
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

Our primary experiments employ the following models: 1. For the Large Language Model planner,
we utilize GPT-3.5-turbo-0613. 2. In the case of the Video Language Model, we employ GIT (Wang
et al., 2022). However, since our main focus lies in long-horizon embodied planning rather than
visual-to-language generation, readers can also explore the latest and more robust visual language
model which may exhibit superior performance.

A.2 CLIPORT DATASET

As for the benchmark for evaluating our proposed method with the baselines, we use the following
datasets from Cliport (Shridhar et al., 2022).

1. Assembling Kits Task: Precisely place each specified shape in the specified hole following
the order prescribed in the language instruction generated by the LLM-based agent at each timestep.
This is one of the hardest tasks in the benchmark requiring precise placements of shapes of random-
ized colors and grounding spatial relationships. Each task instance contains 5 shapes and a kit with
randomized poses. Goal: assembling all the kits to the corresponding holes. Success Metric: The
pose of each shape matches the specified hole at the correct timestep. The final score is the total
number of shapes that were placed in the correct pose at the correct timestep, divided by the total
number of shapes in the scene (always 5).

2. Align Rope Task: Manipulate a deformable rope to connect its end-points between two corners
of a 3-sided square. There are four possible combinations for aligning the rope: “front left tip to
front right tip”. “front right tip to back right corner”, “front left tip to back left corner”, and “back
right corner to back left corner”. Here ‘front’ and ‘back’ refer to canonical positions on the 3-
sided square. The poses of both the rope and 3-sided square are randomized for each task instance.
Objects: All align-rope instances contain a rope with 20 articulated beads and a 3-sided square.
Success Metric: The poses of all beads match the line segments between the two correct sides.

3. Stack Block Pyramid. Task: Build a pyramid of colored blocks in a color sequence specified
through the step-by-step language instructions generated by the LLM-based agent. Each task con-
tains 6 blocks with randomized colors and 1 rectangular base, all initially placed at random poses.
Goal: stack a pyramid by 6 blocks and 1 rectangular base. Success Metric: The pose of each block
at the corresponding timestep matches the specified location. The final score is the total number of
blocks in the correct pose at the correct timestep, divided by the total number of blocks (always 6).

4. Towers of Hanoi. Task: Move the ring to the specified peg in the LLM-based agent-generated
language instruction at each timestep. The sequence of ring placements is always the same, i.e. the
perfect solution to three-ring Towers of Hanoi. This task can be solved without using colors by just
observing the ring sizes. However, it tests the agent’s ability to ignore irrelevant concepts to the task
(color in this case). The task involves precise pick and place actions for moving the rings from peg
to peg. Goal: Solve the tower of Hanoi via moving 3 rings (small, medium, and big) across 1 peg
base. Success Metric: The pose of each ring at the corresponding timestep matches the specified
peg location. The final score is the total number of correct ring placements, divided by the total steps
in the perfect solution (7 for three-ring Towers of Hanoi).

5. Put Blocks in Bowl. Task: Place all blocks of a specified color in a bowl of the specified color.
Each bowl fits just one block and all scenes contain enough bowls to achieve the goal. Each task
instance contains several distractor blocks and bowls with randomized colors. The solutions to this
task are multi-modal in that there could be several ways to place the blocks specified in the language
goal. This task does not require precise placements and mostly tests an agent’s ability to ground
color attributes. Goal: to place blocks with certain colors on the bowls with certain colors Success
Metric: All blocks of the specified color are within the bounds of a bowl of the specified color. The
final score is the total number of correct blocks in the correct bowls, divided by the total number of
relevant color blocks in the scene.

12

Under review as a conference paper at ICLR 2024

6. Packing Shapes. Task: Place a specified shape in the brown box. Each task instance contains
1 shape to be picked along with 4 distractor shapes. The shape colors are randomized but have no
relevance to the task. This task does not require precise placements and is mostly a test of the agent’s
semantic understanding of arbitrary shapes. Goal: To pack the required shapes to the brown box
Success Metric: The correct shape is inside the bounds of the brown box.

Task: Sweep the pile of blocks into the specified zone. Each scene contains two square zones: one
relevant to the task, another as a distractor. The pile and zones are placed at random poses on the
table.

5. Separating Piles. Task: Sweep the pile of blocks into the specified zone. Each scene contains
two square zones: one relevant to the task, another as a distractor. The pile and zones are placed at
random poses on the table. Objects: A pile of colored blocks and two squares. Success Metric:
All blocks are inside the bounds of the specified zone. The final score is the total number of blocks
inside the correct zone, divided by the total number of blocks in the scene.

A.3 LOW-LEVEL POLICY NETWORK

Code as Policies. The primitives listed below are used in Cap (Liang et al., 2022). Note that we also
used the same control and observation primitives without introducing new functions.

1 class LMP_wrapper():
2

3 def __init__(self, env, cfg, render=False):
4 self.env = env
5 self._cfg = cfg
6 self.object_names = list(self._cfg[’env’][’init_objs’])
7

8 self._min_xy = np.array(self._cfg[’env’][’coords’][’bottom_left’])
9 self._max_xy = np.array(self._cfg[’env’][’coords’][’top_right’])

10 self._range_xy = self._max_xy - self._min_xy
11

12 self._table_z = self._cfg[’env’][’coords’][’table_z’]
13 self.render = render
14

15 def is_obj_visible(self, obj_name):
16 return obj_name in self.object_names
17

18 def get_obj_names(self):
19 return self.object_names[::]
20

21 def denormalize_xy(self, pos_normalized):
22 return pos_normalized * self._range_xy + self._min_xy
23

24 def get_corner_positions(self):
25 unit_square = box(0, 0, 1, 1)
26 normalized_corners = np.array(list(unit_square.exterior.coords))[:4]
27 corners = np.array(([self.denormalize_xy(corner) for corner in

normalized_corners]))
28 return corners
29

30 def get_side_positions(self):
31 side_xs = np.array([0, 0.5, 0.5, 1])
32 side_ys = np.array([0.5, 0, 1, 0.5])
33 normalized_side_positions = np.c_[side_xs, side_ys]
34 side_positions = np.array(([self.denormalize_xy(corner) for corner

in normalized_side_positions]))
35 return side_positions
36

37 def get_obj_pos(self, obj_name):
38 # return the xy position of the object in robot base frame
39 return self.env.get_obj_pos(obj_name)[:2]
40

13

Under review as a conference paper at ICLR 2024

41 def get_obj_position_np(self, obj_name):
42 return self.get_pos(obj_name)
43

44 def get_bbox(self, obj_name):
45 # return the axis-aligned object bounding box in robot base frame

(not in pixels)
46 # the format is (min_x, min_y, max_x, max_y)
47 bbox = self.env.get_bounding_box(obj_name)
48 return bbox
49

50 def get_color(self, obj_name):
51 for color, rgb in COLORS.items():
52 if color in obj_name:
53 return rgb
54

55 def pick_place(self, pick_pos, place_pos):
56 pick_pos_xyz = np.r_[pick_pos, [self._table_z]]
57 place_pos_xyz = np.r_[place_pos, [self._table_z]]
58 pass
59

60 def put_first_on_second(self, arg1, arg2):
61 # put the object with obj_name on top of target
62 # target can either be another object name, or it can be an x-y

position in robot base frame
63 pick_pos = self.get_obj_pos(arg1) if isinstance(arg1, str) else arg1
64 place_pos = self.get_obj_pos(arg2) if isinstance(arg2, str) else arg2
65 self.env.step(action={’pick’: pick_pos, ’place’: place_pos})
66

67 def get_robot_pos(self):
68 # return robot end-effector xy position in robot base frame
69 return self.env.get_ee_pos()
70

71 def goto_pos(self, position_xy):
72 # move the robot end-effector to the desired xy position while

maintaining same z
73 ee_xyz = self.env.get_ee_pos()
74 position_xyz = np.concatenate([position_xy, ee_xyz[-1]])
75 while np.linalg.norm(position_xyz - ee_xyz) > 0.01:
76 self.env.movep(position_xyz)
77 self.env.step_sim_and_render()
78 ee_xyz = self.env.get_ee_pos()
79

80 def follow_traj(self, traj):
81 for pos in traj:
82 self.goto_pos(pos)
83

84 def get_corner_positions(self):
85 normalized_corners = np.array([
86 [0, 1],
87 [1, 1],
88 [0, 0],
89 [1, 0]
90])
91 return np.array(([self.denormalize_xy(corner) for corner in

normalized_corners]))
92

93 def get_side_positions(self):
94 normalized_sides = np.array([
95 [0.5, 1],
96 [1, 0.5],
97 [0.5, 0],
98 [0, 0.5]
99])

100 return np.array(([self.denormalize_xy(side) for side in
normalized_sides]))

14

Under review as a conference paper at ICLR 2024

101

102 def get_corner_name(self, pos):
103 corner_positions = self.get_corner_positions()
104 corner_idx = np.argmin(np.linalg.norm(corner_positions - pos,

axis=1))
105 return [’top left corner’, ’top right corner’, ’bottom left corner’,

’botom right corner’][corner_idx]
106

107 def get_side_name(self, pos):
108 side_positions = self.get_side_positions()
109 side_idx = np.argmin(np.linalg.norm(side_positions - pos, axis=1))
110 return [’top side’, ’right side’, ’bottom side’, ’left

side’][side_idx]

Listing 1: The Cap primitives

15

Under review as a conference paper at ICLR 2024

A.4 LLM PROMPTS

The following text illustrates how we primarily prompt the large language model.

Assume you are a Robotics Agent that can use Tools to solve a task. you are allowed to use
the following tools: {tool description} You are allowed to call the following actions:

1. video captioning, given a high-level instruction you should parse it to
low-level instructions by using Python REPL to call this function, use
video captioning() as Action Input of Python REPL, do not add additional
parameters.

2. policy network, given a low-level instruction you should use the policy network
to solve the instruction by using Python REPL to call this function, use
policy network(num sub inst, lang goal, positive text,
negative text) as Action Input of Python REPL. For example, if instructions
contain 6 sub-instructions, and the sub-instruction is “put the blue block on the
lightest brown block,” then you should call policy network(6, ‘‘put the
blue block on the lightest brown block", ‘‘the blue
block is on the lightest brown block", ‘‘the blue block
is not on the lightest brown block") as Action Input of Python
REPL.

For each time step, you should use the following format to describe your solution. Do not
generate all the steps at once; you should generate the steps one by one:

Thought: Comment on what you want to do next

Action: The action to take, exactly one element of {tool names}
Action Input: The input to the action, either video captioning() or
policy network(‘‘sub instruction"). Do not include Action or Observation in
the Action Input.

(Repeat the above Thought/Action/Action Input N times, use it until you are sure you finished
the task)

In the first step, you have to use the video caption model to translate the video into text, by
using Python REPL to call video captioning() as Action Input of Python REPL. Then
you have to use the policy network to solve the sub-instructions one by one, by using Python
REPL to call policy network(‘‘sub instruction") as Action Input of Python
REPL.

Begin! Instruction: {instruction}
Thought: {previous responses}

16

Under review as a conference paper at ICLR 2024

on the tabletop, there are 6 blocks, red block, green block, yellow block,
brown block, blue block, and cyan block. and to help you start with, on the
table their are base containing the "lightest brown block", "the middle
brown block", and the "the darkest brown block". I want you to stack a
pyramid by the block on the table, the pyramid is something wide on the
button, and narrow on the top, for example for a 3 layer pyramid, it should
have 3 layers on the bottom, 2 in the middle, 1 block on the top. You can
put three blocks to the corresponding blocks in the base to make the first
layer. the primitive you can use is put_a_on_b(a, b), and put
a_on_b_and_c(a, b, c)for example, if you want to put red block on yellow
block, you should say: put_a_on_b(red block, yellow block) you can say
put_a_on_b_and_c(red block, yellow block, green block) to put red block
on top of yellow block and green block. Now, please start to stack a
pyramid by the block on the table….

Certainly, here's the procedure for each step of the Tower of Hanoi
problem with the given setup

1. Move(yellow ring, lighter brown side -> darker brown side)
2. Move(brown ring, lighter brown side -> middle of the stand)
3. Move(yellow ring, darker brown side -> middle of the stand)
4. Move(brown ring, middle of the stand -> darker brown side)
5. Move(yellow ring, middle of the stand -> lighter brown side)
6. Move(brown ring, darker brown side -> lighter brown side)
7. Move(yellow ring, lighter brown side -> darker brown side)

On the tabletop, there are 3 rods from left to right: 'lighter brown side', 'middle of the
stand', and 'darker brown side' initially, there are 3 rings on the lighter brown side: 'yellow
ring', 'blue ring', and 'brown ring' your task is to solve this tower of hanoi. We have action
primitive: 'move(ring, rod)' to move certain ring to particular rod. for example, if you want
to move red ring to the middle of the stand, you should say move(red ring, middle of the
stand) now solve the problem!

Tower of Hanoi Stack Block Pyramid

Text Prompt Robot Plans

Code as Policies

Figure 4: Cap (Liang et al., 2022) hallucination on the stack-block-pyramid task and tower of Hanoi
task, the red boxes indicate the places where the agent starts to make faults.

A.5 ADDITIONAL RESULTS

LLM hallucinates on long-horizon planning.

Figure 4 illustrates how Cap fails on the long-horizon planning tasks: Tower-of-Hanoi and Stack-
Block-Pyramid. The red boxes indicate the step LLM starts to hallucinate.

Example of MultiReAct solve Stack-Block-Pyramid task. The following text illustrates how
MultiReAct generated the ReAct trace to solve the stack-block-pyramid puzzle.

1 Thought:
2 I will start by using the video caption model to translate the video

into text.
3 Action: Python REPL
4 Action Input: video_captioning()
5 Feedback: 1. put the cyan block on the lightest brown block 2. put the

yellow block on the middle brown block 3. put the blue block on the
darkest brown block 4. put the green block on the cyan and yellow
blocks 5. put the brown block on the yellow and blue blocks 6. put
the red block on the green and brown blocks.

6

7 Thought:
8 Now that I have the low-level instructions, I will use the policy

network to solve each sub-instruction one by one.
9 Action: Python REPL

10 Action Input: policy_network(6, "put the cyan block on the lightest
brown block", "the cyan block is on the lightest brown block", "the
cyan block is not on the lightest brown block")

11 Reward: the reward is 0.16666666666666666
12

13 Thought:
14 The reward has increased compared to the last step, so I am on the right

track. Now I will move on to the next sub-instruction.
15 Action: Python REPL

17

Under review as a conference paper at ICLR 2024

16 Action Input: policy_network(6, "put the yellow block on the middle
brown block", "the yellow block is on the middle brown block", "the
yellow block is not on the middle brown block")

17 Reward: the reward is 0.3333333333333333
18

19 Thought:
20 The reward has increased compared to the last step, so I am on the right

track. Now I will move on to the next sub-instruction.
21 Action: Python REPL
22 Action Input: policy_network(6, "put the yellow block on the middle

brown block", "the yellow block is on the middle brown block", "the
yellow block is not on the middle brown block")

23 Reward: the reward is 0.3333333333333333
24

25 Thought:
26 The reward remains unchanged, which means my solution is not correct. I

need to retry the last step.
27 Action: Python REPL
28 Action Input: policy_network(6, "put the blue block on the darkest brown

block", "the blue block is on the darkest brown block", "the blue
block is not on the darkest brown block")

29 Reward: the reward is 0.5
30

31 Thought:
32 The reward has increased again, so I will continue to the next

sub-instruction.
33 Action: Python REPL
34 Action Input: policy_network(6, "put the green block on the cyan and

yellow blocks", "the green block is on the cyan and yellow blocks",
"the green block is not on the cyan and yellow blocks")

35 Reward: the reward is 0.6666666666666666
36

37 Thought:
38 The reward has increased again, so I will continue to the next

sub-instruction.
39 Action: Python REPL
40 Action Input: policy_network(6, "put the brown block on the yellow and

blue blocks", "the brown block is on the yellow and blue blocks",
"the brown block is not on the yellow and blue blocks")

41 Reward: the reward is 0.8333333333333333
42

43 Thought:
44 The reward has increased again, so I will continue to the final

sub-instruction.
45 Action: Python REPL
46 Action Input: policy_network(6, "put the red block on the green and

brown blocks", "the red block is on the green and brown blocks",
"the red block is not on the green and brown blocks")

47 Reward: the reward is 0.9999999999999999

Listing 2: The procedure of how MultiReAct solve stack block pyramid problem

18

	Appendix
	Reproducibility Statement
	CLIPort Dataset
	Low-level policy network
	LLM Prompts
	Additional Results

