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Supplementary Material
A OPTIMIZATION DETAILS AND HYPERPARAMETERS

Proximal policy optimisation (PPO) with the generalised advantage estimator (GAE)
(Schulman et al., 2017; 2016) was used in our experiments. In comparison experiments, identical
hyperparameters were used, except for the reward scaling. The network architecture is a fully con-
nected architecture with two hidden layers for both the policy network πθ and the value prediction
network Vφ (Figure S1). Networks have 256 and 64 units in hidden layers with hyperbolic activation
units (tanh). All weight parameters are initialised by orthogonal initialisation (Saxe et al., 2014),
and biases are initialized by zero. A beta distribution Beta(αθ,βθ) is employed as the output of
the policy network (Chou et al., 2017; Hsu et al., 2020). αθ(x) and βθ(x) are the branched outputs
of the policy network with an observation x after the second hidden layer. Following Chou et al.
(2017), we passed the activation of the final layers y to log(1 + exp(y)) + 1 in order to make the
beta distribution unimodal (αθ > 1 and βθ > 1). Because the output of the beta policy is restricted
in the d-dimensional space [0, 1]d, outputs are scaled into [−1, 1]d as actions that is used in the en-
vironment. The dimensions of output d are eight in the TRP environment and nine in the thermal
regulation environment. The latter includes a one-dimensional evaporative action in addition to the
eight-dimensional motor control of the quadruped robot.

Figure S1: The architecture of the neural network used in our experiments. The agent’s observations
are composed of an exteroception xe (the number of sensor dimensions is 40 for the TRP and 20
for the temperature control experiment), a 27-dimensional proprioception xp and a two-dimensional
interoception xi (temperature and energy in the temperature control experiment).

The objective function to be maximized consists of four components:

J(θ,φ) = Êπold

[
LCLIP (θ)− c1L

V F (φ) + c2S(πθ)− c3D̃(πold||πθ)
]
, (7)

where θ is the policy parameter, and φ is the value prediction parameter. We used the same hy-
perparameters, c1 = 0.5, c2 = 0.001, and c3 = 0.001, throughout the experiments. The detailed
definitions of each component are as follows.

LCLIP = min

(
πθ(u|x)
πold(u|x)

Âπold , clip

(
πθ(u|x)
πold(u|x)

, 1− ε, 1 + ε

)
Âπold

)
, (8)

LV F = (Vtarget − Vφ(x))
2, (9)

S(πθ) = H(πθ(·|x)), (10)

D̃(πold||πθ) = log
πold(u|x)
πθ(u|x)

, (11)

1



Published as a workshop paper at Deep RL Workshop (NeurIPS 2021)

where LCLIP (θ) is the surrogate loss of PPO for the policy improvement and LV F (φ) is the value-
prediction loss. S(πθ) is the entropy bonus to enhance the exploration, where H(πθ) is the entropy
of the action given an observation. D̃(πold||πθ) is the approximated Kullback-Leibler divergence
penalty between the current and the previous policy πold, which is known to stabilise the optimisa-
tion (Hsu et al., 2020). The expectation operators in the above components were approximated by
the stochastic gradient descent using minibatches.

We note that in optimisations, except for in the cart-pole setting, we did not provide the terminal
(‘done’) signals to the agent and then reset the environment. This is because the terminal state value
cannot be trivially defined in homeostatic reward definitions. The exception is the cart-pole setting,
in which the terminal state values can be exactly introduced as zero.

We used the Adam optimizer with epsilon parameter 10−5 for optimisation with a learning rate that
started from 3 × 10−4 and gradually decreased to 10−5 along with 500 training iterations. 3 × 105

training batch data were collected using ten worker threads in parallel, and a mini-batch size of
5×104 was used for the stochastic gradient descent. A summary of the hyperparameters is provided
in Table S1. The algorithm was implemented on our customized version of the PFRL, a Pytorch-
based deep RL package (Fujita et al., 2021).

Table S1: PPO hyperparameters used for the optimization

Hyperparameter Value
Iterations 500
Batch size 3× 105

Minibatch size 5× 104

SGD update epochs 30
learning rate (initial) 3× 10−4

learning rate (final) 10−5

Adam epsilon 10−5

Maximum gradient norm 0.5
discount factor (γ) 0.99
GAE lambda (λ) 0.95
Clipping parameter (ε) 0.3
Value loss clipping parameter 10
Value loss coefficient (c1) 0.5
Entropy coefficient (c2) 10−3

KL coefficient (c3) 10−3

Number of sampler threads 10

B PARAMETERS OF REWARD SCALING AND BIAS

Table S2: Reward Scaling and Bias Parameters

Conditions β1 b

Homeostatic-shaped (rhomeo = β1(D(xi)−D(xi′))) 100 -
Homeostatic (rhomeo = −β1D(xi)) 0.1 -
Homeostatic-biased (rhomeo = −β1D(xi) + b) 1 0.1
Cart-Pole (rhomeo = −β1 if terminal, otherwise 0) 100 -

C ADDITIONAL DETAILS OF THE THERMAL REGULATION ENVIRONMENT

Our thermodynamic model of the agent is based on a model of the body temperature from a lizard
(Porter et al., 1973; Fei et al., 2012). To incorporate the heat generated from the motor, we adopted
a simple quadratic relationship with the motor output and the heat generation inspired by research
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on the electric motor (Venkataraman et al., 2005). Our model of the core body temperature τ is
described as:

C
dτ

dt
= δQ(τ, u, uev), (12)

where τ is the body core temperature of the animal and C = CaM is the heat capacity of the body.
δQ is the amount of heat that is added to the body of the agent. u is the eight-dimensional motor
output, and uev ∈ (−1, 1) is a one-dimensional ‘evaporative’ action that controls the heat dissipation
rate. An identical step size with the decision step (δt = 0.05) was used in the simulation. δQ is
composed of six components that are affected by environmental conditions and motor controls.

δQ(τ, u, uev) = δQsolar + δQconv + δQlongwave + δQcond + δQm − δQev (13)

Individual components are described as follows:

δQsolar = αLApQsolar, (14)
δQconv = hLAair (τair − τ) , (15)

δQlongwave = εskinAdownσSB(τ
4
earth − τ4) + εskinAupσSB(τ

4
air − τ4), (16)

δQcond =
AcontactKl (τearth − τ)

∆/2
, (17)

δQm = ku#u, (18)

δQev = 0.5(umax
ev − umin

ev ) (uev + 1) + umin
ev . (19)

Table S3 shows the parameters of the model. Values of the parameters are almost entirely adopted
from the research that created the original model (Fei et al., 2012).

Table S3: Parameters of the Thermodynamics Model

Parameter Value
Agent mass (M ) 0.19
Agent heat capacity (Ca) 3762
Solar radiation (Qsolar) 300
Skin absorbance (αL) 0.936
Agent thickness (∆) 0.015
Thermal conductivity (Kl) 0.502
Convection coefficient (hL) 10.45
Agent shape coefficient (a) 0.0314
Agent area (AL) πaM2/3

Projected agent area (Ap) 0.4AL

Contacting area with the earth (Adown) 0.3AL

Areas of skin facing upward (Aup) 0.6AL

Skin area that is exposed in the air (Aair) 0.9AL

Area agent contacts with the ground (Acontact) 0.1AL

Emissivity of agent’s skin (εskin) 0.95
Stefan-Boltzmann constant (σSB) 5.67× 10−8

Land temperature (τearth) 303
Air temperature (τair) 298
Maximum heat dissipation action (umax

ev ) 0.3
Minimum heat dissipation action (umin

ev ) 0.272M
Motor-heat coefficient (k) 5

D HOMEOSTATIC REINFORCEMENT LEARNING AS AN UPPER BOUND
MINIMIZATION OF THE DIVERGENCE MINIMIZATION

We introduce the notation of the T -step sequence of observations x̄ ! x1x2 . . . xT . We assume the
target distribution to be P ∗(x̄) ! ∏T

t=1 P
∗(xt) and the actual distribution realized by an agent with
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strategy π to be Pπ(x̄). The KL divergence between P ∗ and Pπ is transformed as
1

T
DKL(Pπ||P ∗) =

1

T

∑

x̄

Pπ(x̄) log
Pπ(x̄)

P ∗(x̄)
(20)

=
1

T

∑

x̄

Pπ(x̄) [logPπ(x̄)− logP ∗(x̄)] (21)

= −Jh − 1

T
S(π) (22)

≤ −Jh (23)

where Jh = 1
T

∑
x̄ Pπ(x̄) [logP ∗(x̄)] and S(π) is the entropy of the trajectory

−
∑

x̄ Pπ(x̄) logPπ(x̄). And

Jh =
1

T

∑

x̄

Pπ(x̄) [logP
∗(x̄)] (24)

=
∑

x̄

Pπ(x̄)

[
1

T

T∑

t=0

logP ∗(xt)

]
. (25)

This equality suggests that the maximization of the homeostatic objective through RL corresponds to
the minimization of the KL divergence DKL(Pπ||P ∗) from the upper bound. The distribution match-
ing problem is more rigorously treated in recent imitation learning frameworks (Ghasemipour et al.,
2020; Ke et al., 2020), and further technical advances are discussed in this field.

D.1 TEMPORAL DIFFERENCE OF DRIVE FUNCTION AS A HOMEOSTATIC REWARD
ENHANCED BY POTENTIAL-BASED REWARD-SHAPING.

We will show that the homeostatic reward rhomeo = D(xt)−D(xt+1) in the Markov decision pro-
cess (MDP) can be derived from the reward r = logP ∗(x) with a multivariate Gaussian assumption
of P ∗(x), using reward transformations that preserve the optimal policy.

For simplicity, we introduce an equality π
=, which includes the scaling r

π
= αr, the baseline shift with

a constant r π
= r + b, and the potential-based reward shaping r(x, u, x′)

π
= r(x, u, x′) + γΦ(x′) −

Φ(x), where Φ(x) is the state-dependent potential function introduced by Ng et al. (1999).

Then, the reward based on the target distribution is transformed as
rt = logP ∗(xt) (26)

π
= logP ∗(xt) + γΦ(xt+1)− Φ(xt) (27)

We now introduce a potential function Φ(x) =
∑∞

k=0 γ
k logP ∗(x) = logP ∗(x)/(1 − γ). Subse-

quently, the reward is transformed as

rt
π
= logP ∗(xt) + γ

logP ∗(xt+1)

1− γ
− logP ∗(xt)

1− γ
(28)

π
= logP ∗(xt+1)− logP ∗(xt) (29)

Finally, we assume that logP ∗(x) ∝ −D(x). Therefore, we can directly derive

rt
π
= D(xt)−D(xt+1) (30)
= rhomeo (31)

In our main text, we assumed D(x) = ||xi − xi
∗||2. This corresponds to assuming that the target

distribution is a multivariate Gaussian with a diagonal covariance (P ∗(x) = N (xi|xi
∗,Σ), Σ = σ2I

where σ2 > 0 and I is the identity matrix).

Potential-based reward shaping can be regarded as the initialisation of the action value function
using the potential Φ (Wiewiora, 2003). Our assumption Φ(x) = logP ∗(x)/(1 − γ) may be a
crude assumption because it assumes that the agent stays in the same state for an indefinite period.
However, this shaping may provide a reasonable initialisation of the value function if the reward
function is known and is smooth, as in our homeostatic RL settings.
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E THE HOMEOSTATIC BEHAVIOR DOES NOT EMERGE FROM SIMPLE FOOD
COLLECTION REWARDS

The agents were trained in the TRP environment with the same settings as in the other experiments.
In this condition, the agent receives a reward of +1 for taking either red or blue food, and 0 oth-
erwise. In this experiment, the agent received terminal information in the same manner as in the
cart-pole setting. The figure shows the average (thick line) and individual results of the five runs
(thin lines) with different random seeds.

Figure S2: Performances of the optimization process with the food-collection reward condition.

F THE DETAILS OF THE BEHAVIOURAL PREFERENCE EXPERIMENT AND
FURTHER DISCUSSION

(a) (b) (c)

(d) (e) (f)

Figure S3: Behavioural experiment of the agent trained with (blue: 6, red: 4)-TRP+homeostatic-
shaped setting. a) The overview of the initial condition of the experiment. The positions of red and
blue ball clusters are randomly flipped between trials. b) Food collection tendency of the agent,
depending on the internal state of the agent. c) Preference of the food collection in the experiment.
d-e) Tendencies of the blue and red resource capture. f) Histogram of the internal nutrient states
sampled in the TRP for 50,000 steps. Panel b to e are averaged results over five individually trained
agents.
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In this experiment, we manually clamped the agent’s nutritional state at specific levels and observed
the agent’s choice of food resources afterwards. We found that agents were still active in this con-
dition, and they changed their behaviours depending on their interoception. This experiment did not
include the training process, and all the agent parameters were fixed.

The settings are shown in Figure S3a2. An agent was located in the centre of the field, and six
red and blue resources were randomly scattered around the agent at a fixed distance. We randomly
located food resources to remove the locational bias in each trial because we observed that the agent
used in this experiment tended to move toward a specific direction in the preliminary experiment. A
single trial terminates if the agent consumes any one of the resources, or when 300 decision steps are
passed. During the trial, the interoception was clamped to the value of interest. One hundred trials,
N = 100, were conducted for each condition. Blue and red food consumption instances, Nblue and
Nred, were counted and divided by the total number of trials N .

Figure S3 represents the average of the results from the five trained agents. Panel (b) shows the
distribution where the agent captured any one of the red or blue resources (Nblue +Nred)/N . This
panel shows that the agent’s preference of food resources was dependent on the interoception, which
is obtained by (Nred −Nblue)/N . Panel (d) and (e) are the food capturing rates of individual food
resources Nblue/N and Nred/N .

As demonstrated in panels (b) and (c), we found that the tendency of the food-capturing behaviour
decreased if the distance from the setpoint was large. We suspect that this performance degradation
is due to the fact that the agent had a very biased experience after the learning process has pro-
gressed. Panel (f) is the histogram of the internal state during 50,000 steps of the agent sampled
in the original TRP environment. We can confirm that both nutrient states are approximately in
the range of [−0.25, 0.25]; agents might only be optimised around this distribution and thus they
cannot generalise this knowledge beyond the experiences demonstrated here. Agents should be able
to adapt their survival strategies appropriately in situations where they have little or no experience,
which may be improved by using model-based learning with a world model (Ha & Schmidhuber,
2018; Hafner et al., 2020a) that includes the agent’s physiological states.

G ADDITIONAL BEHAVIOURAL DATA

Figure S4 shows the behavioural preference for food capturing. The procedure is the same as that
described in section F in the main text. In this experiment, the agent’s internal state was clamped at
values from −1 to 1 for each nutrient. We can observe that the agent stops the foraging behaviour if
the nutrient deficits become large.

Figure S4: Food capturing preference dependent on the internal nutrient state. The result was av-
eraged over five individually trained agents. (left) Food capturing rate. (right) Food preference
depending on the agent’s internal state.

2Panels (a-c) are identical to Figure 4 in the main text.
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G.1 BEHAVIOUR PREFERENCES OF THE AGENT IN (BLUE: 5, RED:5)-TRP ENVIRONMENT

Figure S5 shows the results of the behaviour preference experiment with an agent trained in a (blue:
5, red: 5)-TRP environment. The optimisation process and the process for behavioural preference
are the same as in the (blue: 6, red: 4)-TRP environment in Section F.

Figure S5: Food capturing preference of the agent trained in (blue: 5, red:5)-TRP. The result was
averaged over five individually trained agents.

H PERTURBATION EXPERIMENT OF THE THERMAL REGULATION
ENVIRONMENT

Figure S6: Results of the temperature-perturbation experiment. The agent (trained under the
homeostatic-shaped condition) in environments (same seeds) receives the body temperature per-
turbation (±0.3) at time step 2,500 (represented by a star and grey lines). The red line represents
the positive perturbation and the blue line represents the negative counterpart (motor activities and
evaporative actions are averaged using the last 100 steps for clarity). We can observe that the agent
successfully returns to the setpoint (τ = 0). In addition, following the body temperature change, we
can observe that the agent regulates the food intake and motor activities.
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I DETAILS OF THE STATISTICAL TEST OF BODY TEMPERATURE DEPENDENT
MOTOR ACTIVITIES

We collected ten independent trajectories of motor activities for each of the three experimental set-
tings. Each independent trajectory includes 5,000 steps. We clamped the thermal observation as 0.2
for the ‘over-heat’ setting and -0.2 for the ‘freezing’ setting. We clamped the thermal observation in
the ‘normal” setting. We used the parameter of the agent optimised through 500 PPO iterations with
a homeostatic-shaped condition.

A total of 5,000 steps were averaged for each experimental setting. We confirmed the normal-
ity of the samples using the Shapiro-Wilk test. Because all of the experiment settings (‘normal’,
‘over-heated’, ‘freezing’) were not statistically different from the normal distribution (p > 0.2),
we assumed the normality of samples in each category. We also tested for equal variance between
‘normal’/‘overheated’ and ‘normal’/‘freezing’ using the F-test. Because the statistical significance
between ‘normal’ and ‘freezing’ was only slightly larger than 5% (p ≈ 0.06), we assumed the vari-
ances were not equal and used Welch’s t-test to evaluate the statistical significance between ‘nor-
mal’/‘overheated’ and ‘normal’/‘freezing’ conditions. We also evaluated effect sizes (Cohen’s d)
of the ‘normal’/‘over-heated’ and ‘normal’/‘freezing’ conditions, and these were found to be larger
than nine.
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