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Sketch3D: Style-Consistent Guidance for Sketch-to-3D
Generation

Anonymous Authors

Input

"A wooden house with a red rick roof"

"A hamburger"

Initialization 20s 40s 1min 80s 100s 2min 140s 160s 3min

"A brown backpack"

"A pineapple"

Input
(a)

(b)

Figure 1: Sketch3D aims at generating realistic 3D Gaussians with shape consistent with the input sketch and color aligned
with textual description. (a) The novel-view generation results of four objects based on the input sketch and the text prompt.
(b) Given a sketch of a lamp and text prompt “A textural wooden lamp”, the 3D Gaussians progressively changes throughout the
generation process. Our method can complete this generation process in about 3 minutes.

ABSTRACT
Recently, image-to-3D approaches have achieved significant results
with a natural image as input. However, it is not always possible
to access these enriched color input samples in practical appli-
cations, where only sketches are available. Existing sketch-to-3D
researches suffer from limitations in broad applications due to the
challenges of lacking color information and multi-view content. To
overcome them, this paper proposes a novel generation paradigm
Sketch3D to generate realistic 3D assets with shape aligned with
the input sketch and color matching the textual description. Con-
cretely, Sketch3D first instantiates the given sketch in the reference
image through the shape-preserving generation process. Second,
the reference image is leveraged to deduce a coarse 3D Gaussian
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prior, and multi-view style-consistent guidance images are gener-
ated based on the renderings of the 3D Gaussians. Finally, three
strategies are designed to optimize 3D Gaussians, i.e., structural op-
timization via a distribution transfer mechanism, color optimization
with a straightforward MSE loss and sketch similarity optimiza-
tion with a CLIP-based geometric similarity loss. Extensive visual
comparisons and quantitative analysis illustrate the advantage of
our Sketch3D in generating realistic 3D assets while preserving
consistency with the input.

CCS CONCEPTS
• Information systems→ Multimedia content creation.

KEYWORDS
Sketch-to-3D Generation, 3D Gaussian Splatting, Diffusion Model

1 INTRODUCTION
3D content generation is widely applied in various fields [16], in-
cluding animation, movies, gaming, virtual reality, and industrial
production. A 3D asset generative model is essential to enable non-
professional users to easily transform their ideas into tangible 3D
digital content. Significant efforts have been made to develop image-
to-3D generation [10, 21, 53, 56], as it enables users to generate 3D

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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content based on color images. However, several practical scenarios
provide only sketches as input due to the unavailability of colorful
images. This is particularly true during the preliminary stages of 3D
product design, where designers rely heavily on sketches. Despite
their simplicity, these sketches are fundamental in capturing the
core of the design. Therefore, it is crucial to generate realistic 3D
assets according to the sketches.

Inspired by this practical demand, studies [14, 25, 40, 58] have
endeavored to employ deep learning techniques in generating 3D
shapes from sketches. Sketch2model [58] employs a view-aware
generation architecture, enabling explicit conditioning of the gen-
eration process based on viewpoints. SketchSampler [6] proposed
a sketch translator module to exploit the spatial information in a
sketch and generate a 3D point cloud conforming to the shape of
the sketch. Furthermore, recent works have explored the generation
or editing of 3D assets containing color through sketches. Several
[33, 50] proposed a sketch-guided method for colored point cloud
generation, while others [19, 26] proposed a 3D editing technique
to edit a NeRF based on input sketches. Despite these research ad-
vancements, there are still limitations hindering their widespread
applications. First, generating 3D shapes from sketches typically
lacks color information and requires training on extensive datasets.
However, the trained models are often limited to generating shapes
within a single category. Second, the 3D assets produced through
sketch-guided generation or editing techniques often lack realism
and the process is time-consuming.

These challenges inspire us to consider: Is there a method to
generate 3D assets where the shape aligns with the input sketch while
the color corresponds to the textual description? To address these
shortcomings, we introduce Sketch3D, an innovative framework
designed to produce lifelike 3D assets. These assets exhibit shapes
that conform to input sketches while accurately matching colors
described in the text. Concretely, a reference image is first generated
via a shape-preserving image generation process. Then, we initialize
a coarse 3D prior using 3DGaussian Splatting [52], which comprises
a rough geometric shape and a simple color. Subsequently, multi-
view style-consistent guidance images can be generated using the
IP-Adapter [51]. Finally, we propose three strategies to optimize
3D Gaussians: structural optimization with a distribution transfer
mechanism, color optimization using a straightforward MSE loss
and sketch similarity optimization with a CLIP-based geometric
similarity loss. Specifically, the distribution transfer mechanism
is employed within the SDS loss of the text-conditioned diffusion
model, enabling the optimization process to integrate both the
sketch and text information effectively. Furthermore, we formulate
a reasonable camera viewpoint strategy to enhance color details via
the ℓ2-norm loss function. Additionally, we compute the 𝐿2 distance
between the mid-level activations of CLIP. As Figure 1 shows, our
Sketch3D provides visualization results consistent with the input
sketch and the textual description in just 3 minutes. These assets are
readily integrable into software such as Unreal Engine and Unity,
facilitating rapid application deployment.

To assess the performance of our method on sketches and inspire
future research, we collect a ShapeNet-Sketch3D dataset based on
the ShapeNet dataset [3]. Considerable experiments and analysis
validate the effectiveness of our framework in generating 3D assets
that maintain geometric consistency with the input sketch, while

the color aligns with the textual description. Our contributions can
be summarized as follows:

• Wepropose Sketch3D, a novel framework to generate realistic
3D assets with shape aligned to the input sketch and color
matching the text prompt. To the best of our knowledge,
this is the first attempt to steer the process of sketch-to-3D
generation using a text prompt with 3D Gaussian splatting.
Additionally, we have developed a dataset, named ShapeNet-
Sketch3D, specifically tailored for research on sketch-to-3D
tasks.

• We leverage IP-Adapter to generatemulti-view style-consistent
images and three optimization strategies are designed: a
structural optimization using a distribution transfer mecha-
nism, a color optimization with ℓ2-norm loss function, and a
sketch similarity optimization using CLIP geometric similar-
ity loss.

• Extensive qualitative and quantitative experiments demon-
strate that our Sketch3D not only has convincing appear-
ances and shapes but also accurately conforms to the given
sketch image and text prompt.

2 RELATEDWORK
2.1 Text-to-3D Generation
Text-to-3D generation aims at generating 3D assets from a text
prompt. Recent developments in text-to-image methods [37–39]
have demonstrated a remarkable capability to generate high-quality
and creative images from given text prompts. Transferring it to
3D generation presents non-trivial challenges, primarily due to
the difficulty in curating extensive and diverse 3D datasets. Ex-
isting 3D diffusion models [7, 9, 12, 24, 29, 31, 55, 60] typically
focus on a limited number of object categories and face challenges
in generating realistic 3D assets. To accomplish generalizable 3D
generation, innovative works like DreamFusion [32] and SJC [48]
utilize pre-trained 2D diffusion models for text-to-3D generation
and demonstrate impressive results. Following works continue
to enhance various aspects such as generation fidelity and effi-
ciency [4, 11, 18, 20, 44, 46, 49, 54, 62], and explore further applica-
tions [1, 36, 42, 63]. However, the generated contents of text-to-3D
method are unpredictable and the shape cannot be controlled ac-
cording to user requirements.

2.2 Sketch-to-3D Generation
Sketch-to-3D generation aims to generate 3D assets from a sketch
image and possible text input. Since sketches are highly abstract
and lack substantial information [41], generating 3D assets based on
sketches becomes a challenging problem. Sketch2Model [58] intro-
duces an architecture for view-aware generation that explicitly con-
ditions the generation process on specific viewpoints. Sketch2Mesh
[8] employs an encoder-decoder architecture to represent and ad-
just a 3D shape so that it aligns with the target external contour
using a differentiable renderer. SketchSampler [6] proposes a sketch
translator module to utilize the spatial information within a sketch
and generate a 3D point cloud that represents the shape of the
sketch. Sketch-A-Shape [40] proposes a zero-shot approach for
sketch-to-3D generation, leveraging large-scale pre-trained models.
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SketchFaceNeRF [19] proposes a sketch-based 3D facial NeRF gen-
eration and editing method. SKED [26] proposes a sketch-guided
3D editing technique to edit a NeRF. Overall, existing sketch-to-3D
generation methods have several limitations. First, generating 3D
shapes from sketches invariably produces shapes without color
information and needs to be trained on large-scale datasets, yet
the trained models are typically limited to making predictions on a
single category. Second, the 3D assets generated by sketch-guided
generation or editing techniques often lack realism, and the process
is relatively time-consuming. Our method, incorporating the input
text prompt, is capable of generating 3D assets with shapes consis-
tent with the sketch and color aligned with the textual description.

3 METHOD
In this section, we first introduce two preliminaries including 3D
Gaussian Splatting and Controllable Image Synthesis (Sec. 3.1).
Subsequently, we systematically propose our Sketch3D framework
(Sec. 3.2), which is progressively introduced (Sec. 3.3–3.5).

3.1 Preliminaries
3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [13] rep-
resents a novel method for novel-view synthesis and 3D scene
reconstruction, achieving promising results in both quality and
real-time processing speed. Unlike implicit representation methods
such as NeRF [27], 3D Gaussians represent the scene through a set
of anisotropic Gaussians, defined with its center position 𝜇 ∈ R3,
covariance Σ ∈ R7, color c ∈ R3, and opacity 𝛼 ∈ R1. The covari-
ance matrix Σ = RSS⊤R⊤ describes the configuration of an ellipsoid
and is implemented via a scaling matrix S and a rotation matrix R.
Each Gaussian centered at point (mean) 𝜇 is defined as:

𝐺 (𝑥) = e−
1
2𝑥

⊤Σ−1𝑥 , (1)

where 𝑥 represents the distance between 𝜇 and the query point.
A ray 𝑟 is cast from the center of the camera, and the color and
density of the 3D Gaussians that the ray intersects are computed
along the ray. In summary, 𝐺 (𝑥) is multiplied by 𝛼 in the blending
process to construct the final accumulated color:

𝐶 (𝑟 ) =
𝑁∑︁
𝑖=1

𝑐𝑖𝛼𝑖𝐺 (𝑥𝑖 )
𝑖−1∏
𝑗=1

(
1 − 𝛼 𝑗𝐺 (𝑥 𝑗 )

)
, (2)

where 𝑁 means the number of samples on the ray 𝑟 , 𝑐𝑖 and 𝛼𝑖
denote the color and opacity of the 𝑖-th Gaussian.

Controllable Image Synthesis. In the field of image generation,
achieving control over the output remains a great challenge. Recent
efforts [15, 17, 59] have focused on increasing the controllability
of generated images by various methods. This involves increasing
the ability to specify various attributes of the generated images,
such as shape and style. ControlNet [57] and T2I-adapter [28] at-
tempt to control image creation utilizing data from different visual
modalities. Specifically, ControlNet is an end-to-end neural network
architecture that controls a diffusion model (Stable Diffusion [38])
to adapt task-specific input conditions. IP-Adapter [51] and MasaC-
trl [2] leverage the attention layer to incorporate information from
additional images, thus achieving enhanced controllability over the
generated results.

3.2 Framework Overview
Given a sketch image and a corresponding text prompt, our ob-
jective is to generate realistic 3D assets that align with the shape
of the sketch and correspond to the color described in the textual
description. To achieve this, we confront three challenges:

• How to solve the problem of missing information in sketches?
• How to initialize a valid 3D prior from an image?
• How to optimize 3D Gaussians to be consistent with the given
sketch and the text prompt?

Inspired by this motivation, we introduce a novel 3D generation
paradigm, named Sketch3D, comprising three dedicated steps to
tackle each challenge (as illustrated in Figure 2):

• Step 1: Generate a reference image based on the input sketch
and text prompt (Sec. 3.3).

• Step 2: Derive a coarse 3D prior using 3D Gaussian Splatting
from the reference image (Sec. 3.4).

• Step 3: Generate multi-view style-consistent guidance im-
ages through IP-Adapter, introducing three strategies to fa-
cilitate the optimization process (Sec. 3.5).

3.3 Shape-Preserving Reference Image
Generation

For image-to-3D generation, sketches offer very limited informa-
tion, when served as a visual prompt compared with RGB images.
They lack color, depth, semantic information, etc., and only contain
simple contours.

To solve the above problems, our solution is to create a shape-
preserving reference image from a sketch 𝐼s and a text prompt y.
The reference image adheres to the outline of the sketch, while
also conforming to the textual description. To achieve this, we
leverage an additional image conditioned diffusion model𝐺2𝐷 (e.g.,
ControlNet [57]) to initiate sketch-preserving image synthesis [5].
Given time step 𝑡 , a text prompt y, and a sketch image 𝐼s,𝐺2𝐷 learn
a network 𝜖𝜃 to predict the noise added to the noisy image 𝑥𝑡 with:

L = E𝑥0,𝑡,y,𝐼s,𝜖∼N(0,1)
[
∥𝜖𝜃 (𝑥𝑡 ; 𝑡, y, 𝐼s) − 𝜖 ∥22

]
, (3)

where L is the overall learning objective of 𝐺2𝐷 . Note that there
are two conditions, i.e., sketch 𝐼s and text prompt y, and the noise
is estimated as follows:

𝜖𝜃 (𝑥𝑡 ; 𝑡, y, 𝐼s) =𝜖𝜃 (𝑥𝑡 ; 𝑡)
+𝑤 ∗ (𝜖𝜃 (𝑥𝑡 ; 𝑡, y, 𝐼s) − 𝜖𝜃 (𝑥𝑡 ; 𝑡)) ,

(4)

where 𝑤 is the scale of classifier-free guidance [30]. In summary,
𝐺2𝐷 can quickly generate a shape-preserving colorful image 𝐼ref
that not only follows the sketch outline but also respects the textual
description, which facilitates the subsequent initialization process.

3.4 Gaussian Representation Initialization
A coarse 3D prior can efficiently offer a solid initial basis for sub-
sequent optimization. To facilitate image-to-3D generation, most
existing methods rely on implicit 3D representations such as Neural
Radiance Fields (NeRF) [45] or explicit 3D representations such as
mesh [34]. However, NeRF representations are time-consuming
and require high computational resources, while mesh representa-
tions have complex representational elements. Consequently, 3D
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Prompt: “A textural wooden lamp”

Input sketch 
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Figure 2: Pipeline of our Sketch3D. Given a sketch image and a text prompt as input, we first generate a reference image
𝐼ref using ControlNet. Second, we utilize the reference image 𝐼ref to initialize a coarse 3D prior 𝑀0, which is represented
using 3D Gaussians. Third, we render the 3D Gaussians into images from different viewpoints using a designated camera
projection strategy. Based on these, we obtain multi-view style-consistent guidance images through the IP-Adapter. Finally,
we formulate three strategies to optimize𝑀0: (a) Structural Optimization: a distribution transfer mechanism is proposed for
structural optimization, effectively steering the structure generation process towards alignment with the sketch. (b) Color
Optimization: based on multi-view style-consistent images, we optimize color with a straightforward MSE loss. (c) Sketch
Similarity Optimization: a CLIP-based geometric similarity loss is used as a constraint to shape towards the input sketch.

Gaussian representation, being simple and fast, is chosen as our
initialized 3D prior𝑀0.

Gaussian Initialization with 3D Diffusion Model. 3D Gaus-
sians can be easily converted from a point cloud, so a simple idea is
to first obtain an initial point cloud and then convert it to 3D Gaus-
sians [52]. Therefore, it can be transformed into an image-to-point
cloud problem. Currently, many 3D diffusion models use text to
generate 3D point clouds [29]. However, we initialize 3D Gaussians
𝑀0 from 3D diffusion model 𝐺3𝐷 (e.g., Shap-E [12]) based on the
image 𝐼ref .

Gaussian Initialization through SDS loss. Alternatively, we
can also initialize a Gaussian sphere and optimize it into a coarse
Gaussian representation through SDS loss [44]. First, we initialize
the 3D Gaussians with random positions sampled inside a sphere,
with unit scaling and no rotation. At each step, we sample a random
camera pose 𝑝 orbiting the object center and render the RGB image
𝐼
𝑝

RGB of the current view. Stable-zero123 [43] is adopted as the 2D
diffusion prior 𝜙 and the images 𝐼𝑝RGB are given as input. The SDS
loss is formulated as:

∇𝜃 LSDS = E𝑡,𝑝,𝜖

[(
𝜖𝜙

(
𝐼
𝑝

RGB; 𝑡, 𝐼ref ,Δ𝑝
)
− 𝜖

) 𝜕𝐼
𝑝

RGB
𝜕𝜃

]
, (5)

where 𝜖𝜙 (·) is the predicted noise by the 2D diffusion prior 𝜙 , and
Δ𝑝 is the relative camera pose change from the reference camera.
Finally, we can obtain a coarse Gaussian representation𝑀0 based
on the optimization of the 2D diffusion prior 𝜙 .

3.5 Style-Consistent Guidance for Optimization
The coarse 3D prior 𝑀0 is roughly similar in shape to the input
sketch, and its color is not completely consistent with the text de-
scription. Specifically, the geometric shape generated in Sec. 3.4
may not exactly fit the outline shape of the input sketch 𝐼s, and there
is a certain deviation. For example, the input sketch is an upright,
cylinder-like, symmetrical lamp, but the coarse 3D Gaussian repre-
sentation might be a slightly curved, asymmetrical lamp. Moreover,
the initial color generated in Sec. 3.4 may not be consistent with
the description of the input text. Faced with these problems, we
introduce IP-Adapter to generate multi-view style-consistent im-
ages as guidance. First, we propose a transfer mechanism in the
structural optimization process, which can effectively guide the
structure of the 3D Gaussian representation to align with the in-
put sketch outline. Second, we utilize a straightforward MSE loss
to improve the color quality, which can effectively align the 3D
Gaussian representation with the input text description. Third, we
implement a CLIP-based geometric similarity loss as a constraint
to guide the shape towards the input sketch.

Multi-view Style-Consistent Images Generation. Due to
the rapid and real-time capabilities of Gaussian splatting, acquir-
ing multi-view renderings becomes straightforward. If we can ob-
tain guidance images from these renderings, corresponding to the
current viewing angles, they would serve as effective guides for
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Figure 3: For each object, the first row shows content images
and the second row shows guidance images. Given reference
image 𝐼ref generated by ControlNet and content images 𝐼c
rendered from the 3D Gaussians, we generate the guidance
images 𝐼g as the multi-view style-consistent images.

optimization. To achieve this, we introduce the IP-Adapter [51],
which incorporates an additional cross-attention layer for each
cross-attention layer in the original U-Net model to insert image
features. Given the image features 𝑐𝑖 , the output of additional cross-
attention Z is computed as follows:

Z = Attention (Q,K𝑖 ,V𝑖 ) = Softmax

(
QK⊤

𝑖√
𝑑

)
V𝑖 , (6)

where Q = ZWq, K𝑖 = 𝑐𝑖W′
𝑘
and V𝑖 = 𝑐𝑖W′

𝑣 are the query, key, and
values matrices from the image features. Z is the query features,
and W′

𝑘
and W′

𝑣 are the corresponding trainable weight matrices.
This enhancement enables us to generatemulti-view style-consistent

images based on the two image conditions of the reference image
and the content images, as shown in Figure 3. Specifically, herein we
use Stable-Diffusion-v1-5 [38] as our diffusion model basis. Given
the reference image 𝐼ref and multi-view splatting images as the
content images 𝐼c, the guidance images 𝐼g are estimated as follows:

𝐼g = 𝑀 (𝐼ref , 𝐼c, 𝑡, 𝜆), (7)

where𝑀 is the generator of IP-Adapter, 𝑡 is the sampling time step
of inference, and 𝜆 ∈ [0, 1] is a hyper-parameter that determines
the control strength of the conditioned content image 𝐼c.

Camera Projection Strategy. As shown in Figure 2, during
the process of Gaussian splatting, our camera projection strategy
involves encircling horizontally and vertically. To ensure the stylis-
tic consistency of the generated guidance images, we perform a
rotation every 30 degrees for each circle, thereby calculating the
guidance images under a progressively changing viewpoint.

Structural Optimization. For image-to-3D generation, when
selecting the diffusion prior for SDS loss, existing approaches usu-
ally use a diffusion model with image as a condition (e.g., Zero-123
[23]). Differently, we use a diffusion model with text as the condi-
tion (e.g., Stable Diffusion [38]). The reason is that the former does
not perform well in generating 3D aspects of the invisible parts of
the input image while the latter demonstrates better optimization
effects in terms of details and the invisible sections. However, we
have to ensure that the reference image plays an important role in

the optimization process, so we propose a mechanism of distribu-
tion transfer and then use it in subsequent SDS loss calculations.
Given guidance images 𝐼g and splatting images 𝐼c, the transferred
images 𝐼t are estimated as follows:

𝐼t = 𝜎
(
𝐼g

) (
𝐼c − 𝜇 (𝐼c)
𝜎 (𝐼c)

)
+ 𝜇

(
𝐼g

)
, (8)

where 𝜇 (·) is themean operation,𝜎 (·) is the variance operation. The
distribution transformation brought about by the transfer mech-
anism can bring the distribution of splatting images closer to the
distribution of guidance images. In this way, we obtain the trans-
fer image 𝐼t after distribution migration through guidance image
𝐼g and splatting image 𝐼c. To update the 3D Gaussian parameters
𝜃 (𝜇, Σ, 𝑐, 𝛼), we choose to use the publicly available Stable Diffusion
[38] as 2D diffusion model prior 𝜙 and compute the gradient of the
SDS loss via:

∇𝜃LS−SDS = E𝑡,𝜖

[
(𝜖𝜙 (𝐼t; 𝑡, 𝑦, 𝐼s) − 𝜖) 𝜕𝐼t

𝜕𝜃

]
, (9)

where 𝐼t is the transfer image, y is text prompt, 𝜖𝜙 is similar to
Equation 4, 𝑡 is the sampling time step, and 𝐼s is the input sketch.
In conclusion, through the tailored 3D structural guidance, our
Sketch3D can mitigate the problem of geometric inconsistencies.

Color Optimization. Although through the above structural
optimization, we already obtained a 3D Gaussian representation
whose geometric structure is highly aligned with the input sketch,
some color details still need to be enhanced. To improve the image
color quality, we propose to use a simple MSE loss to optimize the
3D Gaussian parameters 𝜃 . We optimize the splatting image 𝐼c to
align with the guidance image 𝐼g.

LCol = 𝜆pose ∗ 𝜆linear | |𝐼g − 𝐼c | |22, (10)

where 𝜆linear is the linearly increased weight during optimization,
calculated by dividing the current step by the total number of it-
eration steps. 𝐼g represents the guidance images obtained from
controllable IP-Adapter and 𝐼c represents the splatting images from
3D Gaussian. The MSE loss is fast to compute and deterministic to
optimize, resulting in fast refinement. Note that 𝜆pose is a parameter
that changes with viewing angle, as shown in Figure 2, in the hori-
zontal rotation perspective, the value of 𝜆pose is cos(𝜃azimuth), in the
vertical rotation perspective, the value of 𝜆pose is 0.3∗cos(𝜃elevation).

Sketch Similarity Optimization. To ensure that the shape of
the sketch can directly guide the optimization of 3D Gaussians, we
use the image encoder of CLIP to encode both the sketch and the
rendered images, and compute the 𝐿2 distance between interme-
diate level activations of CLIP. CLIP is trained on various image
modalities, enabling it to encode information from both images and
sketches, without requiring further training. CLIP encodes high-
level semantic attributes in the last layer since it was trained on
both images and text. One intuitive approach involves leveraging
CLIP’s semantic-level cosine similarity loss to use the sketch as
a supervisory signal for the shape of rendered images. However,
this form of supervision is quite weak. Therefore, to measure an
effective geometric similarity loss between the sketch and rendered
image, ensuring that the shape of rendered images is more consis-
tent with the input sketch, we compute the 𝐿2 distance between
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the mid-level activations [47] of CLIP:

Lsketch = 𝜆sketch ∗ ∥𝐶𝐿𝐼𝑃4 (𝐼𝑠 ) −𝐶𝐿𝐼𝑃4 (𝐼𝑐 )∥22 , (11)

where 𝜆sketch is a coefficient that controls the weight, 𝐶𝐿𝐼𝑃4 (·) is
the 𝐶𝐿𝐼𝑃 encoder activation at layer 4. Specifically, we use layer 4
of the ResNet101 CLIP model.

4 EXPERIMENTS
In this section, we first introduce the experiment setup in Sec. 4.1,
then present qualitative visual results compared with five baselines
and report quantitative results in Sec. 4.2. Finally, we carry out
ablation and analytical studies to further verify the efficacy of our
framework in Sec. 4.3.

4.1 Experiment Setup
ShapeNet-Sketch3D Dataset. To evaluate the effectiveness of
our method and benefit further research, we have collected a com-
prehensive dataset comprising 3D objects, synthetic sketches, ren-
dered images, and corresponding textual descriptions, which we call
ShapeNet-Sketch3D. It contains object renderings of 10 categories
from ShapeNet [3], and there are 1100 objects in each category. Ren-
dered images from 20 different views of each object are rendered
in 512 × 512 resolution. We extract the edge map of each rendered
image using a canny edge detector. The textual descriptions cor-
responding to each object were derived by posing questions to
GPT-4-vision about their rendered images, leveraging its advanced
capabilities in visual analysis. Currently, there are no datasets avail-
able for paired sketches, rendered images, textual descriptions, and
3D objects. Our dataset serves as a valuable resource for research
and experimental validation in sketch-to-3D tasks.

Implementation Details. In the shape-preserving reference
image generation process, we use control-v11p-sd15-canny [57] as
our diffusion model 𝐺2𝐷 . In the Gaussian initialization process, we
initialize our Gaussian representation with the 3D diffusion model
and utilize Shap-E [12] as our 3D diffusion model𝐺3𝐷 . In the multi-
view style-consistent image generation process, we use the stable
diffusion image-to-image pipeline [51], with a control strength of
0.5. Moreover, we generate two sets of guidance images in two
surround modes every 30 steps. In structural optimization, we use
stablediffusion-2-1-base [38]. The total training steps are 500. For
the 3D Gaussians, the learning rates of position 𝜇 and opacity 𝛼 are
10−4 and 5 × 10−2. The color 𝑐 of the 3D Gaussians is represented
by the spherical harmonics (SH) coefficient, with a learning rate of
1.5 × 10−2. The covariance of the 3D Gaussians is converted into
scaling and rotation for optimization, with learning rates of 5×10−3
and 10−3. We select a fixed camera radius of 3.0, y-axis FOV of 50
degree, with the azimuth in [0, 360] degrees and elevation in [0,
360] degrees. The rendering resolution is 512 × 512 for Gaussian
splatting. All our experiments can be completed within 3 minutes
on a single NVIDIA RTX 4090 GPU with a batch size of 4.

Baselines.Weextensively compare ourmethod Sketch3D against
five baselines: Sketch2Model [58], LAS-Diffusion [61], Shap-E [12],
One-2-3-45 [22], and DreamGaussian [44]. We do not compare with
NeRF-based methods, as they typically require a longer time to
generate. Sketch2Model is the pioneering method that explores the
generation of 3D meshes from sketches and introduces viewpoint

Table 1: Quantitative comparisons on CLIP similarity and
Structural Similarity Index Measure (SSIM) with other meth-
ods. All these experiments were conducted on our ShapeNet-
Sketch3D dataset.

Method CLIP-Similarity SSIM ↑pic2pic ↑ pic2text ↑

Sketch2Model 0.597 0.232 0.712
LAS-Diffusion 0.638 0.254 0.731
Shap-E 0.642 0.268 0.734
One-2-3-45 0.667 0.281 0.722
DreamGaussian 0.724 0.294 0.793
Sketch3D (Ours) 0.779 0.321 0.818

judgment to optimize shapes. LAS-Diffusion leverages a view-aware
local attention mechanism for image-conditioned 3D shape genera-
tion, utilizing both 2D image patch features and the SDF representa-
tion to guide the learning of 3D voxel features. Shap-E is capable of
generating 3D assets in a short time, but requires extensive training
on large-scale 3D datasets. One-2-3-45 employs Zero123 to gener-
ate results of the input image from different viewpoints, enabling
the rapid creation of a 3D mesh from an image. DreamGaussian
integrates 3D Gaussian Splatting into 3D generation and greatly
improves the speed.

4.2 Comparisons
Qualitative Comparisons. Figure 4 displays the qualitative com-
parison results between ourmethod and the five baselines, while Fig-
ure 1 shows novel-view images generated by our method. Sketch3D
achieves the best visual results in terms of shape consistency and
color generation quality. As illustrated in Figure 4, the sketch image
and the reference image generated in Section 3.3 are chosen as in-
puts for the latter three baselines. For the same object, the reference
image used by the latter three baselines and our method is identical.
First, Sketch2Model and LAS-Diffusion only generate shapes and
lack color information. Second, Shap-E can generate a rough shape
and simple color, but the color details are blurry. Third, One-2-3-45
and DreamGaussian often produce inconsistent shapes and lack
color details. All of these results demonstrate the superiority of our
method. Additionally, Sketch3D is capable of generating realistic
3D objects in about 3 minutes.

Quantitative Comparisons. In Table 1 , we use CLIP similarity
[35] and structural similarity index measure (SSIM) to quantita-
tively evaluate our method. We randomly select 5 objects from each
category in our ShapeNet-Sketch3D dataset, choose a random view-
point for each object, and then average the results across all objects.
We calculate the CLIP similarity between the final rendered images
and the reference image, as well as between the final rendered im-
ages and the text prompt. Moreover, we also calculate the SSIM
similarity between the final rendered images and the reference
image. The results show that our method can better align with the
input sketch shape and correspond to the input textual description.

4.3 Ablation Study and Analysis
Distribution transfer mechanism in structural optimization.
As shown in Figure 5, the distribution transfer mechanism aligns
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"A red fresh cherry"
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Figure 4: Qualitative comparisons between our method and Sketch2Model [58], LAS-Diffusion [61], Shap-E [12], One-2-3-45 [22]
and DreamGaussian [44]. The input sketches include sketch images, exterior contour sketches, and hand-drawn sketches. Our
method achieves the best visual results regarding shape consistency and color generation quality compared to other methods.

the shape more closely with the input sketch, leading to a coherent
structure and color. It demonstrates the mechanism’s effectiveness
in steering the generated shape towards the input sketch.

MSE loss in color optimization. As illustrated in Figure 5, it
is evident that the MSE loss contributes to reducing color noise,
leading to a smoother overall color appearance. It proves that MSE
loss is capable of enhancing the quality of the generated color.

CLIP geometric similarity loss in sketch similarity opti-
mization. As shown in Figure 5, the CLIP geometric similarity loss
enables the overall shape to more closely align with the shape of

the input sketch. This illustrates that the 𝐿2 loss in the intermediate
layers of CLIP can act as a shape constraint.

Gaussian initialization through SDS loss.As shown in Figure
6, we conducted analytical experiments on the Gaussian initializa-
tion method to explore which initialization method is better. It can
be seen that Gaussian initialization through SDS loss shows good
3D effects only in the visible parts of the input reference image,
while problems of blurriness and color saturation exist in the invis-
ible parts. However, the approach of Gaussian initialization with a
3D diffusion model exhibits better realism from all viewing angles.
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Figure 6: Analytical study of the initialization approach of
the 3D Gaussian Representation.

Hand-drawn sketch visualization results. As shown in Fig-
ure 7, to explore the fidelity of outcomes generated from the user’s
freehand sketches, we visualize some of the generated results from
hand-drawn sketches. We randomly select three non-artist users
to draw three sketches and provide corresponding text prompts.
The results show that our method can also achieve good generation
quality and consistency for hand-drawn sketches.

User Study. We additionally conduct a user study to quanti-
tatively evaluate Sketch3D against four baseline methods (LAS-
Diffusion, Shap-E, One-2-3-45, and DreamGaussian). We invite 9
participants and present them with each input and the correspond-
ing 5 generated video results, comprising a total of 10 inputs and
the corresponding 50 videos. We ask each participant to rate each
video on a scale from 1-5 based on fidelity and consistency criteria.

Table 2: User Study on fidelity and consistency evaluation.

Method Fidelity Consistency

LAS-Diffusion 1.82 2.86
Shap-E 2.67 2.92
One-2-3-45 3.22 3.58
DreamGaussian 3.78 3.37
Sketch3D 4.12 3.94

Table 2 shows the results of the user study. Overall, our Sketch3D
demonstrates greater fidelity and consistency than the other four
baselines.

"A golden goblet"

Input

"A carrot"

"A wooden desk"
Figure 7: Hand-drawn sketch visualization results.

5 CONCLUSION
In this paper, we propose Sketch3D, a new framework to gener-
ate realistic 3D assets with shape aligned to the input sketch and
color matching the text prompt. Specifically, we first instantiate the
given sketch to the reference image through the shape-preserving
generation process. Second, a coarse 3D Gaussian prior is sculpted
based on the reference image, and multi-view style-consistent guid-
ance images could be generated using IP-Adapter. Third, we pro-
pose three optimization strategies: a structural optimization using
a distribution transfer mechanism, a color optimization using a
straightforward MSE loss, and a sketch similarity optimization us-
ing CLIP geometric similarity loss. Extensive experiments demon-
strate that Sketch3D not only has realistic appearances and shapes
but also accurately conforms to the given sketch and text prompt.
Our Sketch3D is the first attempt to steer the process of sketch-to-
3D generation with 3D Gaussian splatting, providing a valuable
foundation for future research on sketch-to-3D generation. How-
ever, our method also has several limitations. The quality of the
reference image depends on the performance of ControlNet, so
when the image quality generated by the ControlNet is poor, it
will affect our method and impact the overall generation quality.
Additionally, for particularly complex or richly detailed sketches, it
is difficult to achieve control over the details in the output results.
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