Figure 5: Above (https://en.wikipedia.org/wiki/Coffer) we see an example of a coffer in
building architecture, which is a series of (square) sunken panels.

Table 2: Public dataset characteristics, where /N denotes dataset size and p is the dimensionality. For
the last two text datasets p is based on our glove embedding.

| Dataset | Modality | N | P | # of Classes |

Credit Card | Tabular 30K 24 2

Magic Tabular | 19020 11 2
Waveform Tabular 5K 40 3
CIFAR-10 Image 60K 32 x 32 10
Sentiment Text 50K 12.5K 2

Quora Text 99933 4K 2
ImageNet Image 14M | 224 x 224 1000

A (Additional) Real Data Details

Table 2 shows the real dataset characteristics. For the Sentiment dataset each word had a 50
dimensional embedding where the (max) sentence length was set to 250 making the dimensionality
of a particular input to be 12,500. For Quora, each word had a 20 dimensional embedding and the
(max) sentence length was set to 200 making the dimensionality of a particular input to be 4,000.

The top three attributions for Waveform were X7, X11 and X33. For Quora they were “some”,
“people” and “best”. Interestingly, the least important words in Quora were inquisitive verbs such as
“Why”, “What”, “How”, “Can”, “If” and “Which”. This is understandable as those are present in
(almost) every question (or input) and are thus not helpful in distinguishing insincere questions from
actual ones.

B MLP vs CoFrNet-F on Synthetic Functions

We now compare the performance of MLPs to CoFrNet-F on well known synthetic functions given in
Table 3. We consider single ladder CoFrNet-F, whose depth we set to be equal to the degree of the
function if it is a polynomial, else we set it to six. For a fair comparison we also set the depth of the
MLP to be the same as our architecture. The width for the MLP is then set so that the number of
parameters in it are as similar to ours as possible. To do this we state the following simple formulas
that connect depth, width and number of parameters.

If p is the dimensionality of the input, ¢ the dimensionality of the output, d the depth and L the width
(i.e. number of hidden nodes for MLP or number of ladders for CoFrNet) then,
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Table 3: Below we see the (un-normalized) functional form of 10 different functions that we perform
(synthetic) experiments on [50].

Function Formula
Beale (1.5 —x+2y)? + (2.25 — . + 29°%)? + (2.625 — = + xy°)?
. 1+ (z+y+1)*(19 — 14z + 32 — 14y + 6zy + 3y?)) ¥
Goldstein-Price ((30 +((2:c ! 3y)2)(£8 390+ 1202 4 48y — 360y 4 372,)2))
Booth (+2y—7)°+ 2z +y—5)*
. . V2 +y? 0.1
Cross In Tray —.0001(|sin(x) sin(y) exp(|100 — ¥——)] + 1)
Three Hump Camel 2x2 — 1.052* + % + 2y + 9>
Himmelblau (2 +y—11)% + (z +y*> — 7)*
Bukin N6 1004/]y — 0122 + .01]z + 10]
Matya’s 26(x” + y?) — 48zy
Levi N13 sin”(37x) + (z — 1)2(1 +sin®(37y) + (y — 1)2(1 + sin*(27y))
Rosenbrock (1—2)?+100(y — 2?)?

Table 4: Below we see the mean absolute percentage error (MAPE), where the percentage is with
respect to the max — min range of function values amongst the sampled examples, of (single ladder)
CoFrNet-F and MLP with same depth and with similar number of parameters on the 10 well known
synthetic functions. Best results are bolded.

| Function | CoFrNet-F [ MLP |

Beale 16.512 19.480
Goldstein—Price 12.045 20.966
Booth 11.885 21.932

Cross In Tray 9.926 5.591
Three Hump Camel 36.250 37.315
Himmelblau 25.545 34.420
Bukin N6 20.073 40.795
Matya’s 7.311 15.525

Levi N13 24.873 28.751
Rosenbrock 13.080 44.520

CoFrNet-F: # of Parameters = pL(d — 1) + Lg, MLP: # of Parameters = pL + (d — 2)L?* + Lgq

We see in Table 4, that we outperform MLP in majority of the cases showcasing the power of our
architecture.

C Proof of Proposition 1

Proof. The proposition follows from the chain rule and Lemma 2 below:

d d
afxw Z 0 Kiii(ag,...,a aak Z 0 Kaii1(ag,...,aq)

8:1:J Oar Kgylai,...,aq) 8:1:J 8ak Kq(a,...,aq)

Wik -

Lemma 2. We have

in-‘rl(a/Oa"wad) (_1)k (Kd—k(ak+l;‘-~aad)>2
8ak Kd(al,...,ad) Kd(al,...,ad) '

Proof. To compute the partial derivative of the ratio of continuants above, we first determine the
partial derivative of a single continuant Ky (a1, ..., a;) with respect to a;, { = 1, ..., k. We use the
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representation of K, as the determinant of the following tridiagonal matrix:

al 1
-1 ag
Ki(ay,...,a;) = det (11)
1
-1 ag
The partial derivatives of a determinant with respect to the matrix entries are given by the cofactor
matrix: 9 det A
e
aTij = co(A)i,

where co(4);; = (—1)""7 M;; and M;; is the (i, j)-minor of A. In the present case, with A as the
matrix in (11), we require partial derivatives with respect to the diagonal entries. Hence

8Kk(a’17 s 7a/€)

=M.
D, u
In deleting the /th row and column from A to compute M;;, we obtain a block-diagonal matrix where
the two blocks are tridiagonal and correspond to ay,...,a;—1 and a;41,...,ax. Applying (11) to
these blocks thus yields
0Ki(ay,...,a
% :Kl_l(al,...,al_l)Kk_l(al+1,...,ak). (12)

Returning to the ratio of continuants in the lemma, we use the quotient rule for differentiation and
(12) to obtain

9 Kayi(ao, .. -, aq) 0Kgi1(ao, ..., aq)

1

= K

da, Ka(ax,...,aq) Kq(ay,...,aq)? ( day, ala1, -, aa)
8Kd(a1, ey ad)
-K A A i 2
a+1(ag; - -+, aq) Dar
Kd_k(ak+17 R ad)

= Kd(a17---7ad)2 (Kk(a07~-~,ak—1)Kd(a1,..,7ad)

—Kayi(ao, ... aq)Kp_1(ar,...,ax_1)). (13)

We focus on the quantity
Kk(ao, ey ak_l)Kd(al, . 7ad) — Kk_l(al, ey ak_l)Kd+1(a0, . 7ad) (14)
in (13). For k = 0 (and taking K _; = 0), this reduces to K4(ay, ..., aq). Equation (13) then gives

in+1(a0,...7ad) _ (Kd(al,...7ad)>2 -1
dag Ky(ay,...,aq) Kylay,...,aq) ’

in agreement with the fact that ay appears only as the leading term in (3). For k£ = 1, (14) becomes

aoKd(al, N 7ad) — Kd-',—l (ao, N ,ad) = —Kd_l(ag, N ,ad)

using (5), and hence

inH(ao,...,ad) _ (Kd_l(ag,...7ad)>2
8al Kd(ala"'aad) Kd(alv"'vad)

We generalize from the cases £ = 0 and k = 1 with the following lemma.

Lemma 3. The following identity holds:

Kk(ao, ooy ak_l)Kd(al, [N ,ad) — Kk_l(al, ooy ak_l)Kd+1(ao, N 7Cld)

= (—1)de_k(ak+1, . 7(J,d).

Combining (13) and Lemma 3 completes the proof. O
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Proof of Lemma 3. We prove the lemma by induction. The base cases £ = 0 and £ = 1 were shown

above and hold moreover for any depth d and any sequence ay, . . . , aq. Assume then that the lemma
is true for some k, any d, and any ao, .. ., aq. For k + 1, we use recursion (5) to obtain
Kk+1(a0, ey ak)Kd(al, e ,ad) - Kk(al, ey ak)Kd+1(ao, ey ad)

= (aoKk(al, coya) + Kg—1(ag, .. .,ak))Kd(al, cee,0q)
— Kk(al, ce ,ak)(aoKd(al, .. .,ad) + Kd_l(ag, ce ,ad))
= Kk_l(ag, e ,ak)Kd((zl, e ,ad) — Kk(al, e ,ak)Kd_l(aQ, .o .,ad).

We then recognize the last line as an instance of the identity for k, depth d — 1, and sequence
ai, .. .,aq. Applying the inductive assumption,

Kii1(ag, ... ar)Kalay,...,aq) — Ki(ay,...,ar)Kar1(ag, - .., aq)
= (- Ky 1_p(artas .., aq)
= (~1)"" Ky ey (@t 1y - - - @),
as required. ]
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Figure 6: Above we see 24 randomly chosen CIFARI10 test images (in grey scale) and to the
immediate right of each their corresponding (normalized) attributions overlayed as a colormap over
each of them using the IC strategy. We see that in many cases meaningful aspects are highlighted as
important (blue color) in the respective images such as wings for airplanes, face and body parts for
animals and frontal frame for trucks.
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Figure 7: Above we see plots of the functions that represent the three most important variables for
the Waveform Dataset: X7, X11, and X33.
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Figure 8: Above we see plots of the functions that represent the three most important variables for
the Credit Card Dataset: Amount of Bill Statement in April 2005, Repayment Status in September
2005 and Amount of Bill Statement in September 2005.
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Figure 9: Above we see plots of the functions that represent the three most important variables for
the MAGIC Telescope Dataset: FLength, FM3Long and FSize.



