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1 PROOFS

Proposition 3.2. Let G be a causal graph such that (i) ∃C ∈ paG(Y ) with C /∈ I; or (ii) ∃C ∈ spG(Y ). If ∃X ∈ anG(Y )∩I
such that {⟨X,C⟩} is an MPS, then there exists at least one SCM compatible with G for which minS∈Σhard,πS∈ΠS µY

πS
>

minS∈Σ,πS∈ΠS µY
πS

.

Proof. Case (i): Assume that there exists C ∈ paG(Y ) with C /∈ I and X ∈ anG(Y ) ∩ I such that {⟨X,C⟩} is an MPS.
As X ∈ anG(Y ), there exists a directed path from X to Y , say X → Xi → Xi−1 → · · · → X1 → Y without loss of
generality. Let M = ⟨V ,U ,F , p(U)⟩ be an SCM such that

C = UC , UC ∼ N (0, 1),

Xi = X, Xi−1 = Xi, . . . , X1 = X2,

Y = X1CUY , UY ∼ N (1, 1).

M is compatible with G. In this SCM, any DMP πS with S ∈ Σhard would give µY
πS

= EπS [Y ] = 0. In contrast, a DMP
πS including the functional intervention πX|C(C) = −1/C would result in Y = −UY and therefore µY

πS
= −1, giving

minS∈Σhard,πS∈ΠS µY
πS

= 0 > −1 ≥ minS∈Σ,πS∈ΠS µY
πS

.

Case (ii): Assume that there exists C ∈ spG(Y ) and X ∈ anG(Y ) ∩ I such that {⟨X,C⟩} is an MPS. As X ∈ anG(Y ),
there exists a directed path from X to Y , say X → Xi → Xi−1 → · · · → X1 → Y without loss of generality. Let
M = ⟨V ,U ,F , p(U)⟩ be an SCM such that

C = UCY , UCY ∼ N (0, 1),

Xi = X, Xi−1 = Xi, . . . , X1 = X2,

Y = X1UCY UY , UY ∼ N (1, 1).

M is compatible with G. In this SCM, any DMP πS with S ∈ Σhard would give µY
πS

= EπS [Y ] = 0. In contrast, a DMP
πS containing the functional intervention πX|C(C) = −1/C, would result in Y = −UY and therefore µY

πS
= −1, giving

minS∈Σhard,πS∈ΠS µY
πS

= 0 > −1 ≥ minS∈Σ,πS∈ΠS µY
πS

.

In the following proposition we use the notation GX to indicate the modification of G obtained by removing the outgoing
edges from X .

Proposition 3.3. In a casual graph G, if paG(Y ) ⊆ I and spG(Y ) = ∅ there exists a DMP compatible with MPS
S = {⟨X, ∅⟩ : X ∈ paG(Y )} that solves the f CGO problem.
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Proof. Consider MPS S ∈ Σ for G and DMP πS compatible with S. Let Z = paG(Y )\((XS ∪ CS) ∩ paG(Y )). As
paG(Y ) ⊆ I , we can define the MPS Spa = {⟨X, ∅⟩ : ∀X ∈ paG(Y )}. Denote by pπ∗

Spa
(Y ) the distribution of Y induced

by an optimal DMP π∗
Spa

compatible with Spa, i.e. such that
∫
RY

Y pπ∗
Spa

(Y )dY ≤
∫
RY

Y pπSpa
(Y )dY , for every DMP πSpa

compatible with Spa, and let R = RY ×RXS∪CS ×RZ . Exploiting the rules of do-calculus [Pearl, 2000] and σ-calculus
[Correa and Bareinboim, 2020a] we obtain

µY
πS

=

∫
R
Y pπS (Y |XS ∪CS ∪Z) pπS (XS ∪CS ∪Z)dXS ∪CSdZdY︸ ︷︷ ︸

A

=

∫
R
Y pπS (Y | paG(Y ))A (rule 1 σ-calculus) Y |= GS (XS ∪CS ∪Z)\paG(Y ) | paG(Y )

=

∫
R
Y p(Y | paG(Y ))A (rule 2 σ-calculus) Y |= GS,XS ,GXS

XS | (paG(Y )\(paG(Y ) ∩XS))

=

∫
R
Y p(Y | do(paG(Y )))A (rule 2 do-calculus) Y |= GpaG(Y )

paG(Y )

=

∫
R
Y pπSpa

(Y )A ≥
∫
R
Y pπ∗

Spa
(Y )A = µY

π∗
Spa

,

where |= GS,XS ,GXS
denotes d-separation in both GS,XS and GXS .

Proposition 3.4. If S∗, π∗
S∗ = argminS∈Σ,πS∈ΠS

µY
πS

, then S∗, π∗
S∗ = argminS∈ΣC ,πS∈ΠS

µY
πS ,C=c ∀C ⊂ V \Y such

that C ∩deG(I) = ∅ and ∀c ∈ RC with ΣC = {S ∈ Σ : XS = XS∗ and {⟨X,CS∗

X ∪CS
X ∪C⟩ : X ∈ XS∗} is an MPS}.

Proof. Assume, by contradiction, that (S∗, π∗
S∗), with π∗

S∗ =
{
πS∗

X|CS∗
X

}
X∈CS∗

X

, is a solution to the fCGO problem but there

exist C ⊂ V \Y and a value c ∈ RC such that the tuple (S1, πS1) with S1 ∈ ΣC and πS1 =
{
πS1

X|CS1
X

}
X∈CS1

X

∈ ΠS

satisfies µY
πS1 ,C=c < µY

π∗
S∗ ,C=c. As S1 ∈ ΣC , we can construct MPS S2 = {⟨X,CS∗

X ∪CS1

X ∪C⟩ : X ∈ XS∗} and the

compatible πS2 =
{
πS2

X|CS∗
X ∪CS1

X ∪C

}
X∈XS∗

with

πS2

X|CS∗
X ∪CS1

X ∪C
=

 πS1

X|CS1
X

if C ∈ [c− δ, c+ δ]

πS∗

X|CS∗
X

otherwise,

for a small enough δ > 0. As C ∩ deG(I) = ∅, variables in C are not affected by interventions on variables in XS∗ , and
therefore pπ∗

S∗ (C) = pπS1 (C) = p(C). Thus we obtain:

µY
πS2

=

∫
RC

µY
πS2 ,C=c′ pπS2 (C = c′)dc′

=

∫
[c−δ,c+δ]

µY
πS2 ,C=c′ pπS2 (C = c′)dc′ +

∫
RC\[c−δ,c+δ]

µY
πS2 ,C=c′ pπS2 (C = c′)dc′

=

∫
[c−δ,c+δ]

µY
πS1 ,C=c′ pπS1 (C = c′)dc′ +

∫
RC\[c−δ,c+δ]

µY
π∗
S∗ ,C=c′ pπ∗

S∗ (C = c′)dc′

<

∫
[c−δ,c+δ]

µY
π∗
S∗ ,C=c′ pπ∗

S∗ (C = c′)dc′ +

∫
RC\[c−δ,c+δ]

µY
π∗
S∗ ,C=c′ pπ∗

S∗ (C = c′)dc′

= µY
π∗
S∗
,

with contradicts the assumption that (S∗, π∗
S∗) is a solution to the fCGO problem.

2 ALTERNATIVE KERNEL CONSTRUCTION

The kernel function κξ
S introduced in Section 4.2 sets the covariance between the elements in the vector πfunc associated to a

DMP πS to 0, thus restricting the type of functions that can be selected during optimization1.
1Notice that, for hard interventions, this corresponds to limiting the range of values that can be set when intervening.
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For instance, consider the graph on the right with S = {⟨X, (C1, C2)⟩, ⟨Z,C2⟩} and πS =
{πX|{C1,C2}, πZ|C2

}. The proposed kernel function would set Cov(πX|{C1,C2}, πZ|C2
) = 0.

While a study of the effect of choosing different covariance structures on the optimal target effect
goes beyond the scope of this paper, in this section we provide alternative kernel constructions
that relax this constraint.

Given a DMP πS , one can define the correlation between elements in πfunc by introducing a |CS |-dimensional vector ω of
parameters for each function πX|CX

in πfunc such that the j-th term ωj = 1 if the j-th term in CS is in CX and ωj = 0
otherwise. For instance, for πS = {πX|{C1,C2}, πZ|C2

} = πfunc, we have ω1 = ω2 = 1 for πX|{C1,C2} as both variables in
CS = {C1, C2} are in CX , while ω1 = 0 and ω2 = 1 for πZ|C2

as only C2 is in CZ .

We can then redefine κξ
S to be an RBF kernel on an input space given by product between the the context variables and

the ω parameters. Denote by ωi,ωj two possible values for the ω vector, for instance we could have ωi = [1, 1]⊤ and
ωj = [0, 1]⊤ in the example above; and by ci = [ci1, . . . , c

i
|CS |]

⊤ and cj = [cj1, . . . , c
j
|CS |]

⊤ two vector of values for

CS . We can define κξ
S : (RCS × Ω) × (RCS × Ω) → R|Sfunc|×|Sfunc| where Ω is the space of values for each vector

ω and κξ
S((c,ω)i, (c,ω)j) = κξ

S((c
i)⊤ωi, (cj)⊤ωj) = γ exp(−0.5/l2

∑|CS |
n=1 (c

i
nω

i
n − cjnω

j
n)

2) where ξ = {γ, l}. For
the example above, we can write κξ

S((c
i)⊤ωi, (cj)⊤ωj) = γ exp(−0.5/l2[(ci1ω

i
1 − cj1ω

j
1)

2 + (ci2ω
i
2 − cj2ω

j
2)

2]). When
γ ̸= 0, ωi = [1, 1]⊤ and ωj = [0, 1]⊤, this kernel would return a covariance between πX|C1,C2

and πZ|C2
equal to

κξ
S((c

i)⊤ωi, (cj)⊤ωj) = γ exp(−0.5/l2[(ci1)
2 + (ci2 − cj2)

2]). The covariance would thus depend on the context values in
the overlapping part of the context variables space and a correction term (ci1)

2. Instead of fixing the values in ω to either
zero or one based on the graph structure, one could think about optimizing the values that are different from zero so as to
achieve a higher flexibility in terms of allowed covariance while still imposing structure via the zero values.

As a more general kernel construction, given a DMP S, a vector of parameter values ωi and a vector of context values
ci = [ci1, . . . , c

i
|CS |]

⊤, one could define the augmented input vector ciaug = [(ci)⊤ωi, (ci)ωi, t]⊤ (and similarly for two
alternative vector of values cj and ωj) given by the concatenation of two |CS |-dimensional vector obtained by (ci)⊤ωi and
a task index t that gives the index of the function in πSfunc , similarly to what was introduced in Section 4.2.

For an augmented vector of hyper-parameters ξ = [γ, l, γ̃, l̃], one could then define the following kernel:

κξ
S(c

i
aug, c

j
aug) = It=t′γ

2 exp

−0.5

l2

|CS |∑
n=1

(ciaug,n − cjaug,n)
2

+ It̸=t′ γ̃
2 exp

−0.5

l̃2

2|CS |∑
n=|CS |+1

(ciaug,n − cjaug,n)
2


= It=t′γ

2 exp

−0.5

l2

|CS |∑
n=1

(cinωn − cjnω
′
n)

2

+ It ̸=t′ γ̃
2 exp

−0.5

l̃2

2|CS |∑
n=|CS |+1

(cinωn − cjnω
′
n)

2

 , (1)

where cin is the n-th term of the ci vector (similarly for cj and ωi), and It=t′ is an indicator function equal to one if
t = t′ and zero otherwise. The first term in Eq. (1) represents an RBF kernel capturing the covariance structure within the
t-th function in πfunc while the second term is again an RBF kernel that captures the covariance across functions in πfunc.
Differently from the kernel described above we now have two sets of hyper-parameters: γ, l for the first RBF kernel and γ̃, l̃
for the second. This gives higher flexibility in terms of the functional interventions we can learn and thus the target effect
values we can achieve. As in the previous kernel we can let the parameters in ω, as well as in ξ, change to capture different
level of correlations or set them equal to one and zero depending on the structure of the graph. In the latter case and for the
example introduced above, we would have ω1 = ω2 = 1 for πX|C1,C2

which would lead to a standard RBF kernel for the
first term in Eq. (1). We could then set γ̃ = 0 to have a zero covariance across functions or finally vary ω3 and ω4 for both
πX|C1,C2

and πZ|C2
to allow for increasing level of correlation.

3 CHAIN EXPERIMENTS

For the CHAIN experiments we use the following SCM:

X = UX , W = UW , Z = −0.5X + UZ , Y = −W − 3ZX + UY , with UX , UW , UZ , UY ∼ N (0, 1).

We set the range for hard interventions on both Z and W to [−1, 1]. The set of non-redundant MPSs is MΣ =
{{⟨Z, ∅⟩}, {⟨W, ∅⟩}, {⟨Z, ∅⟩, ⟨W, ∅⟩}, {⟨Z, {X}⟩}, {⟨Z, {X}⟩, ⟨W, ∅⟩}}.



We set GridSize = 10 and represent each functional intervention with Nα = Nβ = 10 samples for the context variables.
We sample the coefficients αi (for i = 1, . . . , Nα) and βj (for j = 1, . . . , Nβ) uniformly in the interval [−0.27, 0.27], in
order to keep the range of values obtained for the intervened variables following a functional intervention similar to the
ranges set for the hard interventions. For each S ∈ MΣ, we initialize the linear kernel κξ

S with ξ = 1. Exploration is hard to
achieve when the GP models for S including functional interventions are initialized with RBF Kθ

S and hyper-parameters
θ = (ℓ, σ2

f ) = (1, 1). We thus perform hyper-parameters search exploring continuous values σ2
f ∈ [1, 10000] and ℓ ∈ [1, 30],

which results in selecting σ2
f = 7000, and ℓ = 20 for both fCBO and BFO. For CBO and BO, which consider only hard

interventions and thus do not suffer from exploration issues, we initialize Kθ
S with θ = (1, 1). For MCBO we use the

default setting (Matérn 5/2 kernel), as it is not possible to tune the kernel and corresponding hyper-parameters. In order
to run MCBO with contextual interventions, we use the augmented SCM with action variables X = UX , W = UW +AW ,
Z = −0.5X + UZ +AZ , Y = −W − 3ZX + UY . In this setting, the average CPU execution time for a single fCBO run is
∼ 6 minutes, while for a single MCBO run is ∼ 14 minutes.

4 HEALTH EXPERIMENTS

For the HEALTH experiments, we use the SCM from Ferro et al. [2015]:

Age = UAge, CI = UCI, BMR = 1500 + 10× UBMR,

Height = 175 + 10× UHeight,

Weight =
BMR + 6.8× Age − 5× Height

13.7 + CI × 150/7716
,

BMI = Weight/(Height/100)2,
Aspirin = σ(−8 + 0.1× Age + 0.03× BMI),

Statin = σ(−13 + 0.1× Age + 0.2× BMI),

PSA = 6.8 + 0.04× Age − 0.15× BMI − 0.6× Statin + 0.55× Aspirin
+ σ(2.2− 0.05× Age + 0.01× BMI − 0.04× Statin + 0.02× Aspirin) + UPSA,

with UAge ∼ U(55, 75), UCI ∼ U(−100, 100), UBMR ∼ tN (−1, 2), UHeight ∼ tN (−0.5, 0.5), UPSA ∼ N (0, 0.4), where
U(·, ·) denotes a uniform distribution, tN (a, b) a standard Gaussian distribution truncated between a and b, and σ(·) the
sigmoidal transformation defined as σ(x) = 1

1+exp(−x) .

We set the ranges for hard interventions on Aspirin, Statin, and CI to [0.1, 1]. The set of non-redundant MPSs
is MΣ = {{⟨Aspirin, ∅⟩}, {⟨Statin, ∅⟩}, {⟨CI, ∅⟩}, {⟨Aspirin, ∅⟩, ⟨Statin, ∅⟩}, {⟨Aspirin, ∅⟩, ⟨CI, ∅⟩}, {⟨Statin, ∅⟩,
⟨CI, ∅⟩}, {⟨Aspirin, ∅⟩, ⟨Statin, ∅⟩, ⟨CI, ∅⟩}, {⟨Aspirin, {Age, BMI}⟩}, {⟨Statin, {Age, BMI}⟩}, {⟨Aspirin, {Age, BMI}⟩,
⟨Statin, {Age, BMI}⟩}, {⟨Aspirin, {Age, BMI}⟩, ⟨Statin, ∅⟩}, {⟨Aspirin, ∅⟩, ⟨Statin, {Age, BMI}⟩},{⟨Aspirin, {Age, BMI}⟩,
⟨CI, ∅⟩},{⟨Statin, {Age, BMI}⟩, ⟨CI, ∅⟩}, {⟨Aspirin, {Age, BMI}⟩, ⟨Statin, {Age, BMI}⟩, ⟨CI, ∅⟩}, {⟨Aspirin, ∅⟩,
⟨Statin, {Age, BMI}⟩, ⟨CI, ∅⟩}, {⟨Aspirin, {Age, BMI}⟩, ⟨Statin, ∅⟩, ⟨CI, ∅⟩}}.

We represent each functional intervention with Nα = Nβ = 10 samples for the context variables. We sample the coefficients
αi (for i = 1, . . . , Nα) and βj (for j = 1, . . . , Nβ) uniformly in the interval [0, 3.3], in order to keep the total cost of
functional interventions and hard interventions comparable. The RBF kernels Kθ

S and κξ
S are initialized with θ = (1, 1) and

ξ = (1, 1) for each S ∈ MΣ. In this setting, the average CPU execution time for a single fCBO run is ∼ 3 hours and 20
minutes, while for a single MCBO run is ∼ 10 hours.


	Proofs
	Alternative kernel construction
	Chain Experiments
	Health Experiments

