuming
stronger capabilities of the approximated distribution. In the
previous section, we argued that it is beneficial to learn not
just a reward function but a full distribution LToM(z | u, c)
of the listener. We posit that this more capable ToM listener
would not only enable counterfactual reasoning, but also
allow for more efficient and effective knowledge transfer.
Concretely, this listener permits us to assume an efficient
generation capability of the approximated distribution, i.e.
it is quick and cheap to draw samples z ∼ LToM(z | u, c).
With this capability, richer information about the approxi-
mated distribution can be conveyed to the approximating
distribution, dramatically accelerating the learning process.
This listener can practically model a human teacher that
offers feedback in a rich communication medium (e.g., lan-
guage). Interactive learning from language description
(Nguyen et al., 2021) is a framework that allows for learn-
ing from such an expressive teacher. Formally, the frame-
work assumes a prior distribution P0(z) over intentions and
a feedback provider LToM(z | u, c) that can convey feed-
back in a rich medium by drawing z samples from LToM.
The authors present an algorithm for estimating the speaker
distribution Sθ(u | z⋆, c) with theoretical convergence guar-
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antees, and empirically show that it is more sample-efficient
than reinforcement learning on a 3D navigation domain. We
recommend reading the paper for the more details. Two
current limitations of this framework are (1) the target in-
tention z⋆ needs to be pre-specified to the model and (2) the
flexibility of the feedback is limited by the model’s language
understanding capability. Exciting future directions are to
design model that can self-propose its target intention, and
to exploit the powerful language understanding capabilities
of LLMs to enable learning from free-form feedback.

6. Conclusion
In this work, we show that Bayesian models of human
cognition can be used to effectively explain the operation of
large language models. Our proposed framework represents
only a simple version of the models computational cognitive
scientists have developed. More advanced proposals like
hierarchical Bayesian models (Tenenbaum et al., 2011)
can potentially accommodate more complex reasoning and
offer better explainability. It has been challenging to scale
up these models to real-world problems because of their
expensive inference cost. However, as we have shown, large
language models and its learning techniques like RLHF can
offer themselves as useful tools for developing more scalable
Bayesian probabilistic models. To enhance the current set
of tools for inference, we suggest taking inspiration from hu-
man pragmatic communication. Current learning paradigms
like imitation and reinforcement learning emulate very prim-
itive forms of communication that are far inferior to human
communication. New paradigms like in-context learning
(Wei et al., 2022a) allow for learning from rich language
instructions, but the pragmatic elements of human commu-
nication are still missing (Fried et al., 2022). We believe
there are great opportunities for the fields of reinforcement
learning, probabilistic programming, and socio-cognitive
science to colloratively contribute to the development of
more capable and beneficial large language models.
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