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Model Res. Params Speed Flops IN-1k IN-C IN-A IN-R FGSM PGD

Transformers

ViT-B/16‡ 224 86 M 182 16.9 77.9 52.2 7.0 21.9 30.6 14.3
ViT-L/16‡ 224 307 M 55 59.7 76.5 49.3 6.1 17.9 27.8 13.0

ViT-B/16 21k‡ 224 86 M 182 16.9 84.0 65.8 26.7 38.0 31.3 10.3
ViT-L/16 21k‡ 224 307 M 55 59.7 85.1 70.0 28.1 40.6 40.5 16.2

DeiT-S† 224 22 M 544 4.6 79.9 55.4 18.9 31.0 40.7 16.7
DeiT-B† 224 87 M 182 17.6 82.0 60.7 27.4 34.6 46.4 21.3

ConViT-S† 224 28 M 296 5.4 81.5 59.5 24.5 34.0 41.0 17.2
ConViT-B† 224 87 M 139 17.7 82.4 61.9 29.0 36.9 51.8 20.8

RVT-S† 224 23.3 M - 4.7 81.9 - 25.7 47.7 51.8 28.2
RVT-B† 224 91.8 M - 17.7 82.6 - 28.5 48.7 53.0 29.9

CNNs

ResNet50‡ 224 25 M 736 4.1 76.8 46.1 4.2 21.5 - -
ResNet101‡ 224 45 M 435 7.85 78.0 50.2 6.3 23.0 14.7 2.0

ResNet101x3‡ 224 207 M 62 69.6 80.3 53.4 9.1 24.5 23.6 7.3
ResNet152x4‡ 224 965 M 18 183.1 80.4 54.5 11.6 25.8 33.3 10.5

ResNet50-RS 160 36 M 938 4.6 78.8 36.8 5.7 39.1 28.7 18.4
ResNet101-RS 192 64 M 674 12.1 80.3 44.1 11.8 44.8 32.9 18.8
ResNet152-RS 256 87 M 304 31.2 81.2 49.9 23.4 45.9 41.6 28.5
ResNet200-RS 256 93 M 225 40.4 82.8 49.3 25.4 48.1 40.4 24.6
ResNet270-RS 256 130 M 152 54.2 83.8 53.6 26.6 48.7 44.7 30.3
ResNet350-RS 288 164 M 89 87.5 84.0 53.9 34.9 49.7 48.3 34.6

Our Transformed CNNs

T-ResNet50-RS 224 38 M 447 17.6 81.0 48.0 18.7 42.9 47.2 33.9
T-ResNet101-RS 224 66 M 334 25.1 82.4 52.9 27.7 47.8 50.3 34.2
T-ResNet152-RS 320 89 M 128 65.8 83.7 54.5 39.8 50.6 57.3 36.8
T-ResNet200-RS 320 96 M 105 80.2 84.0 57.0 41.2 51.1 58.3 36.4
T-ResNet270-RS 320 133 M 75 107.2 84.3 58.6 43.7 51.4 59.0 36.6

T-ResNet350-RS 320 167 M 61 130.5 84.5 59.2 44.8 53.8 53.4 36.4

Table 2: Accuracy of our models on various benchmarks. Throughput is the number of images
processed per second on a V100 GPU at batch size 32. For ImageNet-C, we keep a resolution of 224
at test time to avoid distorting the corruptions; this disadvantages our large models, which are trained
at higher resolutions. †: reported from (Mao et al., 2021) (we recalculated ImageNet-C accuracies, as
the original paper reports MCE). ‡: reported from (Bhojanapalli et al., 2021) (in their setup, PGD
uses 8 steps with a stepsize of 1/8).

A PERFORMANCE TABLE

In Tab. 2, we display the characteristics and the performance of our T-ResNet-RS models and
compare them to the original ResNet-RS models as well as several other strong baselines reported
in Bhojanapalli et al. (2021); Mao et al. (2021).

B WHEN SHOULD ONE START LEARNING THE SELF-ATTENTION LAYERS?

We have demonstrated the benefits of initializing T-CNNs from pre-trained CNNs, a very compelling
procedure given the wide availability of pretrained models. But one may ask: how does this compare
to training a hybrid model from scratch? More generally, given a computational budget, how long
should the SA layers be trained compared to the convolutional backbone?

Transformed CNN versus hybrid models To answer the first question, we consider a ResNet-50
trained on ImageNet for 400 epochs. We use SGD with momentum 0.9 and a batch size of 1024,
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Name t1 t2 Train time Top-1

Vanilla CNN 400 0 2.0k mn 79.04
Vanilla CNN"320 450 0 2.4k mn 79.78

T-CNN 400 50 2.3k mn 79.88
T-CNN"320 400 50 2.7k mn 80.84

Vanilla hybrid 0 400 2.8k mn 79.95
T-CNN? 100 300 2.6k mn 80.44

T-CNN? 200 200 2.4k mn 80.28
T-CNN? 300 100 2.2k mn 79.28

Table 3: The benefit of late reparametrization. We report the top-1 accuracy of a ResNet-50
on ImageNet reparameterized at various times t1 during training. "320 stands for fine-tuning at
resolution 320. The models with a ? keep the same optimizer after reparametrization, in contrast with
the usual T-CNNs.

warming up the learning rate for 5 epochs before a cosine decay. To achieve a strong baseline, we
use the same augmentation scheme as in Touvron et al. (2020) for the DeiT. Results are reported in
Tab. 3. In this modern training setting, the vanilla ResNet50 reaches a solid performance of 79.04%
on ImageNet, well above the 77% usually reported in litterature.

The T-CNN obtained by fine-tuning the ResNet for 50 epochs at same resolution obtains a top-1
accuracy of 79.88%, with a 15% increase in training time, and 80.84 as resolution 320, with a 35%
increase in training time. In comparison, the hybrid model trained for 400 epochs in the same setting
only reaches 79.95%, in spite of a 40% increase in training time. Hence, fine-tuning yields better
results than training the hybrid model from scratch.

What is the best time to reparametrize? We now study a scenario between the two extreme
cases: what happens if we reparametrize halfway through training? To investigate this question in
a systematic way, we train the ResNet50 for t1 epochs, then reparametrize and resume training for
another t2 epochs, ensuring that t1 + t2 = 400 in all cases. Hence, t1 = 400, amounts to the vanilla
ResNet50, whereas t1 = 0 corresponds to the hybrid model trained from scratch. To study how final
performance depends on t1 in a fair setting, we keep the same optimizer and learning rate after the
reparametrization, in contrast with the fine-tuning procedure which uses fresh optimizer.

Results are presented in Tab. 3. Interestingly, the final performance evolves non-monotonically,
reaching a maximum of 80.44 for t1 = 100, then decreasing back down as the SA layers have less
and less time to learn. This non-monotonicity is remarkably similar to that observed in d’Ascoli et al.
(2019), where reparameterizing a CNN as a FCN in the early stages of training enables the FCN to
outperform the CNN. Crucially, this result suggests that reparametrizing during training not only
saves time, but also helps the T-CNN find better solutions.

C CHANGING THE LEARNING RATE

We have shown that the learning dynamics decompose into two phases: the learning rate warmup
phase, where the test loss drops, then the learning rate decay phase, where the test loss increases
again. This could lead one to think that the maximal learning rate is too high, and the dip could be
avoided by choosing a lower learning rate. Yet this is not the case, as shown in Fig. 6. Reducing the
maximal learning rate indeed reduces the dip, but it also slows down the increase in the second phase
of learning. This confirms that the model needs to “unlearn” the right amount to find better solutions.

D CHANGING THE TEST RESOLUTION

One advantage of the GPSA layers introduced by d’Ascoli et al. (2021) is how easily they adapt to
different image resolutions. Indeed, the positional embeddings they use are fixed rather than learnt.
They simply consist in 3 values for each pair of pixels: their euclidean distance k�k, as well as their
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Figure 6: The larger the learning rate, the lower the test accuracy dips, but the faster it climbs

back up. We show the dynamics of the ResNet50, fine-tuned for 50 epochs at resolution 224, for
three different values of the maximal learning rate.

Figure 7: Performance at different test-time resolutions, for the finetuned models with and

without SA. The ResNet50-RS and ResNet101-RS models are finetuned at resolution 224, and all
other models are finetuned at resolution 320.

coordinate distance �1, �2 (see Eq. 4). Our implementation automatically adjusts these embeddings
to the input image, allowing us to change the test resolution seamlessly.

In Fig. 7, we show how the top-1 accuracies of our T-ResNet-RS models compares to those of
the ResNet-RS models finetuned at same resolution but without SA. At test resolution 416, our T-
ResNetRS-350 reaches an impressive top-1 accuracy of 84.9%, beyond those of the best EfficientNets
and BotNets Srinivas et al. (2021).

E CHANGING THE NUMBER OF EPOCHS

In Tab. 4, we show how the top-1 accuracy of the T-ResNet-RS model changes with the number of
fine-tuning epochs. As expected, performance increases significantly as we fine-tune for longer, yet
we chose to set a maximum of 50 fine-tuning epochs to keep the computational cost of fine-tuning
well below that of the original training.

F CHANGING THE ARCHITECTURE

Our framework, which builds on the timm package, makes changing the original CNN architecture
very easy. We applied our fine-tuning procedure to the ResNet-D models He et al. (2019) with the
exact same hyperparameters, and observed substantial performance gains, similar to the ones obtained
for ResNet-RS, see Tab. 5. This suggests the wide applicability of our method.
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Model Epochs Top-1 acc

ResNet50-RS 0 79.91
T-ResNet50-RS 10 80.11
T-ResNet50-RS 20 80.51
T-ResNet50-RS 50 81.02

ResNet101-RS 0 81.70
T-ResNet101-RS 10 81.54
T-ResNet101-RS 20 81.90
T-ResNet101-RS 50 82.39

Table 4: Longer fine-tuning increases final performance. We report the top-1 accuracies of our
models on ImageNet-1k at resolution 224.

Model Original res. Original acc. Fine-tune res. Fine-tune acc. Gain

T-ResNet50-D 224 80.6 320 81.6 +1.0
T-ResNet101-D 320 82.3 384 83.1 +0.8
T-ResNet152-D 320 83.1 384 83.8 +0.7
T-ResNet200-D 320 83.2 384 83.9 +0.7

T-ResNet50-RS 160 78.8 224 81.0 +2.8
T-ResNet101-RS 192 81.2 224 82.4 +1.2
T-ResNet152-RS 256 83.0 320 83.7 +0.7
T-ResNet200-RS 256 83.4 320 84.0 +0.6

Table 5: Comparing the performance gains of the ResNet-RS and ResNet-D architectures. Top-
1 accuracy is measured on ImageNet-1k validation set. The pre-trained models are all taken from the
timm library Wightman (2019).
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G MORE ATTENTION MAPS

(a) Attention maps

(b) Attention maps

Figure 8: GPSA layers combine local and global attention in a complementary way. We depicted
the attention maps of the four GPSA layers of the T-ResNet270-RS, obtained by feeding the image
on the left through the convolutional backbone, then selecting a query pixel in the center of the image
(red box). For each head h, we indicate the value of the gating parameter �(�h) in red (see Eq. 7).
(�(�h) = 0).
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